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Abstract In this article, it is argued that the Gibbs-

Liouville theorem is a mathematical representation of

the statement that closed classical systems evolve de-

terministically. From the perspective of an observer of

the system, whose knowledge about the degrees of free-

dom of the system is complete, the statement of de-

terministic evolution is equivalent to the notion that

the physical distinctions between the possible states of

the system, or, in other words, the information pos-

sessed by the observer about the system, is never lost.

Thus, it is proposed that the Gibbs-Liouville theorem is

a statement about the dynamical evolution of a closed

classical system valid in such situations where infor-

mation about the system is conserved in time. Fur-

thermore, in this article it is shown that the Hamilton

equations and the Hamilton principle on phase space
follow directly from the differential representation of

the Gibbs-Liouville theorem, i.e. that the divergence of

the Hamiltonian phase flow velocity vanish. Thus, con-

sidering that the Lagrangian and Hamiltonian formula-

tions of classical mechanics are related via the Legendre

transformation, it is obtained that these two standard

formulations are both logical consequences of the state-

ment of deterministic evolution, or, equivalently, infor-

mation conservation.
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1 Introduction

A key concept which is at the heart of the distinction

between the temporal evolution of classical and quan-

tum systems is determinism. Classical systems are said

to be deterministic while quantum systems are non-

deterministic. Considering this key distinction, it is the

purpose of this article to initiate a study on the role

of determinism in classical and quantum mechanics by

rephrasing the conventional exposition of classical me-

chanics in such a manner that the notion of determin-

istic evolution take the central role.

The conventional exposition of classical mechanics is

largely based on the historical development of the sub-

ject [1][2][3][4]. Newton introduced the concept of force

in order to describe the motion of objects, as mathe-

matically expressed by his second law of motion, which

is a second-order differential equation in time. Later,

Lagrange [5][6] constructed a mathematically equiva-

lent formulation where the Lagrangian function, which

is defined on configuration space, is introduced and

which play the central role. The Lagrange, or Euler-

Lagrange, equations of motion are also second-order

differential equations in time. Lagrange’s formulation

was later transformed from configuration space onto

phase space by Hamilton [7], where the central role
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is played by the Hamiltonian function. The Hamilton

equations of motion are first-order differential equa-

tions in time. The deterministic character must then

be proved by showing that the equations of motion,

with known unique initial conditions, have unique so-

lutions such that the states cannot converge into each

other. Thus, determinism enter into the discussion at

a fairly late stage, after the introduction and definition

of concepts such as force, the Lagrangian and Hamilto-

nian functions, and after the equations of motion have

been obtained. In this article, the attempt is to start

with the notion of determinism and from it deduce the

necessary form of the equations of motion.

The purpose behind the desire to shift the exposi-

tion of classical mechanics as proposed in this article is

to, hopefully, better understand the non-deterministic

evolution for quantum systems on phase space, as de-

scribed in the seminal paper by Moyal [8].

2 Phase space

The theatrical stage on which physical phenomena are

played out are characterized by so-called degrees of free-

dom. They are parameters whose values are aimed at

defining the state of existence for a system as it unfold

in time. There exist different mathematical representa-

tions of this theatrical stage. In this article, the space

of phases, or phase space, is the stage used to study the

flow of classical systems.

At any given time t, any given particle j within an

N−particle system with three spatial dimensions has

the spatial location qj ≡ (q1, q2, q3)j and the momenta

pj ≡ (p1, p2, p3)j . These are the degrees of freedom

for the j′th particle. The total number of degrees of

freedom for the system is thus 6N . For notational sim-

plicity, the 3N spatial and the 3N momenta degrees

of freedom are denoted by q and p, respectively. The

space of all possible values for the pair (q, p) define the

phase space. Each point in phase space correspond to a

specific state for the system, i.e. a specific value for the

spatial location and momenta of each particle within

the system.

For continuous systems, all states in which the sys-

tem can exist are continuously connected to each other

in the sense that any two arbitrary states can be trans-

formed into each other by considering successive in-

finitesimal variations in q and p. Thus, in the contin-

uous case, the states of a system lie on smooth sur-

faces in phase space, see figure 1, where the state at

time t0, given by the values (q0, p0), is connected to the

state at another time t, given by the values (q(t), p(t)),

along a smooth trajectory, the so-called system trajec-

tory. Phase space can be extended to explicitly include

Fig. 1 Phase space for a continuous system.

time as a coordinate which is orthogonal to phase space,

see figure 2. As the system evolve in time, it traces out

a trajectory in the extended phase space. If the tra-

jectory on phase space is known for a given system, it

mean that the entire evolutionary history of the system

is known.

Fig. 2 The extended phase space.

3 Determinism and information

In classical mechanics, it is a fundamental assumption

that the evolution of a system is deterministic in both

directions of time, i.e. both into the future and into the

past. Deterministic evolution of a system mean that it is

possible, with absolute certainty, to say that any given

state of the system evolved from a definite single state

in the past and will evolve into a definite single state

in the future. There cannot be any ambiguity in the

evolutionary history of a system. Thus, deterministic
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evolution imply that nowhere on phase space can states

converge or diverge, see figure 3.

Fig. 3 Non-deterministic evolution imply that system tra-
jectories would cross each other on phase space, here at point
(q0, p0).

Systems that appear to evolve non-deterministically

give rise to the appearance of irreversible processes in

nature. The reason for this is that if a system start

out in a given state it is not necessarily the case that

the system end up at the same initial state by revers-

ing the motion of the system in time. An example of a

seemingly irreversible process is the sliding of a block

of cheese along a table. Due to friction the block will

always come to rest, apparently independent on the ini-

tial condition of the block. Thus it appear as though the

multitude of possible initial states for the block, given

by the possibility of sending off the block with differ-

ent initial speeds, all converge to the same final state

where the block is at rest. Knowing the final state of

the system does not help in predicting the initial state

of the system. Therefore, the experiment with sending

off the block of cheese seem to represent an evolution

which is non-deterministic into the past.

The origin for the apparent violation of reversibil-

ity in physical processes is not due to a fundamental

character in physical laws, but rather it is due to the

ignorance of the observer. The observer has not taken

into account all the details of the system. Degrees of

freedom for the system has been ignored. In the case of

the sliding block of cheese, it is the individual motion

of atoms in the block and table which has been ignored.

Assuming that all degrees of freedom for the block and

table are followed in perfect detail as the block slide on

the table it is clear that each unique initial state will

give rise to a unique final state where the distinction

between the final states are given by the distinct final

position and velocity of each atom in the block and

table.

A direct consequence of the assumption of deter-

ministic evolution is that distinctions between physical

states never disappear. If there is an initial distinction

between states, this distinction will survive throughout

the entire motion of the system. That distinctions be-

tween states seem to disappear as time unfold is merely

a consequence of the difficulty for an observer to keep

perfect track of the motion of all particles. In the case

of the sliding block, for a human observer, the distinc-

tion between individual motions of atoms in the block

and table are too small to measure and therefore it ap-

pear as though two distinct initial states, characterized

by distinct initial speeds, which are easy to measure,

converge to the same final state, i.e. that the block is

at rest. In conclusion, the assumption of deterministic

evolution can equivalently be stated as follows.

The distinction between physical states of a closed sys-

tem is conserved in time.

Due to the conservation of distinction between phys-

ical states, any set of states which lie in the interior

of some volume element on phase space will remain in-

terior of this volume element as the system evolve in

time.

If a system is followed, as it evolve in time, in per-

fect detail by an observer, it mean that the observer has

perfect and complete knowledge about all the degrees

of freedom of the system, i.e. the observer know, with

infinite precision, the exact position and momenta of all

particles within the system. In such an ideal scenario,

the observer has no problem to see the distinction be-

tween states of the system. The amount of knowledge,

or information, about the system possessed by the ob-

server, at any instant of time, is complete. Since the

ideal observer never loose track of the system, the dis-

tinction between states is never lost. In other words, the

knowledge, or information, that the observer has about

the system is not lost as the system evolve in time.

If, however, as is the case in practical reality, the

observer has a limited ability to track the motion of in-

dividual particles, the observer do not possess complete

information about the system. Even worse, the observer

may, as is usually the case for complicated systems with

many degrees of freedom, find it more and more difficult

to track the system as time unfold. In such a scenario,

the amount of information about the system, possessed

by the observer, decrease with time. In other words,

from the perspective of the ignorant observer, informa-

tion about the system is lost. However, it is important

to emphasize that this apparent loss of information is

entirely due to the ignorance of the observer. If all the

degrees of freedom were tracked with infinite precision,
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information would never be lost. In the case of the slid-

ing block of cheese, the observer has lost information

because the system was known to exist in one of two

distinct initial states, obtained by measuring the initial

speed of the block, whereas it is not possible to distin-

guish between the two final states.

In conclusion, the loss of distinction between states

imply that information has been lost. Thus, the con-

servation of distinction between states can equivalently

be stated as an assumption of information conservation:

The information contained within a closed system is

conserved in time.

In other words, the assumption that classical systems

evolve deterministically, i.e. that the state of the sys-

tem is perfectly predictable by an observer both into

the future and back to the past, is equivalent to the

statement that an observer of the system possess com-

plete information about the system, and assuming that

the system is closed, this amount of information is never

lost.

4 Incompressible fluid flow

To understand how the statement of deterministic evo-

lution, or, equivalently, information conservation, can

be represented mathematically, consider first, as an ana-

log, the incompressible fluid flow of identical molecules

in one and two spatial dimensions.

For a fluid flow in one spatial dimension x, see figure

4, where the fluid molecules are represented as dots, the

velocity v of the flow is determined by the number of

molecules N that pass through a given location along

x during a given time interval ∆t. The rate of flow of

Fig. 4 Fluid flow in one spatial dimension.

the fluid, per time interval ∆t, is given by

rate of flow = ρ(x)v(x) (1)

where ρ(x) is the density of molecules along x. In or-

der to avoid an increase or decrease in the number of

molecules within a region ∆x during an instant of time

∆t, i.e.
∆N

∆t
= 0 (2)

the necessary condition is that the incoming and out-

going flows are equal, i.e.

ρ(xout)v(xout) = ρ(xin)v(xin) (3)

This is rewritten as

∆ (ρ(x)v(x)) ≡ ρ(xout)v(xout)− ρ(xin)v(xin) = 0 (4)

In differential form it read

d (ρ(x)v(x)) ≡ d

dx
(ρ(x)v(x)) ·∆x = 0 (5)

which gives that

d

dx
(ρ(x)v(x)) = 0 (6)

For the number of molecules to be conserved over an

extended period of time, i.e. over many successive time

intervals ∆t, the required condition become

∂ρ(x, t)

∂t
+

∂

∂x
(ρ(x, t)v(x)) = 0 (7)

This is the continuity equation for the flow of molecules

in one dimension. The product rule on the second term

give

∂ρ(x, t)

∂t
+
∂ρ(x, t)

∂x
· v(x) + ρ(x, t) · ∂v(x)

∂x
= 0 (8)

where the first two terms are equal to the total time

derivative of the density, i.e.

dρ(x, t)

dt
=
∂ρ(x, t)

∂t
+
∂ρ(x, t)

∂x
· ∂x
∂t

(9)

The continuity equation can thus be rewritten as

dρ(x, t)

dt
+ ρ(x, t) · ∂v(x)

∂x
= 0 (10)

Thus, if the velocity of the flow is independent on x,

i.e. if

∂v(x)

∂x
= 0 (11)

then the density of molecules is constant in time as the

fluid flow along x, i.e.

dρ(x, t)

dt
= 0 (12)

Such a flow is referred to as an incompressible flow be-

cause the condition that the density of molecules at

any given location x within ∆x do not change over

time ensure that the molecules do not lump together.

Thus, in conclusion, a necessary and sufficient condi-

tion for the one-dimensional fluid to be incompressible

is that the divergence of the flow velocity vanish, i.e.

that ∂v(x)
∂x = 0.

Consider now the flow of a fluid in two spatial di-

mensions, x and y, see figure 5. If the number of molecules
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Fig. 5 Fluid flow in two spatial dimensions.

within the fixed area ∆x ·∆y within any given time in-

terval ∆t is to stay constant, the necessary condition

relating the incoming and outgoing flows is given by

∆ (ρ(x, y)vx(x, y)) +∆ (ρ(x, y)vy(x, y)) = 0 (13)

where ∆ (ρ(x, y)vx(x, y)) and ∆ (ρ(x, y)vy(x, y)) are de-

fined by, respectively,

{ρ(xout, y)vx(xout, y)− ρ(xin, y)vx(xin, y)} ·∆y (14)

and

{ρ(x, yout)vy(x, yout)− ρ(x, yin)vy(x, yin)} ·∆x (15)

In differential form, they read

d (ρ(x, y)vx(x, y)) =
∂

∂x
(ρ(x, y)vx(x, y))∆x∆y (16)

d (ρ(x, y)vy(x, y)) =
∂

∂y
(ρ(x, y)vy(x, y))∆y∆x (17)

Thus, the condition become

∂

∂x
(ρ(x, y)vx(x, y)) +

∂

∂y
(ρ(x, y)vy(x, y)) = 0 (18)

For the number of molecules to be constant over an ar-

bitrary length of time, the necessary condition take the

form, dropping spacetime coordinates in the notation

for convenience,

∂ρ

∂t
+

∂

∂x
(ρvx) +

∂

∂y
(ρvy) = 0 (19)

This is the continuity equation for the flow of molecules

in two dimensions. Using the product rule and noting

that the total time derivative of the density is given by

dρ

dt
=
∂ρ

∂t
+
∂ρ

∂x
· vx +

∂ρ

∂y
· vy (20)

the continuity equation can be rewritten as

dρ

dt
+ ρ ·

(
∂vx
∂x

+
∂vy
∂y

)
= 0 (21)

or, in vector notation,

dρ

dt
+ ρ∇ · v = 0 (22)

Thus, if the divergence of the flow velocity vanish, i.e.

if

∇ · v = 0 (23)

then the density of molecules is constant in time as the

fluid flow in x and y, i.e.

dρ

dt
= 0 (24)

A necessary and sufficient condition that the fluid flow

is incompressible is thus that the divergence of the flow

velocity vanish.

5 The Gibbs-Liouville theorem

Consider an arbitrary region Ω on phase space, with

volume VΩ and volume element ∆q∆p, see figure 6. In

Fig. 6 Hamiltonian flow on phase space.

order for the number of states N within the phase space

volume Ω to neither increase nor decrease within the

time interval ∆t, i.e.

∆N

∆t
= 0 (25)

it is necessary that the incoming and outgoing flows

cancel, i.e. that

∆ (ρ(q, p)q̇) +∆ (ρ(q, p)ṗ) = 0 (26)

where ρ(q, p) is the density of states on phase space,

and the flow differences are defined by, respectively,

∆ (ρ(q, p)q̇) ≡ {ρ(qout, p))q̇out − ρ(qin, p))q̇in}∆p (27)

and

∆ (ρ(q, p)ṗ) ≡ {ρ(q, pout))ṗout − ρ(q, pin))ṗin}∆q (28)

In differential form the condition 25 read

∂

∂q
(ρ(q, p)q̇) +

∂

∂p
(ρ(q, p)ṗ) = 0 (29)
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where

d (ρ(q, p)q̇) =
∂

∂q
(ρ(q, p)q̇)∆q∆p (30)

d (ρ(q, p)ṗ) =
∂

∂p
(ρ(q, p)ṗ)∆p∆q (31)

Extending the condition 25 to be valid for an arbi-

trary length of time, the differential condition 29 be-

come, dropping reference to the phase space degrees of

freedom in the arguments of the density function for

convenience,

∂ρ

∂t
+

∂

∂q
(ρq̇) +

∂

∂p
(ρṗ) = 0 (32)

or, in vector notation,

∂ρ

∂t
+ ∇ · (ρv) = 0 (33)

where

∇ ≡
(
∂

∂q
,
∂

∂p

)
(34)

is the differential operator on phase space, and

v ≡ (q̇, ṗ) (35)

is the velocity by which states flow on phase space. The

continuity equation 33 is the Gibbs-Liouville equation

[9][10] for the density of states on phase space. It say

that the number of states is locally conserved. The term

∇ · (ρv) represent the net flow of states through Ω, i.e.

the difference between the outflow and inflow of states.

The continuity equation thus state that if there is a net

outflow of states, i.e. if

∇ · (ρv) > 0 (36)

then the density of states within Ω decrease with time,

i.e.

∂ρ

∂t
= −∇ · (ρv) < 0 (37)

If there is a net inflow of states, i.e. if

∇ · (ρv) < 0 (38)

then the density of states within Ω increase with time,

i.e.

∂ρ

∂t
= −∇ · (ρv) > 0 (39)

Using that the total time derivative of the density

of states is given by

dρ

dt
=
∂ρ

∂t
+
∂ρ

∂q
q̇ +

∂ρ

∂p
ṗ (40)

=
∂ρ

∂t
+ (∇ρ) · v (41)

and the product rule

∇ · (ρv) = (∇ρ) · v + ρ∇ · v (42)

the continuity equation can be rewritten as

dρ

dt
+ ρ ∇ · v = 0 (43)

Thus, if the divergence of the phase flow velocity

vanish, i.e. if

∇ · v = 0 (44)

then, by the continuity equation, the density of states

on phase space is constant in time along the flow on

phase space, i.e.

dρ

dt
= 0 (45)

In such a situation, the flow of the system on phase

space is incompressible because the condition that the

density of states at any given location (q, p) on phase

space, within an arbitrary region Ω, do not change over

time ensure that the states do not lump together. In

other words, in conclusion, a necessary and sufficient

condition for the flow of the system on phase space

to evolve deterministically, or, equivalently, to conserve

information, is that the divergence of the phase flow

velocity vanish. This conclusion is referred to as the

Gibbs-Liouville theorem [9][10].

The Gibbs-Liouville continuity equation can be de-

rived more shortly by considering the relation between

the number of statesN and the density of states ρ(q, p, t),

i.e.

N =

∫
VΩ

ρ(q, p, t)dqdp (46)

Thus,

dN

dt
=

d

dt

∫
VΩ

ρ(q, p, t)dqdp

=

∫
VΩ

(
dρ

dt
+ ρ ∇ · v

)
dqdp

= 0 (47)

Since information should be conserved independently

on the size of Ω, the integrand in equation 47 must

vanish for arbitrary volumes VΩ , giving the desired re-

sult

dρ

dt
+ ρ ∇ · v = 0 (48)

6 Hamilton’s equations

The vanishing divergence of the flow velocity, written

out explicitly in terms of the velocity components q̇ and

ṗ, become

∂q̇

∂q
+
∂ṗ

∂p
= 0 (49)
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For this condition to hold, the velocity components

must both be related to a function H(q, p) on phase

space given by the Hamilton equations, i.e.

q̇ =
∂H
∂p

(50)

ṗ = −∂H
∂q

(51)

Thus, given the function H(q, p), the flow of the sys-

tem in time is determined by how H(q, p) change on

phase space. In this sense, H(q, p) is said to be the gen-

erator for the motion in time of the system. The flow

of the system on phase space is then referred to as a

Hamiltonian flow.

7 The Hamiltonian and Lagrangian

The Hamilton equation 50 correspond to the integral

equation

H(p) =

∫
dp q̇(p) (52)

The momentum p and speed q̇ are assumed to be in one-

to-one correspondence. This mean that for each value

of q̇ there is a unique value for p, and vice versa. The

function H(p) is then geometrically interpreted as the

unique area under the q̇(p)−graph, bounded by (0, p)

and (0, q̇(p)), see figure 7. Due to the one-to-one cor-

Fig. 7 The areas under q̇(p) and ṗ(q) graphs define the
Hamiltonian and Lagrangian, respectively.

respondence between p and q̇ it is possible to define a

related area, L(q̇), given by the unique area under the

p(q̇)−graph,

L(q̇) =

∫
dq̇ p(q̇) (53)

This integral equation correspond to the differential

equation1

dL(q̇)

dq̇
= p (54)

The total area of the rectangle bounded by (0, p) and

(0, q̇) is given by

L(q̇) +H(p) = p · q̇ (55)

It is possible to include a dependence on the generalized

coordinate q under the constraint that any q−dependent

terms in the functions H and L cancel such that the to-

tal area is q−independent. Thus, in general, the func-

tions H and L, referred to as the Hamiltonian and the

Lagrangian, respectively, satisfy the so-called Legendre

transformation,

L(q, q̇) +H(q, p) = p · q̇ (56)

where

L(q, q̇) =

∫ q̇

0

dq̇ p(q̇)− U(q) (57)

H(q, p) =

∫ p

0

dp q̇(p) + U(q) (58)

The function U(q) is referred to as the potential energy

of the system. The requirement that the total area is

q−independent cause the Lagrangian and Hamiltonian

to have a relative sign difference for their potential en-

ergy.

8 Principle of stationary action

The Hamilton equations

−∂H
∂q
− ṗ = 0 (59)

q̇ − ∂H
∂p

= 0 (60)

is the local, differential, representation of the principle

of information conservation on phase space. A global,

or integral, representation can be obtained by consider-

ing the entire evolutionary path from some initial time

ti to some final time tf where the Hamilton equations

are integrated over time2. For this purpose, multiply

the Hamilton equations with two independent arbitrary

1 In the Lagrangian formulation of classical mechanics, this
differential equation is the defining equation for the momenta
conjugate to the generalized coordinate.
2 For the derivation of an integral representation on config-

uration space starting from Newton’s second law of motion,
see chapter 10 in reference [11].
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functions of time, δq(t) and δp(t), representing, respec-

tively, small displacements in q and p on phase space,

in the following manner,(
−∂H
∂q
− ṗ
)
δq(t) = 0 (61)(

q̇ − ∂H
∂p

)
δp(t) = 0 (62)

The displacements δq(t) and δp(t) are pictured as slight

variations of the physical path on phase space, i.e.

q(t)→ q(t) + δq(t) (63)

p(t)→ p(t) + δp(t) (64)

Equations 61 and 62 are equivalent to the Hamilton

equations since they hold for arbitrary variations. The

fact that it is necessary to introduce two displacement

functions is due to the independence of the state pa-

rameters q and p. The boundary conditions are given

by

δq(ti) = δq(tf ) = 0 (65)

δp(ti) = δp(tf ) = 0 (66)

i.e. the variations vanish at the initial and final times.

Integrating the Hamilton equations over time from ti
to tf give, to leading order in the variations,∫ tf

ti

dt

[(
−∂H
∂q
− ṗ
)
δq(t) +

(
q̇ − ∂H

∂p

)
δp(t)

]
= 0(67)

Integration by parts and recalling the boundary condi-

tions give

0 =

∫ tf

ti

dt

[
∂(q̇p−H)

∂q
− d

dt

∂(q̇p−H)

∂q̇

]
δq(t)

+

∫ tf

ti

dt

[
∂(q̇p−H)

∂p
− d

dt

∂(q̇p−H)

∂ṗ

]
δp(t)

=

∫ tf

ti

dt δ (q̇p−H)

= δ

∫ tf

ti

dt (q̇p−H)

= δ

∫ tf

ti

dt L

= δA (68)

where

A ≡
∫ tf

ti

dt L (69)

is the action of the system. This is Hamilton’s formu-

lation of the principle of stationary action, or shortly,

Hamilton’s principle. It is a global representation of in-

formation conservation, i.e. a statement on the entire

evolutionary path which must be satisfied if the system

is to adhere to the principle of information conserva-

tion.

Since the Hamilton principle can be derived from

the Hamilton equations, which in turn is an immediate

consequence of the requirement that the divergence of

the Hamiltonian flow velocity vanish, it should be pos-

sible to obtain the Hamilton principle directly from the

requirement that ∇ · v = 0 is invariant under the dis-

placements δq(t) and δp(t). Given that the variations

are small, the flow velocity v can be expanded as a

Taylor series about the state (q, p) where terms that

are of quadratic, or higher, order in the variations δq

and δp can be ignored. The infinitesimal change in v

thus become

δv = v(q + δq, p+ δp)− v(q, p) = δq
∂

∂q
v + δp

∂

∂p
v(70)

The divergence of the flow velocity transform as

∇ · v→∇ · (v + δv) = ∇ · v + ∇ · δv (71)

If ∇ · δv 6= 0, information is not conserved for the de-

viated path. Therefore, it is required that

∇ · δv = 0 (72)

which is equivalent to

δ (∇ · v) = 0 (73)

This statement is for a blob of volume dV which enclose

the single state (q, p). Information conservation should

hold for all varied states along the evolutionary path

of the system, from the initial state (qi, pi), at time ti,

to the final state (qf , pf ), at time tf . Thus, the above

statement should be integrated over all blobs of volume

dV along the path, i.e. the integration is over a tube,
with volume V , whose interior define the region of ex-

tended phase space where the principle of information

conservation is fulfilled. Thus,

δ

∫ tf

ti

dt

∫
V

dV ∇ · v = 0 (74)

Applying the divergence theorem∫
V

dV ∇ · v =

∫
∂V

dS · v (75)

give

δ

∫ tf

ti

dt

∫
∂V

dS · v = 0 (76)

The integrand dS · v represent the density of the net

Hamiltonian flow out of the tube. The surface area el-

ement dS is given by

dS = dS n (77)

where n = (p, q) is the normal vector to the surface

of the tube, i.e. n give the direction in phase space
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in which the system has to flow if it is to eventually

reach a region where the principle of conservation of

information no longer hold. Thus, with v = (q̇, ṗ), the

integrand become

(p, q) · (q̇, ṗ) = pq̇ + qṗ (78)

Using that q =
∫
dq and the Hamilton equation ṗ =

−∂H∂q , the integrand can be written as

pq̇ −
∫
dq
∂H
∂q

= pq̇ −
∫
dH = pq̇ −H (79)

Equivalently, the integrand could have been written as

qṗ+H (80)

by using that p =
∫
dp and the other Hamilton equation

q̇ = ∂H
∂p . However, the form pq̇ − H is the preferred

choice due to the fact that it is equal to the Lagrangian

L. Thus,

δ

∫ tf

ti

dt

∫
dS L = 0 (81)

The equality must hold independently on the surface

area of the tube, i.e. the principle of information con-

servation should hold true independently on the number

of states in which the system can exist. Therefore, the

integration over the surface area can be taken outside

of the infinitesimal variation, giving that

δ

∫ tf

ti

dt L = 0 (82)

which is, again, Hamilton’s principle.
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