
1 
 

The Comparative Psychology of Artificial Intelligences 

***Draft Status*** 

Cameron Buckner 

1.  Introduction 

The last five years have seen a series of remarkable achievements in Artificial Intelligence (AI) research.  For 

example, systems based on Deep Neural Networks (DNNs) can now classify natural images as well or better 

than humans, defeat human grandmasters in strategy games as complex as chess, Go, or Starcraft II, and 

navigate autonomous vehicles across thousands of miles of mixed terrain.   Like the brain, however, these 

models have become staggeringly complex, and prominent neural network researchers have suggested that we 

might come to understand their processing by engaging them with experimental paradigms and data analysis 

methods derived from human and animal cognitive sciences.   

Such engagement has led researchers to conclude that DNNs are currently the best artificial model of 

perceptual similarity judgments in primates, based on comparisons between model behavior and primate 

judgments of the similarity of exemplars and electrophysiology measurements obtained from ventral stream 

visual cortex (Guest and Love 2019; Hong et al. 2016; Khaligh-Razavi and Kriegeskorte 2014; Kubilius, 

Bracci, and Beeck 2016; Lake et al. 2015; Yamins and DiCarlo 2016).  Taking the idea that neural networks 

can be engaged directly with the tools of psychology even further, the “Animal-AI Olympics” recently 

proposed at Cambridge University has created a testbed application that encodes dozens of benchmark 

experimental measures of cognitive performance in animals, so that these tests can be systematically applied 

to artificial systems to determine whether they exhibit a range of animal-level intelligent behaviors (Crosby, 

Beyret, and Halina 2019).   

In short, comparisons between natural and artificial intelligences have never been so varied and 

ambitious—nor, I shall argue here, so fraught.  The capacity of these artificial systems to produce new forms 

of potentially intelligent behavior has outpaced our reflection on whether these comparisons are fair or 

meaningful.    Aligning the operations of differently-constituted natural intelligences is already a tricky 

enterprise; even different biological species have different perceptual abilities, motivations, motor capacities, 
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and neural hardware, so we cannot expect to give them identical psychological tests.  Moreover, biases like 

anthropomorphism and anthropocentrism plague human intuitions about nonhuman behaviors, and 

methodological subtlety is required to temper them.  These difficulties are only exacerbated when the other 

end of the comparison is an artificial system, for such systems often only aim to reproduce parts of a full 

cognitive agent.  In his defense of his famous imitation game test, Turing himself wrestled with these issues; 

and commentators have explicitly reflected on how to avoid being unwittingly convinced by artificial systems 

that present the superficial trappings of human-like behavior (such as human-like facial expressions or 

gestures) without the same underlying competences (Block 1981; Proudfoot 2011; Shevlin and Halina 2019; 

Złotowski et al. 2015).   

In this paper, I suggest that this debate about fair comparisons in AI could be expedited by taking 

the lead from 120 years of reflection on similar questions in comparative psychology.  While comparative 

psychology dedicated much effort to developing rigorous empirical methods to avoid anthropomorphism-

driven false positives, the field is also recently coming to grips with the danger of anthropocentrism-driven 

false negatives.  In AI, a great deal of critical thought has similarly been put into the skeptical evaluation of 

artificial system performance, but very little of that critical skepticism has been directed at the selection and 

scoring of the purported human equivalent.  In this paper, I will review three ways in which critics have 

alleged that DNNs underperform humans and animals.  I will argue that a bias called 

“anthropofabulation”(Buckner 2013)—which scores nonhuman performance against an inflated conception 

of human competence—threatens the validity of the comparison.  I will end by suggesting some lines of 

research that comparative AI must explore to develop fair and rigorous protocols for such comparisons. 

2. Three Criticisms of Deep Learning Research 

In this section, I canvass three criticisms that have been commonly offered against inflationary interpretations 

of DNNs, which can be found in influential critical assessments such as Lake et al. (2017a) and/or Marcus 

(2018).   

A. Deep Learning Is Too Data-Hungry 
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One of the most common critical refrains is that DNNs require much more training data than humans to 

produce equivalent performance.  It is true that most state-of-the-art DNNs require millions of training 

exemplars to reach their benchmark performance.  The standard methods of training image-labelling DNNs, 

for example, involves supervised backpropagation learning on the ImageNet database, which contains 14 

million images that are hand-annotated with labels from more than 20,000 object categories.  To consider 

another example, AlphaGo’s networks were trained on over 160,000 stored Go games recorded from human 

grandmaster play, and then further trained by playing millions of games against iteratively stronger versions of 

itself (over 100 million matches in total); its human opponent Lee Sedol, by contrast, could not have played 

more than 50,000 matches in his entire life.  In the human case, critics emphasize the phenomena of “fast 

mapping” and “one-shot learning”, which seems to allow humans and animals to learn from a single 

exemplar.  For example, Lake et al. (2015) argue that humans can learn to recognize and draw the 

components of new handwritten characters, even from just a single example (Fig 1.).  Skeptics thus wonder 

whether DNNs will ever be able to learn comparatively rich category information from smaller, more human-

like amounts of experience. 

 

Fig. 1 The hierarchical decomposition of a novel handwritten figure decomposed into three individual pen 

strokes, which humans can purportedly learn from a single exemplar (reproduced from Lake et al. 2015). 

B. Adversarial Examples Expose Deep Learning as a Fraud 

Adversarial examples were originally defined as “perturbed images” created by slightly modifying an easily-

classifiable exemplar in a way that was imperceptible to humans, but which could cause dramatic 

misclassification by DNNs (Goodfellow, Shlens, & Szegedy, 2015—Fig. 2).  A related line of research has 

discovered numerous forms of “rubbish images” that are supposedly meaningless to humans but are 

confidently classified as members of particular categories by DNNs (Nguyen, Yosinski, and Clune 2015).  
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Subsequent research has found that such adversarial examples have many counterintuitive properties:  they 

can transfer with (incorrect) labels to other DNNs with different architectures and training sets, they are 

difficult to distinguish from real exemplars using pre-processing methods, and they can be created without 

“god’s-eye” access to model parameters or training data.  Rather than being an easily overcome quirk of 

particular models or training sets, they appear to highlight a robust property of current DNN methods. 

Much of the interest of adversarial examples derives from the assumption that humans do not see them 

as DNNs do.  For practical purposes, this would entail that hackers and other malicious agents could use 

them to fool automated vision systems—for example, by placing a decal on a stop sign that caused an 

automated vehicle to classify it as a speed limit sign—and human observers might not know that anything 

was awry until it was too late.  For modeling purposes, however, they might also show that despite 

categorizing naturally-occurring images as well or better than human adults, DNNs do not really acquire the 

same kind of category knowledge that humans do—perhaps instead building “a Potemkin village that works 

well on naturally occurring data, but is exposed as fake when one visits points in [data] space that do not have 

a high probability” (Goodfellow, Shlens, & Szegedy, 2015). 

 
        “panda”     “nematode”         “gibbon” 
                         57.7% confidence             8.2% confidence                99.3% confidence 
 
Figure 2. An adversarial “perturbed image,” reproduced from Goodfellow et al. (2014). After the “panda” 
image was modified slightly by the addition of a small noise vector (itself classified with low confidence as a 
nematode), it was classified as a gibbon with high confidence, despite the modification being imperceptible to 
humans. 
 

C. DNNs Are not Interpretable 

Another common criticism holds that DNNs are “black boxes” which are not “interpretable” (Lipton 2016) 

or not “sufficiently transparent” (Marcus 2018).  State-of-the-art DNNs can contain hundreds of layers and 

millions of individual parameters, making it difficult to understand the significance of their internal 

processing.  However, much in this charge remains underspecified (Zednik 2019).  What kind of 



5 
 

interpretability needs to be provided, and to whom?  What is the purpose of interpretability, and how would 

we know whether we had succeeded in providing it?  At any rate, these concerns should only be counted 

against deep learning models if some obvious alternative systems perform better on them.  While DNNs are 

often compared to linear models (which are—probably incorrectly—said to be “more interpretable”), usually 

the comparison class is adult humans.  Recent governmental initiatives such as DARPA’s eXplainable AI 

(XAI) challenge (Fig. 3) and the EU’s General Data Protection Regulation (which provides users with a “right 

to explanation” for decisions made by algorithms) have quickened the challenge and provided it with some 

practical goals, if not always conceptual clarity (Goodman & Flaxman, 2017; Gunning, 2017). 

 

Figure 3.  The DARPA XAI concept (from Gunning 2017). 

3. A Crash Course in Comparative Bias 

Comparative psychology has come to appreciate that human researchers are vulnerable to systematic biases 

when comparing human and nonhuman intelligence.  One bias which has already been well-studied by 

philosophy of science is anthropomorphism. Understood as an error, anthropomorphism is the tendency of 

humans to attribute human-like psychological characteristics to nonhumans on the basis of insufficient 

empirical evidence.  In comparative psychology, a methodological corrective that has been recommended 

since the discipline’s inception is Morgan’s Canon, which states that “in no case is an animal activity to be 

interpreted in terms of higher psychological processes if it can be fairly interpreted in terms of processes 

which stand lower on the scale of psychological evolution and development” (Morgan 1903).  A sizeable 
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literature in comparative psychology explores the Canon’s proper interpretation (Karin-D’Arcy 2005; Sober 

1998).  In practice, the set of “lower” processes usually includes reflexes, instincts, and simple associative 

learning mechanisms, and the goal of an experiment is to devise a situation which could be solved only by 

using cognitive information-processing or rational insight, and not by the use of any of these less-flexible 

alternatives (Buckner 2017b).   

On the other hand, there are also a variety of anthropocentric biases which can push down the scales 

against nonhumans.  For example, semantic anthropocentrism is the tendency to tie the criteria for the 

possession of some cognitive capacity to a distinctively human expression of the trait, without adequate 

theoretical justification.   In other words, it causes us to assume that only the distinctive way humans exhibit a 

trait is valuable or worthwhile—such as supposing that only animals that navigate by sight could possess 

cognitive mapping, when bats or dolphins might create maps of their environment using echolocation.  Even 

more pernicious, however, is the bias of “anthropofabulation” (Buckner 2013), which combines semantic 

anthropocentrism with confabulation about human cognitive performance. Anthropofabulation results from 

an uncritical and inflated picture of human cognitive processing derived from introspection or cultural 

traditions.  Common sense tells us that our thought processes are always rational—derived from a 

dispassionate processing of the situation, a direct introspective access to our true beliefs and motivations, and 

independence from subtle environmental scaffolding, historical associations, or emotional reactions.  A great 

deal of human social psychology and philosophy of psychology, however, has cast this picture of human 

cognition into doubt (Carruthers 2011; Kahneman and Frederick 2002; Nisbett and Ross 1980; Samuels, 

Stich, and Bishop 2002).   

In practice, anthropofabulation has caused skeptics to compare human and animal performance in 

situations which are crucially disanalogous, such as when humans are tested with conspecifics but 

chimpanzees with heterospecifics, humans tested in a known caregiver’s lap while chimpanzees are tested 

with strangers behind Plexiglas, or humans are tested on culturally-familiar stimuli while chimpanzees are 

tested on unfamiliar artificial stimuli (Boesch 2007).  Anthropofabulation causes us to implicitly assume that 

human performance could not possibly depend upon such environmental scaffolding, and leading us to 
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trivialize these disanalogies.  The worry is that critics of DNNs have similarly drawn upon the rosy picture of 

human cognition presented to us by introspection and common sense, testing humans and DNNs in unfairly 

disanalogous situations or assessing penalties to DNNs for factors that apply equally to rational human 

cognition.   

4. Three Rebuttals 

A. Human learning involves more trainable exemplars than common sense supposes 

One way that anthropofabulation might bias us against DNNs is by causing us to undercount the number of 

trainable instances that should be scored to adult human performance.  Two factors are often neglected in 

counting the number of exemplars that humans should be scored as having been exposed to in learning:  1) 

that many different vantages of the same object can provide distinct training exemplars for cortical learning, 

and 2) that offline memory consolidation during sleep and daydreaming can replay the same exemplars—and 

even simulated novel exemplars generated from those same experiences—many thousands of times in offline 

repetitions.  Ignoring these factors, common sense might score an infant’s ten-minute interaction with a new 

toy as a single exemplar.  Taking these factors into account, however, would score orders of magnitude more 

equivalently trainable exemplars to this prolonged interaction.   

It is difficult to decide exactly which features of human perceptual learning are relevant to the 

comparison, but we can review some results in the neighborhood.  Studies of motion-picture perception has 

suggested that human vision has a frame rate of about 10-12 images per second (below which we cannot 

perceive motion as continuous).  While it might take 200-400 ms for us to become consciously aware of a 

perceptual stimulus, attentional shifting to a new stimulus begins in as little as 20 ms, and category structure 

can be implicitly influenced by nonconscious exposures to stimuli as brief as 1 ms (Kunst-Wilson and Zajonc 

1980; Schacter 1987). Moreover, perceptual memories may be repeatedly reconsolidated by theta rhythm 

many times over a period of months and years (Stickgold 2005; Walker and Stickgold 2010).  We also know 

that in mammals, these consolidation exposures can train cortex on novel experiences synthesized from 

combinations or transformations of previous training information—revealed by cell recordings that show rats 

exploring novel maze routes during sleep that they never actually traversed when awake (Gupta et al. 2010).  
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Taking all these factors into account, an infant’s ten-minute interaction with a new toy might be fairly scored 

as providing tens of thousands of trainable exemplars, rather than a single one, as common sense might 

suppose.   

Neither is this merely idle nit-picking; neural network models that attempt to replicate these aspects 

of human learning can make much more efficient use of smaller, more human-like training sets.  For example, 

when deep learning models are trained on successive frames of video rather than static exemplars, many 

different vantage points on or positions of the same object can be treated as thousands of independent 

training instances (Luc, Neverova, Couprie, Verbeek, & LeCun, 2017).  When models are supplemented with 

“episodic replay” buffers that are inspired by declarative memory faculties in mammals, a DNN’s 

performance can continue to benefit from repeatedly replaying exposure to the same training instances 

numerous times (Blundell et al., 2016; Mnih et al., 2015; Vinyals, Blundell, Lillicrap, Kavukcuoglu, & Wierstra, 

2016). Predictive, “self-supervised” models—which attempt to learn by predicting the future from the past, 

the past from the present, occluded aspects of objects from the seen aspects, and so on—are seen as the 

future of the field by DNN pioneers like LeCun (2018). There is little evidence that the efficiency benefits 

from such biologically-inspired innovations of this sort have already plateaued.    

 Still, critics hold that this all falls short of the kind of one-shot learning of e.g. novel digits and their 

construction emphasized by some critics, which has purportedly been modeled by Bayesian systems.  While 

numerous DNN systems produce one-shot or even zero-shot learning on related tasks, (Ng et al 2011; 

Rezende et al 2016), Bayesian modelers complain about their need for extensive pre-training.  Nevertheless, 

there remain significant questions about the fairness of this comparison.  Humans are capable of such one-

shot learning only after extensive practice in recognizing and generating a variety of different handwritten 

figures.  The Bayesian models which are purported to replicate one-shot learning, moreover, must 

incorporate significant amounts of high-level knowledge and representational structures that are manually-

encoded by their programmers (Botvinick et al. 2017).  These Bayesian modelers on some occasions profess 

agnosticism as to the origins of this knowledge, and on others wave their hands at genetically-programmed 

innate mechanisms (Lake et al. 2017b, 53).  However, until the cognitive provenance of this knowledge—
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specifically, the nature and number of training exposures adult humans require to scaffold such one-shot 

learning— is accounted for in humans, these concerns cannot fairly be scored against DNNs in this debate.   

B. We cannot assume that DNNs’ verdicts on adversarial examples are incorrect 

Recent investigations have challenged the assumption that a DNN’s take on adversarial examples is really so 

alien to human perception, either by producing perturbed images that fool humans (Elsayed et al., 2018--Fig. 

4) or by showing that humans can easily “adopt the machine perspective” and, when forced to choose 

between a preset list of candidate labels, predict a DNN’s labels for rubbish images with high accuracy (Zhou 

& Firestone, 2019--Fig 5).  These authors suggest that the behavior of DNNs in these cases might be due to 

the fact that they are always forced to choose amongst a list of candidate labels, even when images are very 

different from previously-classified exemplars.  This is a crucial disanalogy in many comparisons between 

natural and artificial judgments on adversarial examples which invites anthropofabulation.  Specifically, 

DNNs do appear to capture some aspects of lower-level perceptual categorization in human, such that many 

rubbish images do look like members of the purportedly incorrect label class in some sense, even if humans do 

not ultimately think that they actually are members of that class.  DNNs may thus be correctly delivering 

human perceptual similarity judgments, but not yet have the resources to draw a distinction between what 

something looks like and what it really is.  Perhaps it remains an open question whether and how to model the 

latter kind of judgment in DNNs, but the comparison would not yet demonstrate that a DNN’s processing is 

hopelessly alien to human perception.  In the terminology of dual system theory (Kahneman and Frederick 

2002), we would be comparing a System I intuitive judgments from DNNs to a System II reflective judgment 

in humans—another improper alignment for comparison. 

Even more recently, commentators have begun explicitly calling out the anthropocentrism of the 

literature on adversarial examples, suggesting that vulnerability to adversarial examples may be a feature and 

not a bug of DNNs (Ilyas et al. 2019).  These authors note that while it is sometimes possible to modify 

training sets so that they do not contain the features that cause DNNs and humans to classify perturbed 

images differently, these features generalize well and are predictively- valid in natural data sets, and humans 

may only fail to detect them due to inferior perceptual acuity.  While this does not diminish the practical 
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significance of the phenomenon (because it can be exploited by malicious agents), it raises philosophical 

questions as to which features ought to be relevant to assessing intelligence in categorization tasks.  Should 

AIs only detect features that are “projectible” and “natural” for humans due to idiosyncratic features of our 

perceptual endowment or evolutionary history (Goodman, 1955; Quine, 1969)?  Or should they respond to 

any features which are objectively valid and predictively useful?  When the latter can produce more accurate 

results on natural images, it is difficult to justify the assessment that only the former are relevant to 

intelligence without simply relying on flat-footed anthropocentrism. 

 
Fig 4.  A perturbed image that can purportedly fool human subjects, with the original image of a cat on the 
left, and the perturbed image (often classified as a dog) on the right.  (Image reproduced from Elsayed et al. 
2018.) 
 

 

Figure 5.  Examples of two different types of rubbish images tested by Zhou & Firestone (2019) with 
preferred DCNN labels.  In a forced-choice task, humans were able to guess a DCNN’s preferred labels for 
these images with high accuracy. 
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C.  Human decision-making is also opaque 

As noted above and in several critical analyses, the interpretability challenge conflates several different 

concerns which are probably best separated.  To make a start at disentangling them, I suggest that a 

distinction between explanatory rationality and justificatory rationality may be useful here (Buckner 2017a).  

Explanatory rationality concerns a causal explanation of agent’s internal reasons for acting—explaining which 

factors caused the agent to produce the output that it did in that situation, rather than some other output.  In 

the XAI challenge, for example, the questions “Why did the model do that?” “Why not something else?”, and 

“How do I correct an error?” concern dimensions of explanatory rationality.  Justificatory rationality, on the 

other hand, concerns the correctness or trustworthiness of the model’s decisions, which may or may not cite 

causally-determinative factors.  In the XAI challenge, this covers the questions, “When do you succeed or 

fail?” and “When can I trust you?”, and especially “Why was that the correct thing to do?”  A key concern 

here is that we should not expect a single approach to the interpretability challenge to simultaneously address 

both dimensions; but anthropofabulation causes us to conflate them, because common sense supposes that 

the justifications we produce through introspection have direct, non-inferential access to the causal 

antecedents which produced the behaviors so justified.  However, a significant amount of cognitive science 

suggests that this picture is mistaken.  Once the two dimensions of rational evaluation are separated, humans 

and DNNs compare favorably on interpretability. 

 To provide some examples, one of the reasons that people have supposed that the internal 

processing of DNNs is opaque is that the visualization methods which have deployed to determine the 

representational functions of internal processing nodes in DNNs have sometimes produced strange, 

chimerical images.  Activity maximization is one popular method, which relies on tweaking images using 

further machine learning until they maximally activate some particular node in a DNN’s internal layers.  This 

is supposed to show us what feature that node detects in input images when it activates.  A widely-circulated 

paper from Google’s AI research group noted that their popular Inception network seemed to detect a variety 

of chimerical features in images, such as “pig-snails”, “admiral-dogs”, and “camel-birds” which resemble no 

intuitively-available features in conscious human perception (Mordvintsev, Olah, and Tyka 2015--Fig 6).  
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However, activity maximization is a new visualization technique that is very unlike introspection or 

metacognition in humans; directly comparing introspectible features to its results is like comparing apples to 

resequenced orange DNA.  There is little reason to think that the results of the two should be similar; and in 

fact, when activity maximization is applied to neurons in a live monkey’s brain, the synthesized images are 

similarly chimerical (Ponce et al. 2019--Fig 7).  In short, these methods may have some useful role in 

addressing explanatory questions—telling us why, causally, the DNN (or monkey) reacted in that way to that 

exemplar; but we should not expect the images produced by these methods—either in DNNs or biological 

brains—to provide intuitively satisfying justifications.  

 

Figure 6.  Results of running an activity maximization algorithm on a picture of clouds in a trained-up version 
of Googles Inception image-classifying DNN.  From Mordvintsev et al. (2015). 
 

 

Figure 7.  Results of running an activity maximization algorithm on an electrode implanted to detect the firing 
rate of a live monkey neuron, from Ponce et al. (2019). 
 
 On the side of justificatory rationality, methods have been designed to generate intuitively satisfying 

justifications for DNN behavior, but they have been criticized for failing to highlight causally-determinative 

factors.  For example, the “AI Rationalization” system  collects a series of verbal justifications from humans 
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while playing the Atari game “Frogger”, and then uses further machine learning to correlate those verbal 

justifications with cases when a DNN made similar decisions in similar circumstances (Ehsan et al. 2018--Fig 

8).  The system can then deliver those verbal justifications to human interpreters to support its decisions 

while they are being made, and human subjects find those rationalizations more satisfying than more causally-

accurate alternatives.  The authors conceded that there is no direct causal link in this case between the 

features which actually caused the system to make the decision and the features cited in the verbal 

justification.  However, they also note that social psychology often finds a disconnect between human 

rationalizations and the factors which actually cause human actions.  In fact, the best empirical theories of 

these systems in humans takes them to be interpretive and inferential, generated mainly to promote social 

acceptance, coherent self-identity, and positive self-esteem rather than out of a concern for causal accuracy 

(Carruthers 2011).  In short, so long as we do not conflate explanatory and justificatory rationality, it is less 

clear that DNNs have a fundamental problem with interpretability that is not also exhibited by human minds. 

 

Figure 8.  The “Rationalizing Robot” from Ehsan et al. (2018) providing an example rationalization of its 
decisions. 
 

5. General Lessons 

Some unifying threads of the previous discussion can now be highlighted as topics for future research.  First, 

we need more explicit discussion of how to properly align machine and human performance when 

conducting comparisons.  Second, we need to be more rigorous in scoring the equivalent human 

performance, especially by removing the rose-tinted glasses of anthropofabulation.  Third and finally, we need 
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to better understand the provenance of scaffolded learning in adult humans—and the manually-encoded 

knowledge or representational primitives in competitor models which are designed to capture this scaffolding.  

Only by addressing these issues can we have a thriving and meaningful comparative psychology of AI. 
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