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Abstract

The replication crisis poses an enormous challenge to the epistemic authority
of science and the logic of statistical inference in particular. Two prominent fea-
tures of Null Hypothesis Significance Testing (nhst) arguably contribute to the
crisis: the lack of guidance for interpreting non-significant results and the im-
possibility of quantifying support for the null hypothesis. In this paper, I argue
that also popular alternatives to nhst, such as confidence intervals and Bayesian
inference, do not lead to a satisfactory logic of evaluating hypothesis tests. As
an alternative, I motivate and explicate the concept of corroboration of the null
hypothesis. Finally I show how degrees of corroboration give an interpretation to
non-significant results, combat publication bias and mitigate the replication crisis.
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1 Introduction

Various scientific disciplines are currently undergoing a replication crisis: researchers

struggle to reproduce the results of previous experiments when copying the origi-

nal experimental design. Studies that try to assess the extent of the crisis in a sys-

tematic way lead to sobering outcomes: the rate of statistically significant findings

drops dramatically and the observed effect sizes are often much lower (for the fields

of psychology, experimental economics and cancer biology, respectively: Open Science

Collaboration 2015; Camerer et al. 2016; Nosek and Errington 2017).

The causes of the replication crisis are a subject of vivid debate. Popular expla-

nations cite adverse effects of social and structural factors in academia, such as the

pressure to publish novel and ground-breaking results, or the presence of question-

able research practices (e.g., Bakker, Wicherts and van Dijk 2012; Romero 2017). Ac-

cording to these authors, we need to change the incentive structure of the scientific

enterprise. Other explanations relate the replication crisis to methodological short-

comings in prevalent methods of statistical inference, in particular Null Hypothesis

Significance Testing (nhst). The well-known criticisms of nhst gain renewed impor-

tance in the context of the replication crisis: the focus on statistically significant results

leads to exaggerated effect size reports and suppresses statistically non-significant, but

scientifically valuable findings (e.g., Cohen 1994; Goodman 1999a; Ioannidis 2005; Zil-

iak and McCloskey 2008). In this way, nhst promotes publication bias and contributes

to a higher rate of replication failures. In response, many authors suggest statistical

reforms such as lowering the statistical significance threshold (Benjamin et al. 2018),

replacing nhst by Bayesian inference (Goodman 1999b; Lee and Wagenmakers 2013)

or abandoning hypothesis testing altogether and replacing it by inference with confi-

dence intervals (Cumming 2012).

This paper contributes to the statistical reform project, but it draws less radical

conclusions. It retains that hypothesis tests are an essential tool for scientific inference

which cannot be fully replaced by the estimation-centered perspective of confidence

intervals. It demonstrates that Bayesian inference, though in many ways improving

upon nhst, is limited in the set of inferential questions it can ask. In particular,

many hypothesis tests in science should be conceptualized as asymmetric tests and

Bayesian inference captures this idea only in a limited way. Finally it develops a

method of hypothesis testing, based on the concept of degree of corroboration, that is

able to quantify support for the null hypothesis and combats publication bias and the
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replication crisis from within the (broadly) frequentist paradigm.

The paper is structured as follows. Section 2 shows why nhst cannot quantify ev-

idence in favor of the null hypothesis and how this feature promotes publication bias.

Section 3 expounds alternatives to nhst—confidence intervals, equivalence testing and

Bayesian statistics—and explains their limitations. Section 4 motivates and explicates

the concept of degree of corroboration as a way of interpreting non-significant test

results and stating support for the null hypothesis. The final Section 5 explains how

this proposal mitigates the replication crisis.

2 nhst and Support for the Null Hypothesis

nhst is based on severely testing a precise hypothesis H0—the “null” or default hy-

pothesis. Usually it denotes the absence of an effect in an experimental manipulation:

for example, a medical drug is no better than a placebo treatment. The idea is that

before inferring to the presence of an effect, and taking it for granted in decisions we

make (e.g., patient treatment), we must have found strong evidence against the default

hypothesis that such an effect is absent. nhst is applied across all domains of science,

but is especially prominent in psychology and medicine.

Evidence against the null hypothesis is usually expressed by means of p-values.

They quantify the probability of obtaining a result that diverges from the null hypoth-

esis at least as much as the actual data.1 Generally, the p-value is the smaller, the more

the actual result diverges from the hypothesized null value.

Conventionally, p-values smaller than .05 are classified as “statistically significant

evidence” against the null hypothesis, p-values smaller than .01 as “highly significant

evidence”, and so on. Since the null hypothesis could explain such low observed

p-values only by reference to a very unlikely event, and since chance is no good expla-

nation in scientific reasoning, a statistically significant p-value counts as evidence for

the alternative hypothesis H1—the presence of a (causal) effect.

Explicit evidence for the null hypothesis H0 is, however, impossible to obtain since

the logic of nhst is based on the idea of falsification and disconfirmation:

1A concrete example: suppose that our parameter of interest is the unknown mean µ of a population,
which the null hypothesis claims to take the value µ0. For a divergence-measuring function such as
z(X̄) = (X̄− µ0)/s with sample mean X̄ and estimated standard deviation s, the p-value is calculated as
p = pH0(|z(X̄)| ≥ |z(x̄)|). It states the probability that given H0, the sample mean is as least as far away
from µ0 as the actually observed mean x̄. See Romeijn 2014 for a detailed review.
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“[...] it should be noted that the null hypothesis is never proved or estab-

lished, but is possibly disproved, in the course of experimentation. Every

experiment may be said to exist only in order to give the facts a chance of

disproving the null hypothesis.” (Fisher 1935/74, 16)

In particular, p-values greater than .05 do not have an evidential interpretation, or

license a judgment of support in favor of the null hypothesis—even when they are

close to unity. Current statistics textbooks and encyclopedias mirror this attitude when

they classify p-values greater than .05 by phrases such as “little or no evidence against

H0” (Wasserman 2004) or “insufficient to support a conclusion” (Wikipedia).

This approach neglects that null hypotheses are, due to their precision and high

testability, often of significant theoretical and practical importance (Gallistel 2009).

They may express the independence of two factors in a causal mechanism, postulate

that performance difference between two groups is due to chance, or claim that a

generic medical drug is equally effective as the originally patented drug. Due to their

salience in theoretical inference and decision-making, it is imperative that a framework

of statistical analysis be able to quantify evidence in their favor.

Since nhst cannot express evidence in favor of the null, it contributes to publica-

tion bias: when only statistically significant results with p-values smaller than .05 are

evidentially interpretable, it is not easy to relate bigger p-values to general scientific

conclusions and to package the experimental results into a convincing narrative. Such

experiments are therefore more likely to end up in the proverbial file drawer (Rosen-

thal 1979) and not to be shared with the scientific community, although their method-

ological quality is not inferior to experiments with statistically significant outcomes.

This effect is reinforced by the common tendency to focus attention on statistically

significant outcomes, and to identify them with scientifically relevant findings (Co-

hen 1994; Ziliak and McCloskey 2008). As a consequences, effect sizes in published

research tend to be inflated and many null hypotheses are underestimated with re-

spect to their empirical support. Also the converse may happen: in experiments with

small sample sizes (e.g., a rare medical condition), a judgment of non-significance may

conceal a modest, but scientifically meaningful effect (Aczel et al. 2018).

Either way, we need a principled method of determining when and how non-

significant results translate into support for the null hypothesis. Purely methodologi-

cal reform proposals, such as compulsory data sharing and pre-registration of experi-

ments, do not answer this question—we need a proper statistical reform, too.
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3 Solution Proposals: Confidence Intervals, Equivalence

Testing and Bayesian Inference

Before presenting my own approach, I would like to briefly discuss three well-known

statistical reform proposals. While the discussion has to remain at the surface, it will

help us to identify criteria for a satisfactory solution.

First, we may decide to give up hypothesis testing altogether and to evaluate ex-

perimental findings by means of confidence intervals. By replacing p-values with

interval estimates, we get rid of the concept of statistical significance and the bias

toward suppressing non-significant results (Cumming 2012).

This proposal has two major problems: an epistemic and a methodological one.

The epistemic problem is that a 95% confidence interval cannot be interpreted as a

range of plausible or probable values of the unknown parameter µ. Rather it indicates

those parameter values µ′ where, if µ = µ′ were adopted as a null hypothesis, the

actually observed data would lead to a non-significant outcome (p > .05). Thus, confi-

dence intervals rely on the logic of nhst and share their limitations, too. In particular,

they cannot provide a judgment of evidential support for the null hypothesis.

The methodological problem is that pure estimation techniques struggle to address

crucial statistical inference problems in science, such as contrasting models with dif-

ferent parameter spaces (e.g., a linear vs. a quadratic model) or theories with different

ontological assumptions (e.g., the existence of the Higgs Boson). Hypothesis tests are

indispensable tools for such inferences. Interval estimators are useful in a variety of

contexts, but they cannot replace the search for a proper evidential interpretation of

hypothesis tests.

Second, we could try to quantify support for the null by means of equivalence

testing (Lakens, Scheel and Isager 2018): conducting two one-sided hypothesis tests

based on the minimal scientifically meaningful effect size ε > 0. If we reject the two

novel null hypotheses H′0 : µ ≥ µ0 + ε and H′′0 : µ ≤ µ0− ε, we have found evidence for

the original null hypothesis of no effect H0 : µ = µ0. However, equivalence testing does

not (yet) contain a quantitative dimension: it is not clear how the p-values from two

one-sided tests should be aggregated into an overall judgment of evidential support

for the null.

The third and most discussed solution proposal—switching to Bayesian hypothe-

sis testing—possesses the required conceptual vocabulary. Evidence for or against the

null hypothesis H0 is quantified by means of the (logarithmic) Bayes factor, that is,

5



the degree to which H0 and H1 can account for the observed data E:

log BF01(E) = log
p(E|H0)

p(E|H1)
. (Log-Bayes Factor)

This quantity is positive if and only if the null hypothesis explains the data better than

the alternative. Unlike in the case of p-values, the evidence can be quantified in both
directions, from strong evidence for the alternative hypothesis to strong evidence for

the null. See Table 1 for a conventional interpretation of Bayes factors based on the

natural logarithm.

Range of log BF01

Support for H0 Support for H1 Interpretation

>5 < −5 Very strong evidence for H0/ H1

3 to 5 -3 to -5 Strong evidence for H0/ H1

1 to 3 -1 to -3 Moderate evidence for H0/ H1

0 to 1 0 to -1 Not worth more than a bare mention

0 0 No evidence for either hypothesis

Table 1: Classification of log-Bayes factors adapted from Kass and Raftery (1995, 777).

However, this symmetric conceptualization of hypothesis tests does not square

well with the asymmetric rationale of nhst. The Bayes factor represents an alterna-

tive hypothesis such as H1 : µ 6= µ0 as the average of the performance of all (precise)

alternatives to H0 : µ = µ0, weighted by the prior distribution of effect size. Thus,

its performance can be distorted severely by poor performance of extreme alterna-

tives (e.g., hypotheses that postulate huge effect sizes). If these hypotheses are “heavy

enough”—that is, if the prior distribution is sufficiently spread out—, the null hypoth-

esis will be supported even if there is a theoretically meaningful hypothesis of small

effect size that explains the data better. It seems mistaken to classify such cases as

support for the null hypothesis. Rather, the null hypothesis has been outperformed

by a relevant competitor and not stood up to the test. While Bayes factors are a sound

measure of evidence in symmetric hypothesis tests, they do not capture typical sci-

entific reasoning in asymmetric testing problems (i.e., with more than one relevant

alternative).
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4 Degrees of Corroboration

As explained above, a null hypothesis often competes against various alternative hy-

potheses: for example, when a linear model is contrasted to a quadratic or cubic

model. Moreover, the null hypothesis is usually not considered a candidate for literal

truth. After all, most experimental manipulations will have some minuscule (positive

or negative) effect, though it may be practically meaningless. For example, we do not

consider a diet cure effective if it reduces weight on average by half a kilo. Rather,

nhst aims at finding out whether H0 is a good proxy for the general statistical model

(e.g., all possible hypotheses about the effect of the diet). In other words, the ques-

tion is whether the precise null hypothesis is a reasonable idealization of the general

statistical model that comprises H0 : µ = µ0 as well as H1 : µ 6= µ0.

An answer is given by the concept of corroboration, introduced by Karl R. Pop-

per (1979, 818): “a concise report evaluating the state [...] of the critical discussion of

a theory. Corroboration [...] is thus an evaluating report of past performance. Like

preference, it is essentially comparative.” This concept, originally developed for test-

ing deterministic hypotheses, can be transferred to statistical reasoning: it expresses

whether the hypothesis in question has survived tests against all relevant competitors,

and whether it can stand in as a proxy for a complex statistical model. In other words,

corroboration judgments indicate whether the point null hypothesis strikes a good

tradeoff between precision/testability and empirical fit (see also Popper 1959/2002,

ch. 10; Rowbottom 2011; Sprenger 2018). We now explicate Popper’s informal descrip-

tion in the context of statistical inference.

First, we do not conceptualize the alternative hypothesis as the negation of the null

hypothesis, but as a partition H, that is, a grouping of the parameter space into mu-

tually disjoint subsets. Typically, the elements of these partition are effect size ranges

that correspond to different, scientifically meaningful alternatives (see also Good 1968).

Suppose we are interested in whether frequent chessplaying improves student exam

performance. The null hypothesis states that chessplaying does not affect student

performance. Corroborating such a null hypothesis would be both interesting and

surprising since the skills trained by studying chess (e.g., mental visualization, logi-

cal analysis, endurance) are plausibly useful in school exams, too. We partition the

alternative hypotheses into effect size ranges that correspond to different practical

conclusions: collecting further data (0–10% difference), funding a research project on

brain patterns activated by chessplaying (10–20% difference), or taking chess educa-
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tion into school curricula (>20% difference). Also for other research problems, such as

studying the effects of a medical drug, we can easily imagine how different effect sizes

correspond to different treatment and prescription policies. The choice of the parti-

tion of alternative hypotheses is thus context-sensitive and depends on the relevant

research problem.

In agreement with Popper’s rationale, the null counts as corroborated if and only

if it has survived a test against all relevant competing hypotheses. Thus I define cor-

roboration as the weight of evidence in favor of H0 with respect to the best-performing

alternative in H, or in other words, as the minimal weight of evidence in favor of H0:

CA1: Corroboration = Weight of Evidence For a null hypothesis H0 and a (possibly

infinite) partition of alternative hypotheses H = {H1, H2, . . .}, the degree of cor-

roboration that observation E provides for H0 relative toH is defined as

ζH(H0, E) = min
Hi∈H

ω(H0, Hi, E), (1)

where ω(H0, Hi, E) quantifies the weight of evidence that E provides for H0 and

against the specific alternative Hi.

CA1 leaves open what the weight-of-evidence function looks like. In agreement with

widespread explications of evidential favoring (e.g., Good 1950; Sober 2008), I propose

that this function should only depend on the predictive performance of the competing

hypotheses, as measured by their likelihoods on the observed data E.

CA2: Predictive Performance For hypotheses H0 and H1 and observation E, there is

a continuous function g : [0; 1]2→R, increasing in the first and decreasing in the

second argument, such that

ω(H0, H1, E) = g
(

p(E |H0), p(E |H1)
)

(2)

Finally, I demand that weight of evidence be additive with respect to independent

and identically distributed (i.i.d.) observations. This requirement allows us to aggre-

gate evidence from various experiments with identical design in a convenient manner.

Moreover, irrelevant observations should not change the overall weight of evidence.

CA3: Independent and Irrelevant Evidence If for two observation E and E’ and any

H ∈ {H0, H1}, p(E∧ E′|H) = p(E|H)× p(E′|H), then

ω(H0, H1, E∧ E′) = ω(H0, H1, E) + ω(H0, H1, E′) (3)
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Specifically, if it is also the case that p(E′ |H0) = p(E′ |H1) > 0, then

ω(H0, H1, E) = ω(H0, H1, E∧ E′).

These three constrains, each natural and plausible, jointly determine a measure of

corroboration that is unique up to scaling properties:

Theorem 1. CA1, CA2 and CA3 uniquely determine the corroboration measure

ζH(H0, E) = k min
Hi∈H

log
p(E |H0)

p(E |Hi)
for k > 0. (4)

The base of the logarithm and the scalar k may be chosen ad libitum; but in order to

keep the scale consistent with logarithmic Bayes factors I suggest the natural logarithm

and k = 1. Positive degree of corroboration entails that H0 outperforms all relevant

alternatives. It has thus survived the test with a certain degree of positive support,

in line with Popper’s informal characterization. In particular, degree of corroboration

is measured along the same scale as Bayes factors and so we can use Table 1 for

interpreting the evidential support in favor of H0.

We now return to our chessplaying example. Simplifying a bit, we adopt a Bino-

mial with null hypothesis H0 : µ = .6 (=60% base rate of students who achieve all

learning objectives) and N = 200 chessplaying students in the dataset. To show the

dependence of ζH on the choice of the partition H, we consider three different par-

titions of the space of alternative hypotheses: (1) a maximal partition Hmax = [0; 1]

that treats every parameter value as an alternative in its own right, (2) a medium-sized

partition Hmed =
{

. . . , (0.6; 0.7], (0.7; 0.8], (0.8; 0.9], . . .
}

where the alternatives are ef-

fect size ranges corresponding to different practical conclusions (see the motivation of

the example); (3) a minimal partition Hmin =
{
[0; 1]

}
with only one alternative hy-

pothesis, that is, the weighted average of all values of µ. The partition Hmin thus leads

to a Bayesian hypothesis test.2

Figure 1 plots the degree of corroboration of the null hypothesis for different pos-

sible results and partitions. Corroboration strongly depends on the partition: The

minimal partition Hmin equates degree of corroboration to logarithmic Bayes factors

and concludes support for the null hypothesis in the entire non-significant range. The

medium-sized partition Hmed motivated by considerations of effect size relevance has

the cutoff already at a 63,5% success rate. The maximal partition Hmax states posi-

tive corroboration only if exactly a 60% success rate is observed. This dependence of
2We use a logistic weighting function for calculating p(E |H1) when H1 is an effect size range rather

than a point hypothesis, but this choice barely matters for the outcome.
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Figure 1: Degree of corroboration of the null hypothesis H0, as a function of the number of chess-
playing students who achieve all learning objectives (N = 200, base rate: 60%). Solid line on top:
partition Hmin, dashed line in the middle: Hmed, dotted line at bottom: Hmax. The vertical line at
x = 66% demarcates the statistically significant and non-significant range.

corroboration on the conceptualization of the relevant alternatives is arguably an ad-

vantage of the proposed approach: it underlines that context and practically relevant

effect sizes are essential elements of designing and interpreting hypothesis tests. In

this way, the proposed approach also vindicates well-known criticisms of nhst.

5 Discussion: Back to the Replication Crisis

How do degrees of corroboration help to address the replication crisis? The most

obvious improvement over the classical nhst perspective and p-values is that they

quantify support for the null hypothesis in a meaningful way: conceptually similar

to Bayes factors and likelihood ratios, but without giving up the idea of trying to falsify

a precise default hypothesis against the background of various scientifically relevant

alternatives. Integrating degrees of corroboration into the asymmetric rationale of

nhst is a relatively minor methodological change compared to a full-scale switch to

Bayesian reasoning, increasing the chances of this proposal to be adopted in scientific

practice.
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In particular, degrees of corroboration enable researchers to give an evidential in-

terpretation to non-significant test results, to formulate a convincing narrative in terms

of positive support for the null hypothesis, and to disseminate such findings in the sci-

entific community. By doing so, the corroboration measure acts as an antidote to the

file drawer effect and publication bias (and thus, the replication crisis). In partic-

ular, it familiarizes researchers with the idea that support for null hypotheses can

be expressed in a positive manner, rather than just stating “failure to reject the null

hypothesis”. This will help them to overcome the pernicious and unfortunately still

widespread idea that only a study with significant results against the null hypothesis

counts as a successful experiment.

Finally, the corroboration-based approach forces a researcher to make up her mind

about theoretically meaningful alternatives to the null hypothesis at the stage of ex-

perimental design—that is, before the experiment is conducted. This specification is

helpful in various ways. First, it leads to predictively more powerful and testable

alternative hypothesis than just considering the negation of the null hypothesis. Sec-

ond, specificying alternatives beforehand disentangles statistical and scientific sig-

nificance: a statistically significant result against the null hypothesis is scientifically

significant only if the null hypothesis fails to be corroborated and there is evidence

for a specific competitor. Third, it is much more explicit than nhst with respect to

powering experiments adequately. Specifying a precise set of alternatives allows re-

searchers to calculate the chances of misleading evidence—that is, the probability of

corroborating the null when it is substantially mistaken—and to calibrate the experi-

mental design accordingly (see also Royall 2000; Schönbrodt and Wagenmakers 2018).

In this way, corroboration-based hypothesis testing combats underpowered experi-

ments as one of the causes of the replication crisis (e.g., Ioannidis 2005; Szucs and

Ioannnidis 2017).

All in all, the concept of degree of corroboration has great innovative and unify-

ing potential in statistical inference. It cures methodological shortcomings of nhst

that have contributed to the replication crisis, without giving up hypothesis tests as

a cornerstone of scientific method. It generalizes Bayesian inference to asymmetric

testing contexts while keeping Bayes factors as a special case of degrees of corrobora-

tion. While more needs to be said, all this should suffice to establish this proposal an

attractive middle ground between sticking to tradition and calls for radical statistical

reform.
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A Appendix: Proof of Theorem 1

Suppose the conditions of CA3 are satisfied for observations E, E’ and E”, and in

particular, p(E′ |H0) = p(E′ |H1). Then we infer, using CA2, that

g
(

p(E∧ E′ |H0), p(E∧ E′ |H1)
)
= g

(
p(E |H0) p(E′ |H0), p(E |H1) p(E′ |H0)

)
and moreover

g
(

p(E |H0), p(E |H1)
)
= g

(
p(E∧ E′ |H0), p(E∧ E′ |H1)

)
Combining these two equations, we infer that the function g satisfies the general equal-

ity g(a, b) = g(ax, bx) for x ∈ (0, 1] and therefore, also g(a, b) = g(a/b, 1) for a < b.

In other words, ω(H0, H1, E) depends on the ratio of p(E |H0) and p(E |H1) only; in

the remainder of the proof we call this function f . We then obtain

ω(H0, H1, E∧ E′′) = f
(

p(E∧ E′′|H0)

p(E∧ E′′|H1)

)
= f

(
p(E|H0)

p(E|H1)
· p(E′′|H0)

p(E′′|H1)

)
(5)

Moreover, we know that ω(H0, H1, E) = f
(

p(E|H0)
p(E|H1)

)
and ω(H0, H1, E′′) = f

(
p(E′′|H0)
p(E′′|H1)

)
.

Combining these equations with Equations (3) and (5) using the variables x :=

p(E|H0)/p(E|H1) and y := p(E′′|H0)/p(E′′|H1), we can then derive the general equal-

ity f (x · y) = f (x) + f (y). This equality is only satisfied by functions of the form

f (x) = k loga x. The rest of the proof follows by plugging in the weight-of-evidence

function into CA1 which immediately yields Equation (4).
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