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Chapter 32  Scale Modeling 

S G. Sterrett 

Word count, excluding figures and references is < 7000 

 

Role of Scale Models in Engineering Practice 

Scale models are used in engineering design and analysis today, and have been used in 

the profession of engineering for well over a century.  The methodology of scale 

modeling is at least potentially applicable to any field of engineering, technology, or 

science.  It is thus a puzzle that many discussions about models in philosophy of science 

have (mistakenly) assumed that scale modeling is an obsolete methodology that has been 

replaced by computer models. (e.g., Oreskes 2007)  For, not only is experimentation 

using scale models still employed in many fields of engineering (Sterrett 2017b) , but 

many of the computer programs used in building and analyzing computer models in 

engineering rely crucially on data that was generated by extensive scale model 

experiments set up and performed specifically for the purpose of generating data needed 

to write those computer programs.  So scale modeling is an essential part of much 

engineering work, even though its involvement in engineering practice is not always 

obvious.   In addition to the scale models used for research, analysis, and design, there are 

also configurable scale models that are constructed specifically for educational use in 

engineering curricula.  Such configurable models provide students the opportunity to 

design, set up and carry out model experiments.1  
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Figure 1.  Scale modeling in an educational setting. Configurable (Interactive) Scale 
Model from Little River Research and  Design.  "Em4" model.  Used with permission.   
There are descriptions and videos of these models at http://emriver.com/models/em4/ 

 

Scale models have become much more sophisticated in recent decades due to significant 

advancements in measurement technologies (e.g., lasers for measuring distances) and the 

development of advanced materials.  (Sterrett 2017b)  These recent advancements have 

been incorporated into the design of engineering scale model experiments, with the result 
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that some of the scale modeling practiced today was not possible, or even imagined, a 

hundred years ago.   

  

Scale Models in Philosophy 

Most current discussion in philosophy about models has excluded philosophical treatment 

of accurate accounts of scale modeling used in engineering.2  For instance, even though 

Weisburg's widely-read Simulation and Similarity: Using Models to Understand the 

World featured a scale model constructed and used by the Army Corps of Engineers on 

the cover and in the text, his "weighted feature matching" discussion of similarity is an 

extension of a psychologically-based conception of similarity (Weisberg 2013 ), and does 

not provide a scientific explanation of how and why the methodology of scale modeling 

worked for that model.  As this handbook goes to press, the tide is turning, though, and 

some recent publications hint at future work underway that may help to rectify the current 

situation that, other than the few individuals mentioned above, scale modeling is not 

appropriately recognized in philosophy of science.  (Sanchez-Dorado 2019; Oreskes & 

Bokulich 2017;  Pincock forthcoming)  

 

Due to the current lack of engagement with the methodology of scale modeling in the 

philosophy of science literature, there are not really current debates in the field.   There 

were certainly debates within the profession of engineering about the foundations, merits, 

and applicability of scale modeling in previous eras, but not within the past half-century.  

Inasmuch as differences of opinion about scale modeling currently exist in the 

philosophical community, they are attributable to misconceptions about scale modeling.  
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Thus, this chapter on scale modeling does not address current debates per se, but aims to 

provide an introduction to the foundations of the methodology and identify 

misconceptions that currently exist about it in philosophy of science.   

 

What are scale models?  

Scale models, as the term is used in engineering, are physical objects or situations, 

usually specially constructed for the purpose, that are employed experimentally to learn 

about another imagined or existing physical object or situation.  Scale models in 

engineering are usually constructed by humans, though it's possible to use the 

methodology of scale modeling to interpret naturally occurring objects or situations as 

scale models, too.   The scale model experiment generally includes the surroundings that 

influence the behavior of the model, e.g.,  forces and ambient conditions, and these are 

designed to be analogous to (i.e., to correspond to) those in the surroundings of what it is 

intended to model.   Construction of the scale model includes determining not only ratios 

of distances, but ratios of other measureable quantities such as various material properties 

and forces.  Not just any ratio will be of significance in building a model that is 

informative about the thing it is supposed to model.  Which ratios of measurable 

quantities to use in specifying the model, and how they are used to construct and interpret 

the model, is determined by employing the theory of dimensions.   

 

After the scale model is constructed, its behavior can be observed, and the observations 

and measurements made in the model, suitably interpreted, are informative about the 

object or situation modeled.  The formal methodology of scale models not only provides 
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some prescriptions as to how the model is to be constructed, but provides a quantitative 

translation of the measurements made in the model to the corresponding measureable 

quantities associated with what it is intended to be a model of.  Engineering knowledge is 

then used to make sense of the results regarding the problem or question being 

investigated, a process often referred to as "interpretation" of the model experiment.  

 

This methodology is distinctively different from the kind of model-building in which the 

modeler starts from a mathematical equation describing the model or its behavior.  

(Sterrett 2002; 2017a)  It's a significant philosophical difference, as models in science 

have generally been associated with scientific equations.  (Bailer-Jones 2009)   Further, 

epistemological issues in modeling also differ for scale models.  This is because issues 

important in epistemology associated with scale models, such as evaluation of the 

external validity of the model, and analyses of how fundamental laws and experimental 

data on which the model is based are employed in modeling,  differ from those that arise 

in the usual approach on which a model is a mathematical equation.  Hence most current 

philosophical accounts of how models manage to inform us about the world, and what we 

can conclude from them,  are not applicable to scale modeling.  They could, however, 

become enriched by adapting to incorporate the methodology of scale modeling.  

   

Scale Models in Practice -- Unique Challenges, Unique Versatility  

The scale model can then be used in other experimental tests.  Often, a scale model is 

useful when we are interested in understanding behavior that results from some unusual  

event or environmental change:  the observations and measurements are informative 
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about how the object or situation modeled will be affected by the corresponding modeled 

event or changes.   Thus, although an experimental test might be designed to model 

expected normal operation in order to observe the overall behavior of the object or 

situation modeled (as when used in the pre-construction phase of the design of chemical 

processing plants), it can likewise involve subjecting the model to the application of an 

environmental factor such as heat,  a temperature difference,  a flow process such as an 

wind, riverflow, or wave motion, or some event (e.g., an impact force, a periodic or 

nonperiodic motion, the initiation of a landslide, to give a few examples).  After the 

results from the measurements taken in the model have been mapped, i.e., transformed or 

translated to the object or situation modeled, it is possible to produce tables or graphs of 

how the object or situation responds to various events or changes, according to the model.   

 

The materials used in a scale model are generally not exactly the same materials that 

occur in the actual situation that the scale model experiment aims to simulate, for even 

material properties must be properly scaled.  In the kind of model shown in Figure 1, 

which is used in educational institutions, there might be scaling of material particle size 

and intergranular friction in order for the model to provide the kind of behavior of 

interest, such as the progression of material dispersal over long time spans in the river 

modeled.3  A common example where the material used in the model can differ from the 

material in the system modeled is flow in piping systems; water is sometimes used to 

model a more viscous fluid, such as oil.  An example of the kind of difficulties 

encountered and care taken in getting the crucial material properties right is the case 

study of modeling ocean cable using plasticized PVC (polyvinyl chloride) piping to get 
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the proper modulus of elasticity in the small scale model --  then, in order to get the 

appropriate density in the model, the material was impregnated with powdered lead.  

(Herbich 1998: 331) 

 

Sometimes several different scale models of a given object or situation are built in the 

course of designing it,  as several different scale model experiments are needed to predict 

the several different kinds of behaviors of an object that are of interest to a modeler, or 

the different behaviors that are dominant at different scales.  The scale model an 

experimentalist builds to predict the diffusion of heat in a given structure might not work 

well as an experimental model for predicting other kinds of behavior of the same 

structure, such as mechanical responses to earthquakes.   Also, different phases of the 

situation modeled, such as the different stages in the life of a volcanic eruption and its 

aftermath, might require separate scale models, as the behavior of interest to the 

researcher might differ at different stages as the eruption progresses, and different 

phenomena will be dominant at different stages.  

 

Scale models are so called because the models usually happen to be built according to a 

scale that indicates how one should translate measurements of distances from the model 

to what is modeled.  To take a familiar example, a 1/8th scale model of a car would mean 

that any distance you pick out on the model car corresponds to a distance 8 times as long 

in the car it is intended to be a model of;  thus in the case of geometrical scale, it is easy 

to comprehend that a 1/8th scale model car that is 1 foot long would indicate that the car 

it models is 8 feet long.  Architectural models of buildings or building complexes are 
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generally scale models in which distances are the only thing precisely scaled.  However, 

for the more general notion of scale model used in engineering, other quantities such as 

velocity and current are generally scaled as well, and more than one quantity is scaled 

concurrently.  Comprehending how scaling works in such complex cases is much more 

involved.   

 

Scale models are often thought of by the layperson as being constructed as if the model 

were made by shrinking an object to a smaller size.  If only geometrical similarity is to be 

achieved, rather than, for example, dynamic similarity (in which forces in the model 

correspond to forces in the situation modeled), that is not inappropriate.  However, if 

similarity of physical behavior (bending, vibrating, buckling, stretching, expanding, 

cooling, etc.) is desired in a model, then the important interrelationships between all the 

quantities involved in that physical behavior must change in a coordinated manner.  

Then, the values of the quantities in the model are related to the quantities in what is 

modeled in very complex ways.  Distance might be translated according to one scale 

factor, time according to another, and mass according to yet another.  Thus, translating a 

quantity like velocity in a scale model to velocity in the situation it models is not as 

straightforward as it is for a hobbyist building a 1/8 scale model car where only 

geometrical similarity is of interest.  The quantities in the environment acting on the scale 

model need to be scaled as well.  Thus it is more appropriate to speak of a physical 

system, rather than a physical object such as a ship or plane, when discussing model 

experiments and the practice of scale modeling.   
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We then say that, ideally, we aim for the model and what it models to be physically 

similar systems, and we say that we construct a model to be physically similar to what it 

models.   For two things to be "physically similar" or not always needs to be qualified 

(whether explicitly so stated or not) as similar with respect to some behavior considered 

within the realm of physics.  For example the behavior might be the magnitude of a liquid 

flowrate,  electrical charge,  or stress in a structural element; or it might be the existence 

of turbulence,  the existence of buckling, or the existence of a phase change.   

 

Most scale models are smaller in size than what they model.  There is no reason in 

principle why a scale model cannot be made on a larger scale than the object or situation 

it models, though, and in fact some of them are.  The advantage of making a scale model 

is to be able to experiment on a model of something, as a proxy for experimenting on 

something that cannot itself be experimented upon.  Some scale models are tabletop 

models, as pictured in Figure 1, but there are also some large testing facilities, such as 

wind tunnels,  models of river basins (LSU Center for River Studies) and volcanoes 

(Sterrett 2017b).  These are seldom easily accessible to the public, but there are a few 

retired models that are.   The San Francisco Bay Model  discussed in (Weisberg 2013) is 

one such model.  Another place to view scale models is the early facility for testing 

proposed ship designs that has since been replaced by the current David Taylor Model 

Basin; it is shown in Figure 2.  In such testing facilities, the scale models of ships can be 

quite large, on the order of 20 feet long.  The first experimental facility for testing ships 

built there was built at the very end of the nineteenth century, in 1896.  The current 
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facility on that site contains a shallow water basin, a deep water basin, and a high speed 

basin.  (ASME 1998: 2) 

 

 

Figure 2.  Experimental Model Basin, Washington Navy Yard,  
Washington, DC - interior view, c. 1900. This was the first model basin  
(towing tank) for the United States Navy.  Photo credit:  U. S. Navy 
http://www.dt.navy.mil/div/about/galleries/gallery1/012.html  Public domain.   
 
 

One of the largest scale models, perhaps the largest ever built, is the scale model of the 

Mississippi River Basin, called the Mississippi Basin Model, or MBM.  (Figure 3)  Like 

the David Taylor Model Basin, it holds a special place in the US history of scale models: 

at 40 acres in size, it is known as "the largest small-scale model" in the world.  Many 

other hydraulic models were built by the same facility (The Waterways Experiment 

Station.)   Historical research into that facility's establishment reveals that there were 
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debates as to the validity of the method of using scale models at that time, around the 

1930s (Manders  2011: p. 56); the subsequent investment in and use of the MBM reflects 

the eventual outcome of that debate.  The MBM model has not been preserved, in spite of 

its significance as a cultural icon, but this is not due to the technology of scale modeling 

itself becoming obsolete.  A new indoor model of part of the basin, costing 4 million 

dollars and requiring a quarter acre of space, the "Lower Mississippi River Physical 

Model,"  has recently been built in a new facility (Lousiana State University's Center for 

River Studies).  

 

Before the MBM was retired, data were collected from experiments that were specifically 

designed and carried out to provide data for use in computer programs in the 1970s.  The 

data was incorporated into computer programs used to simulate the flow of water in the 

Mississippi River Basin. (Foster 1971: vii)  Thus the computer model that was used in 

lieu of the physical MBM scale model after its retirement was not independent of the 

scale modeling work.  When it was in service, the MBM model was used to make 

predictions, most famously during the 1952 Missouri River Flood.   Predictions could be 

generated from the scale model by controlling water levels in it to correspond with real-

time inputs of actual river level measurements.  Time in a scale model goes faster;  the 

events of an entire day in the actual river system only took a few minutes in the model.  

(Foster 1971: 21-27)  Likewise, the Center for River Studies housing the current basin 

model reports that in its model,  "one year of the Mississippi River is simulated in one 

hour." (LSU Center for River Studies website) 
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Figure 3.  Photograph of postcard, personal collection of the author.  Text on reverse:  
"WATERWAYS' EXPERIMENTAL STATION, VICKSBURG, MISSISSIPPI.  The most unique 
Educational attraction in this part of the world is the U. S. Waterways' Experimental Station, located on a 
reservation four miles south of the city.  It employs about one hundred graduate engineers and maintains 
the largest and best equipped laboratory of its kind in the world.  Weighty problems concerning our vast 
waterways system are under constant study and miniature, scale-built models of our most temperamental 
streams, have been built for study.  Ektachrome by Woody Ogden  MADE BY DEXTER, WEST NYACK, 
NY  Pub. by Jackson News Co., Jackson, Miss." 
 

The scale factors that map, or translate, quantities in the model (including the quantities 

of the modeled environment) to quantities in whatever it is that is modeled, are 

determined by the ratios used to design the engineering scale model experiment.  

(Pankhurst 1964)  The selected ratios are kept invariant between the scale model and 

what it models. (That is the aim, at least.)  It is in this sense that these ratios are called 

invariants.  The key to understanding how scale model experiments are designed, and 

why model experiments that work well do so, when they do, is understanding the role of 

invariants and similarity in the practice of scale modeling.4  We begin with an extremely 

simple case in order to make the ideas clear. 
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Scale models, Invariants, and Similarity:  the Basic Ideas  

To illustrate the basic ideas behind scale modeling, i.e., the ideas of physical similarity 

and physically similar systems, we will first make the basic concepts involved clear for 

the simpler case of geometric similarity.  Geometric similarity is generally easy to 

understand, because we can easily grasp the idea of two figures having the same 

geometric shape.  A major misconception that abounds in philosophy about scale models 

is that the methodology of scale models is geometric similarity.  It is not.  The (correct) 

statement, often found in textbooks on the topic, is that the method of scale models is a 

generalization of geometric similarity. (Sedov 2014: p. 43)  This statement seems to have 

been grossly misunderstood in philosophy, and the misunderstanding is widespread.  In 

the sections that follow, I hope to show the deep analogy between geometric similarity 

and the kinds of similarity used in scale modeling that are specific instances of physical 

similarity:  kinematic similarity, dynamic similarity, hydrodynamic similarity, and 

thermal similarity, to name a few.   Hence we begin by explicitly setting out the logical 

structure of reasoning about similarity already familiar from geometry, so as to see how 

to extend reasoning about similarity to physics.   

 

The Logical Structure of Arguments from Geometric Similarity 

One of the simplest examples of geometric similarity is the circle; all circles have the 

same geometric shape.  Any two circles of different sizes are geometrically similar to 

each other, in spite of the fact that none of the individual measurements made on one 

circle (diameter, area, circumference) will be the same in another circle of a different 
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size.  Recall that the ratio of the circumference of a circle to its diameter is invariant no 

matter how small you shrink a circle in size, nor how large you expand it in size:  so long 

as the figure keeps it shape, i.e., so long as it is a circle, this ratio will be the same.  Many 

other ratios of geometrical quantities of a circle are not invariant between circles of 

different sizes:   The ratio of circumference to area is not the same for all circles, for 

instance -- that ratio will vary depending on the size of the circle.  Not so for the ratio of 

circumference to diameter; it's invariant among all circles.  We don't even have to know 

the numerical value of that ratio in order to make the statement that the ratio of the 

Circumference of Circle#1 to the Diameter of Circle#1 is equal to the ratio of the 

Circumference of Circle#2 to the Diameter of Circle#2.  We can say, whatever that ratio 

is, it doesn't vary between circles; whatever it is, it is the same for every circle.  It is 

invariant, from any circle to any other circle.  

 

What is required to establish that two things have the same geometric shape?  First, they 

must be the same sort of thing; for example, they must both be closed curves, or both be 

three-dimensional solids.   Secondly, they must be geometrically similar.  One way to 

ensure that two figures are geometrically similar to each other is to construct a figure that 

is similar to a given one.  And, that's the general approach taken in scale modeling:  to 

construct something that is similar in the relevant ways.  However, as we shall see later, 

the analogous notion of similarity in scale modeling has to be generalized quite a bit from 

the case of geometrical similarity.   
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When there is at least one ratio that is invariant between all geometrical figures of a 

certain shape, i.e., between all figures that are geometrically similar to a certain figure, 

and to each other, that invariant ratio can be used to find the value of some distances that 

are not directly measurable.  The method is an extremely simple example of scale 

modeling:  construct a figure that is geometrically similar to one that involves the 

distance one wishes to know the length of.  Then, using the ratio that is invariant between 

all figures of that shape, construct a proportional equation by equating the ratio expressed 

in terms of the line segments for one of the figures to the ratio expressed in terms of the 

line segments for the other figure.  If the length of the line segments in the figure you 

have constructed are known or can be measured, this may allow solving for the distance 

one wishes to know.    

 

The method is used in a common middle school exercise asking students to determine the 

height of a tall object such as a tree or flagpole on a bright day, by measuring its shadow 

and the shadow of their own body. (Figure 4)  It will be helpful to identify the structure 

of the reasoning here, for later use.  So long as the area in which the tree and child is 

sufficiently flat, the right triangle formed by the student, her shadow, and the line 

connecting them is geometrically similar to the right triangle formed by the tree, its 

shadow, and the line connecting them.  The ratio of [Height of Tree]/[Length of Tree's 

Shadow] is the same as the ratio of [Height of Student]/[Length of Student's Shadow].   A 

worksheet prepared for use by middle school teachers illustrates the sun-object-shadow 

situations in which we find these two similar triangles: 
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Figure 4.  A worksheet designed for use with middle school students showing how to use your own 
body to determine the height of a tree, from shadow measurements.  Image credit:  "Similar Figures 
and Indirect Measurement: The Outdoor Lesson", Barry Schneiderman, TeachersPayTeachers.com  2014  
Used with permission.   
 

If the height of the student and the lengths of both shadows can be obtained by 

measurement, the height of the tree can be determined by equating these ratios expressed 

as follows:  

 Height of Tree     Height of Student  
 _______________________ = _______________________ 
 Length of Tree's Shadow    Length of Student's Shadow   
 

Stated in more general terms, the knowledge that this ratio is invariant between the two 

(sun-object-shadow) situations allows us to equate the ratios.  The proportion that results 

then provides the means to determine the height of the tree, as follows:   

 

 t = Height of the Tree =  

 [Height of Student/Length of Student's Shadow] x Length of Tree's Shadow 
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One way to look at what we are doing when we indirectly measure the height of the tree 

this way is that the student-sun-shadow situation has served as a model of the tree-sun-

shadow situation, with respect to height.  

 

Note that the criterion of similarity in use here is objective.  In spite of the fact that the 

situations compared have aesthetic aspects and that human cognition is involved in 

apprehending the two triangular figures associated with the two physical situations, the 

criterion of geometrical similarity between the two triangular figures indicated in Figure 

4 is completely objective.  The question of whether two plane triangles are geometrically 

similar is settled here by the fact that the two triangles are right triangles and the angle at 

the top of the tree and the angle at the top of the student's head are formed by rays of the 

sun in the sky hitting them at the same angle.  That angle need not even be known in 

order to conclude that the triangles indicated in Figure 4 above are similar triangles.  The 

reasoning from geometric similarity is objective, too, i.e., the consequence of the fact that 

these two triangles have the same shape, i.e., are geometrically similar, is that ratios 

between corresponding sides are the same.   The reasoning from geometric similarity is 

straightforward reasoning according to the methods of Euclidean geometry.  In Euclidean 

geometry what's similar are two dimensional closed curves (figures), or, if three 

dimensional, solid figures.   
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Generalizing Similarity in Geometry:  What's Analogous in Physics? 

Progressing now from the simple case of geometrical similarity to the more complex case 

of physical similarity: what could be analogous to geometric shape,  for physically 

similar systems?  There isn't really a term for it, but we can explain such a concept in 

terms of the invariant ratios that remain the same between physically similar systems.   

(Sterrett 2017a)  That is the proper way to think about an analogue of shape in physics:  

just as we explain geometric shape in terms of the invariant ratios that remain the same 

between geometrically similar figures, so we conceive of something like shape of a 

physical system in terms of the value of the invariant ratios that remain the same between 

physically similar systems.  There is a difference, though:  geometric shape of closed 

plane figures is uniquely determined, whereas there are different kinds of similarity in 

physics.  For the more complex kinds of similarity, similarity of physical behavior under 

gravitational forces, or heating, or cooling, or being set in motion by an earthquake, or 

undergoing pressurization, and so on, the invariants are certain dimensionless ratios 

composed of quantities used in physics.  Which dimensionless ratios are relevant depends 

upon what behavior the modeler is interested in modeling.  Dimensionless ratios will be 

explained below; for now we want to state the concept of physically similar systems on 

analogy to geometrically similar figures.  

 

To say that two physical configurations or situations S-one and S-two are "physically 

similar" with respect to a certain kind of behavior (rather than just geometrically similar), 

is to say that System S-one and System S-two have the same values of the 
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(dimensionless) ratios that determine that kind of behavior.  That is, we are considering a 

case in which a system S-one can have the same ratios of the dimensionless quantities 

that are relevant to a given behavior as another system S-two has -- for example, the same 

ratios of certain forces -- even though the values of some or all of its measurable 

quantities may not be the same system in S-one as the values of the corresponding 

quantities in system S-two. (Buckingham 1914)  So long as the values of the 

dimensionless ratios are the same, the specific behavior of the two systems on which the 

similarity of systems was drawn is the same.   Specific numerical values of quantities in 

the model system and in the system it models will differ, of course; these values are 

related by a scale factor, which is recoverable from the dimensionless quantities.   

	  

What	  is	  so	  philosophically	  significant	  about	  scale	  modeling	  is	  that,	  unlike	  many	  

other	  philosophical	  accounts	  of	  models,	  the	  methodology	  of	  scale	  models	  provides	  a	  

scientific	  basis	  for	  determining	  that	  correlation	  (i.e.,	  the	  correlation	  between	  a	  

certain	  quantity	  in	  the	  model	  and	  a	  quantity	  in	  what	  it	  is	  intended	  to	  model	  (the	  

'target"	  system,	  or	  any	  other	  physically	  similar	  system).	  	  This	  is	  so	  even	  in	  cases	  in	  

which	  the	  modeler	  does	  not	  know	  of	  an	  equation	  describing	  the	  behavior	  of	  the	  system.	  	  

One	  way	  to	  put	  it	  is	  that	  the	  method	  of	  dimensionless	  parameters	  provides	  (i)	  a	  way	  

to	  construct	  a	  model	  system	  that	  is	  physically	  similar	  to	  the	  thing	  of	  interest,	  	  and	  

(ii)	  a	  means	  of	  interpreting	  the	  behavior	  of	  the	  model	  system	  in	  a	  way	  that	  is	  

informative	  about what it models.  Putting the point in terms of the terminology of  a 

"key" as  recently employed in philosophy of scientific representation (Frigg & Nguyen 

2018), scale modeling provides its own "key" by which the results of experimentation on 



	   20	  

that	  constructed	  model	  are	  to	  be	  interpreted	  to	  give	  quantitative	  values	  for	  the	  

quantities	  in	  the	  thing	  it	  models.	  	  (Pankhurst	  1964)	  	  That	  is	  truly	  philosophically	  

significant.	  	  It	  is	  the	  holy	  grail	  that	  many	  other	  current	  philosophical	  accounts	  of	  

models	  seek.	  	  Often	  philosophical	  accounts	  of	  modeling	  leave	  that	  aspect	  to	  the	  

judgment	  or	  knowledge	  of	  the	  modeler,	  or	  to	  experiment.	  	  Hence	  my	  claim	  that	  

philosophical	  accounts	  of	  modeling	  stand	  to	  gain	  much	  by	  taking	  account	  of	  how	  the	  

method	  of	  using	  scale	  models	  manages	  to	  be	  as	  successful	  as	  is.	  	   

 

Thus a close study of scale modeling methods allows us to answer the following 

question: "In what way can the behavior of two systems be said to be the same, if none of 

the quantities measured in them is the same?"  This question often arises in explaining the 

practice of scale modeling, since the quantities with which physics is concerned will not 

have the same values in the model as they do in the object or situation modeled.  The 

answer is:  the behavior is said to be the same in the model as in the situation modeled, on 

analogy to the way that two geometrical figures of different size are said to have the same 

shape.   That is, for two figures to have the same geometrical shape, certain ratios of 

lengths in the figures are the same in both figures.  Analogously, for two physical 

systems to be the same with respect to a certain kind of physical behavior,  certain ratios 

of (measurable) quantities must be the same in both systems.  This can be thought of as 

an analogy between geometric similarity and physical similarity, or as a generalization of 

geometrical similarity to physics, as shown in Table I.  [Table I goes here.] 
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Table I 

 
GENERALIZATION OF SIMILARITY IN EUCLIDEAN GEOMETRY 
TO SIMILARITY IN PHYSICS  (Mechanics, including heat, fluids, etc.) 

 
 

(Geometrically) Similar Figures 
 

 
(Physically) Similar Systems 

Certain Ratio(s) of quantities (lengths) are 
the same in both figures.  A proportion 
holds.  

Certain Dimensionless Ratio(s) involving 
quantities used in physics are the same in 
both systems.  So proportion(s) hold.  
  

To establish geometric similarity:  
Construct a figure so that it is 
geometrically similar to a given figure; or 
deduce that two figures are geometrically 
similar.  

To establish that two systems are 
physically similar systems:  Construct a 
system so that it and the given system are 
physically similar systems with respect to a 
certain behavior; or deduce that two 
systems are physically similar systems with 
respect to a certain behavior.  
 

To reason from geometric similarity of two 
figures:  From the knowledge of the 
equality of certain ratios in the given and 
constructed figures, knowledge of all the 
quantities in the constructed figure that 
occur in those ratios, and of some of the 
quantities in the given figure, deduce the 
value of previously unknown quantities in 
the given figure.  (Proportional reasoning.) 

To reason from the fact that two systems 
are physically similar systems:  From the 
knowledge of the equality of certain 
dimensionless ratios in the given and 
constructed systems, knowledge of all the 
quantities in the constructed system that 
occur in those ratios, and of some of the 
quantities in the given system, deduce the 
value of previously unknown quantities in 
the given system.  (Proportional reasoning.) 
 

 

To offer an example that is easy to grasp visually, one kind of similarity that may hold 

between two physically similar systems is kinematic similarity.  When kinematic 

similarity holds between two systems, the paths of the particles or bodies in the system 

trace out figures of the same shape.   The paths are said to be homologous, which means 
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that the particles of the two systems have corresponding velocities at corresponding 

times.  (In the simple case where the particles have uniform velocity, the velocities and 

times will scale linearly between the two systems.)  However, not all kinds of similarity 

in physics lend themselves to such visualization.   

 

Another common way to grasp the physical significance of the nature of the similarity 

that holds between physically similar systems is to conceptualize the crucial 

dimensionless ratio or ratios in terms of a ratio of two kinds of forces.  Thus the Froude 

number Fr, which is often expressed in terms of the quantities of velocity, length, and the 

gravitational constant,  is commonly thought of as the ratio of a fluid's inertial force to its 

gravitational force.  The  Reynolds number,  Re,  which is often expressed in terms of the 

quantities of fluid density, velocity, length, and fluid viscosity, is commonly thought of 

as the ratio of a fluid's inertial force to its viscous force.  The kind of behavior of interest 

in constructing the model determines which ratios one chooses to keep invariant between 

the model and the situation or object one wishes to model:  the Froude number is used to 

construct a scale model when wave and surface behavior are important in a situation, as 

in designing ships for sea travel, while the Reynolds number is used to construct a scale 

model for a variety of phenomena associated with turbulent flow (examples are flows in 

piping systems, the response of buildings to high winds, and high speed travel in the 

atmosphere (aircraft, projectiles)).   
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The chart below illustrates how the Reynolds number would be used to construct a model 

of an object or situation such that the Reynolds number is invariant between the model 

and what it models: 

 

Table 2. Using Dimensionless Ratios In Scale Modeling  
 

What you want a model of: 
 

The model you construct: 

A system with density ρ1, velocity  
u1, some characteristic length L1, 
and dynamic viscosity  µ1.  Also, 
some fixed ratios reflecting the 
physical configuration.   

 

The Reynolds Number 
characterizing the system, which can 
be thought of as the ratio of the 
inertial force to the viscous/frictional 
force, is expressed as:   Re1 = ρ1 u1 
L1 / µ1 

The model is a system with density ρ2, velocity  
u2, some characteristic length L2, and dynamic 
viscosity  µ2.  Also, it has the same fixed ratios 
reflecting the physical configuration as the system 
you want a model of has.  
 
How you design the model you construct:  choose 
a fluid velocity and a fluid with fluid properties 
(density and dynamic viscosity) such that the 
Reynolds number in the model equals the 
Reynolds number in the system you are modeling.  
I.e.,  Choose  Re2 = ρ2 u2 L2 / µ2 such that      
Re2  =  Re1. 
 
This will result in a model in which the ratio of 
the inertial force to the frictional force is the same 
in the model as it is in the given system.   

 

Selection of Invariants:  Which dimensionless parameters matter?  

Since the dimensionless parameters that are kept invariant between the model and what it 

models are so crucial to the method and its success, the question of where they come 

from deserves at least a brief answer here.  There are two main analytical means of 

determining the dimensionless parameters relevant to a certain behavior.  One method, 

nondimensionalizing the governing equation to identify the dimensionless parameters 

that can play the role of invariants for the behavior governed by the equation, relies upon 
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knowing the differential equations governing the phenomenon.   The second method, 

using dimensional analysis and applying the principle of dimensional homogeneity, does 

not require knowing the actual equation or equations, it only requires knowing what 

quantities are involved.  (Sterrett 2017b) 

 

In the example above, using Reynolds number, the equality of Reynolds number in the 

model and what it models was sufficient to establish that the model and what it models 

were physically similar systems.  However, in many cases, what is required to establish 

that two systems are physically similar systems is to show that a certain set of two or 

more dimensionless parameters has the same value in the model as in the system it 

models.   The theory upon which a set of dimensionless parameters sufficient to establish 

that two systems are physically similar systems is dimensional analysis, or the theory of 

dimensions.  (Buckingham 1914; Pankhurst 1964; Sterrett 2006; 2009; 2017a; 2017b)   

The set of parameters is not unique; what is determined is how many dimensionless 

parameters that are required to establish the physical similarity of two given systems with 

respect to a certain kind of behavior.  

 

In practice, modelers do not usually derive the relevant dimensionless parameters anew 

for each experiment, or, even, for each kind of experiment.  Rather, which dimensionless 

parameters are appropriate to select as invariant(s) to guide construction of a model is 

often already established by the community of researchers in which the experimenter is 

working.  Dozens of dimensionless parameters have been identified and given proper 

names.  Though there are by now canonical formulations of each named dimensionless 
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parameter in the community of researchers and practitioners who use that dimensionless 

parameter, there is not even one unique expression of every dimensionless parameter.  

Likewise, though there are by now established choices of which set of dimensionless 

parameters to use to establish similarity of a model to what it models for a certain kind of 

behavior, there are many different sets of dimensionless parameters that are equivalent in 

terms of establishing that two systems are physically similar, i.e., that can play the role of 

invariant(s).       

 

New kinds of experiments are constantly being conceived, too.  For these, a combination 

of analytical approaches and experimentation is used, to determine the appropriateness of 

the choice of invariant in capturing the kind of behavior one wishes to study, using the 

kind of model and testing conditions employed.   While it is true that experimenter 

knowledge and practical experience are involved in carrying out these kinds of 

investigations, the criterion of similarity is still an objective matter; similarity is a matter 

of a set of relevant invariant dimensionless parameters5 (the set of parameters might not 

be unique)  being the same between model and situation modeled, a matter of the two 

systems being physically similar systems.  Changes to model materials, testing 

conditions, and other features of the experiment are evaluated as well, in tandem with the 

choice of invariants, in order to obtain a sufficiently effective model experiment protocol.   

 

Inherent limitations of the method of physical similarity   

In practice, exact similarity of systems in physics is not always achievable.  In particular, 

for dynamic similarity of physically similar systems, exact similarity is in general 
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unachievable unless the model is a full-size scale model.6   However, most scale models 

are not full-size scale models, and most scale models are only approximately physically 

similar to what they model.  In this section we briefly indicate the reasons for this. 

 

The reason that it is not in general possible to achieve complete dynamical similarity with 

a model that is not full-size is that the problem of ensuring that the model and what it 

models are dynamical (physically) similar systems is overconstrained.   Solving that 

problem requires finding a combination of values of all the quantities that appear in all 

the dimensionless parameters that one needs to keep invariant.  It is a simple 

mathematical matter, an application of linear algebra, to show that in the general case, 

there are so many constraints that a general solution to the problem of dynamically 

similar systems is not possible except with a full-size model.  Thus, in practice, modelers 

compromise and construct a model that is only approximately similar, rather than exactly 

similar, to what it is a model of.  When the scale model is not exactly similar to what it 

models, scale effects can arise.  Part of the modeler's job is to quantify scale effects and 

design the scale model so that the kind of scale effects that arise in that model are not 

important to the kind of behavior the model is being used to investigate.  As noted earlier, 

often several different scale models of the same object or situation are made, each one 

designed to investigate a different kind of physical behavior. 

 

Another reason that exact similarity is not achieved in practice is more deliberate.  Most 

models of large bodies of water, such as large lakes or rivers, are distorted:  the vertical 

dimension of the model corresponding to the depth of the river or lake uses a scale much 
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larger than the horizontal dimensions of the model corresponding to the earth's surface.  

This is because if the same scale were used, the depth of the water in the model would be 

impracticably shallow, and the effects of the river bottom or lake bottom would be much 

exaggerated in the model behavior as a result.  Engineering experience gained from 

experimentation is involved in the process of arriving at a good selection of 

dimensionless parameters, and engineering expertise is involved in deciding which 

tradeoffs to make in constructing a model that is only approximately similar.  However, 

the criterion of exact similarity is still well defined, even if seldom obtained.  Exact 

similarity consists in the values of the dimensionless parameters that characterize the 

model being equal to the values those dimensionless parameters have in the situation it 

models.    

 

Misconceptions: a brief list  

Common misconceptions about scale modeling include (i) confusing the sense in which 

invariant is used in scale modeling with the sense of invariant used to denote an 

"invariant of nature" ;  (ii) that all dimensions must be expressed in terms of a particular 

set of base dimensions, such as[M], [L], and [T];  (iii) that the "generalization of 

geometrical similarity" is another kind of geometrical similarity;  (iv) that anything that 

can be achieved with a scale model can be achieved with a computer simulation; and (v) 

that scale modeling requires more information than using an equation. (In fact, scale 

modeling requires less information than numerical simulation, as it does not require that 

the modeler be in possession of an equation describing the behavior of interest) .  (Sterrett 

2002; 2017b) 
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Concluding remarks  

Scale modeling is essential in current engineering practice, both in the building of scale 

models to investigate behavior, and in providing empirical data for use in the design of 

software for computational simulations.  The basis for scale modeling is known as 

physically similar systems, and can be thought of on analogy to geometrically similar 

figures, as explained in this article.  Instead of ratios of like geometrical quantities, it is 

dimensionless ratios consisting of ratios of products of physical quantities that play the 

role of invariants in the theory of scale modeling.   In practice, it is often not possible to 

achieve exact (or full) similitude in a scale model, and empirical investigations are often 

carried out to make informed judgments about the best compromises to make in the 

design of a model experiment using an approximately similar scale model.   
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1  Figure 1 shows a configurable model developed for educational use.   URLs of time-

lapsed videos of the model illustrating its use are provided in the caption.   

	  

2	  	  Kroes, Zwart  and Sterrett are some of the few exceptions known to this author. 
	  
3  The spectacular visual effects of using color coded particles can be seen in the videos 

of  progression of sediment transport in the river model, which are available online at the 

manufacturer's website: http://emriver.com/models/em4/   

4  For a deeper explanation of why keeping these invariants the same actually results in 

the model behavior reflecting the behavior of what it models, see Sterrett 2009 and 

Sterrett 2017a.   

 

5 The set of parameters is not unique, as explained in Buckingham 1914, Sterrett 2006, 

and Sterrett 2009. 
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6 Even when full-size scale models are used, the practice is still referred to as scale 

modeling, for the principles of scale modeling described above are still involved in 

setting up the experiment.  For example, the same principle is adhered to in determining 

the fluid properties (density, viscosity) and conditions (temperature, pressure, velocity) to 

use for the fluid in a flow channel or wind tunnel.  The crucial thing is still to keep the 

appropriate dimensionless parameter(s) (ratio(s)) the same in the model as in what it 

models. 	  


