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ABSTRACT 

In his book “Medical Philosophy: Conceptual issues in Medicine“, Mario Bunge provides a unique 

account of medical philosophy that is deeply rooted in a realist ontology he calls “systemism”. 

According to systemism, the world consists of systems and their parts, and systems possess emergent 

properties that their parts lack. Events within systems may form causes and effects that are constantly 

conjoined via particular mechanisms. Bunge supports the views of the evidence-based medicine 

movement that randomized controlled trials (RCTs) provide the best evidence to establish the truth of 

causal hypothesis; in fact, he argues that only RCTs have this ability. Here we argue that Bunge 

neglects the important feature of patients being open systems which are in steady interaction with 

their environment. We show that accepting this feature leads to counter-intuitive consequences for 

his account of medical hypothesis testing. In particular, we point out that (i) the confirmation of 

hypotheses is inherently stochastic and affords a probabilistic account of both confirmation and 

evidence which we provide here; (ii) RCTs are neither necessary nor sufficient to establish the truth 

of a causal claim; (iii) testing of causal hypotheses requires taking into account background 

knowledge and the context within which an intervention is applied. We conclude that there is no 

“best” research methodology in medicine, but that different methodologies should co-exist in a 

complementary fashion. 

Keywords: Bayesianism; confirmation; evidence; evidence-based medicine; Mario Bunge; 

systemism; systems thinking; philosophy of medicine; philosophy of science 

 

1. Introduction 

In his book „Medical Philosophy: Conceptual issues in Medicine“ the scientist and philosopher 

Mario Bunge contrasts what he calls “scientific medicine” with complementary and alternative 

medicine (CAM)
1
 which according to him “is a broad panoply of therapies lacking in both scientific 

basis (knowledge of mechanism) and evidence (randomized controlled trials)” [1]. His distinction 

between these two types of medicine is not only epistemological (according to him only scientific 

medicine has knowledge of mechanisms and is evidence-based), but also an ontological one (that 

                                                             
1 Bunge makes no further distinction between traditional, complementary and alternative medicine which is 

problematic, since all three refer to different concepts of medical systems. However, a detailed criticism of this 

conflation is not our concern here. 

mailto:rainer_klement@gmx.de
mailto:psb@montana.edu


refers to the some features of the world): While he perceives CAM embedded in a holistic worldview 

(“the hole precedes and dominates its parts”), scientific medicine “treats patients like … systems that 

can be dismantled, at least conceptually, with the help of modern biology: it is systemic.” 

Bunge’s ontological characterization of modern medicine as systemic follows his earlier work on 

the philosophy of social science. It is not found within other books on the philosophy of medicine [2–

5]. It therefore deserves a critical appraisal, in particular concerning its implications for epistemology 

and medical research praxis (methodology). This is what we aim for in this paper. We are thereby not 

concerned with his philosophy of medicine as such, but with the broader implications that emerge 

from his realist-systemic ontology concerning emergence of new properties not reducible to some 

more fundamental properties and evidence. We agree that such an ontology seems indeed quite 

reasonable given the successful history of systems thinking in biology and its increasing applications 

in medicine [6–8]. However, there is a lack of meta-research on the implications of systems thinking 

for the hallmarks of modern medicine such as randomized controlled trials (RCTs) and evidence-based 

medicine (EBM) in general. 

In the next section, we first provide a motivation for systems thinking and anti-reductionism in 

medicine and then describe Bunge’s account of systemism in medicine that adopts the Humean 

conception of causality in which cause and effect are constantly conjoined. In section 3, we will 

review Bunge’s epistemological principles for good scientific practice in medicine, and relate it to the 

current paradigm of EBM. We are going to highlight that both Bunge and EBM emphasize a 

hierarchical structure of medical evidence and research methodologies, with RCTs conceived as 

providing the highest quality evidence for establishing the truth of medical hypotheses. In section 4 we 

are going to develop our critique of Bunge’s conception of causality based on the argument that 

humans are not closed, but open systems which are in steady interaction with their environment. The 

acceptance of this fact is at odds with both a constant conjunction of events and the proposition of a 

hierarchy of methodologies with RCTs on top. Instead, we argue for a “circular” or integrative view of 

evidence in which multiple methodologies co-exist with each other and the best method is dependent 

on the particular context and research question.  

2. Systemism, emergence and medicine 

2.1. Background 

The view that every medical phenomenon can be explained by referring to entities at a lower 

ontological level, also called entity reductionism, appears to be the default view in medicine [3, 

chapter 4]. Examples abound: Diseases are reduced to their syndromes which are treated by 

pharmaceutical drugs; individual biomarkers which lie outside their normal range are “corrected” 

without considering system-wide effects [6]; tumors are mostly conceived as independent entities and 

ultimately reduced to the level of oncogenic driver mutations or tumor suppressor loss-of-function 

mutations for which targeted therapies could be designed – which is then called “precision medicine”; 

humans with a disease are reduced to patients instead of also being agents (capable of taking actions 

by themselves) [9]. Finally, a reductionist view may also be held responsible for the “junk science” 

produced within the field of nutrition research where dietary complexity and that of the person or 

animal eating the diet are all too often reduced to associations of single macro- and micronutrients 

with certain outcomes, leading to false and sometimes counter-intuitive conclusions [10,11]. 

Such reductionism in medicine is challenged from a biological perspective considering that 

macroscopic multicellular life possesses a kind of complexity that cannot be solely explained through 

the properties of its constituent parts. Bains and Schulze-Makuch for example, by comparing a fruit fly 

to an equivalent mass of Escherichia coli (E. coli), write: 



The mass of E. coli can be described by describing one E. coli and then saying “grow 10
9
 of 

them”, [while] describing a fruit fly requires describing all of its cell types and their 

interactions in chemistry, space and time [12]. 

This example highlights Bunge’s conception of emergence. The fruit fly possesses certain 

properties that none of its constituents possesses, e.g. sexuality. These are emergent properties [13]. In 

contrast, the conglomerate of E. coli bacteria lacks any special property that would not also be 

possessed by an individual E. coli bacterium, and hence has no emergent properties. More generally, 

Bunge defines emergent properties as systemic properties that none of the parts of the system share, 

but that are explainable by the parts of the system and its entire organization [13]. In other words, 

according to him, certain systemic properties are ontologically emergent properties, and are not 

anyway reducible to some more basic properties. Insofar, he is an ontological anti-reductionist. He 

thinks, however, that every system with emergent properties can be explained by our knowledge about 

its lower-level properties and their connections. Thus, he is an epistemological reductionist. Bunge 

calls his stance rational emergentism. In his view, every aspect of the fruit fly within a given context 

should be principally explainable if all of the fly’s constituents plus all their interactions within this 

context would be known. Since diseases can be conceptualized as emerging properties of individual 

patients, scientific medicine should aim at understanding (i) the underlying properties that give rise to 

a disease; (ii) their interaction with the environment; (iii) their manipulation through medical 

interventions. Our argument, developed in more detail below, will be that the second point is strongly 

neglected in Bunge’s account of medical hypothesis testing. 

2.2. Bunge’s ontological systemism 

Bunge’s systemism is influenced by Paul Henri Thiry d’Holbach’s Système de la Nature 

(published in 1770) and Ludwig von Bertalanffy’s General System Theory [14]. For Bunge, the world 

is an objective reality made up of systems or parts thereof and therefore stratified into different levels 

or “layered”. This is the ontology he refers to as “systemism”. In more detail, his systemic worldview 

rests on the following two postulates, stated in an earlier paper [15]: 

(S1) Everything, whether concrete or abstract, is a system or an actual or potential component of a 

system; 

(S2) Systems have systemic (emergent) features that their components lack. 

Bunge argues that “systemism is the only ontology that fits the modern sciences” and that, 

“because it entails emergentism, systemism overcomes reductionism in its various forms” (p.15).
2
 He 

emphasizes that systemism entails ontological emergence since systems are postulated to possess 

properties that only emerge from the interaction of their parts. As examples for such emergent 

properties within medicine, Bunge names apoptosis on the level of cells (p. 138) or being alive, 

thinking and socializing (p.16) on the level of the whole system.  

Bunge classifies systems broadly into being concrete/material (stars, cells, humans, social 

systems etc.) or abstract (properties, events, ideas, feelings etc.). Concerning the former he writes [1, 

pp.13-14]: 

The conceptual or empirical analysis of a concrete system, from atom to body to society, 

consists in identifying its composition, environment, structure, and mechanism. These 

components may be schematically defined as follows: 

Composition = Set of constituents on a given level (molecular, cellular, etc.) 

Environment = Immediate surrounding (family, workplace etc.) 

                                                             
2 Bunge speaks of emergentism instead of emergence as in his former publications.  



Structure = Set of bonds among the components (ligaments, hormonal signals, etc.) 

Mechanism = Process(es) that maintain(s) the system as such (cell division, metabolism, 

circulation of the blood, etc.) 

Bunge defines the environment of a system as the set of all entities not being part of the system, 

but interacting with it. He generally conceives causal mechanisms as processes (sequences of events) 

in concrete systems involving energy transfer that are activated by particular events (the causes) 

[16,17]. Mechanisms can act between different levels of a system in both top-down and bottom-up 

direction (Figure 1). Bunge adopts the Humean view of causation − event X is a cause of event Y if 

and only if (i) X is both a necessary and sufficient condition for Y to happen, and (ii) X happens 

before or simultaneously with Y. In this sense, mechanisms act as mediators between causes and their 

effects. 

While Bunge mentions the importance of the (social) environment and its interaction with 

patients, he makes no distinction between open and closed systems in his medical philosophy. This is 

despite the concept of an open system as “the characteristic state of the living organism” having been 

introduced by von Bertalanffy [14] who is cited as an influencer of systemism in Bunge’s book. 

According to von Bertalanffy, an open system is characterized by a “steady inflow and outflow of 

materials” [14]. Contrary to closed systems, open systems therefore transcend both conventional 

thermodynamics and one-way causality of the form “this one event always causes this or that effect” 

[18]. We more generally conceive an open system as a system which is in steady interactions with its 

environment, whereby these interactions can give rise to events and the triggering or avoidance of 

mechanisms; they hence influence causal effects. As we will argue in section 4, Bunge’s failure to 

clearly characterize patients as open systems is the major flaw in Bunge’s medical philosophy, giving 

rise to several epistemological and methodological problems in his account. 

 

 

Figure 1. Two examples for mechanisms acting across levels in top-down or bottom-up direction. In 

the former case, macrosocial factors such as unemployment or gender discrimination induce chronic 

stress in affected individuals which in turn negatively affects gene transcription through epigenetic 

modifications. Such modifications of gene transcription can promote the development of systemic 

diseases such as (type II) diabetes which in turn has negative effects on the social level by decreasing 

productivity or inflicting additional costs to the health care system. These examples are taken from 

page 35 of Bunge’s book [1]. 

3. Bunge’s epistemology 

Bunge’s epistemological principles for scientific medicine can best be summarized by three 

further postulates that he stated in a previous paper along with the two ontological postulates cited in 

the previous section [15]:  

(S3) All problems should be approached in a systemic rather than in a sectorial fashion; 

(S4) All ideas should be put together into systems (theories); and 

(S5) The testing of anything, whether idea or artifact, assumes the validity of other items, which are 

taken as benchmarks, at least for the time being. 



According to Bunge, and in line with several other philosophers of science, biomedical research 

is particularly concerned with the testing of causal hypotheses
3
 Causal hypotheses require causal 

mechanisms which may be conjectured based on statistical data (e.g. observational studies) [1,16]. 

Bunge has a Humean conception of causality in which cause and effect are constantly conjoined. Such 

conception was once the standard view in medicine. It was first questioned in the 1950s when the 

problem whether smoking causes lung cancer was being investigated more thoroughly [5]. Smoking is 

neither necessary (asbestos, e.g., can also cause lung cancer) nor sufficient (not every smoker gets lung 

cancer) for lung carcinogenesis. This example clearly showed that there could be causes that are not 

always followed by their effects; it required a new concept of causality called indeterministic or 

probabilistic causality and spurred new philosophical investigations of the link between causality and 

probability that last until today [5]. Bunge, however, rejects any fundamental connection between 

causation and probability. On Bunge’s account, probability measures the objective possibility or 

likelihood of an individual fact, but only when there is chance involved, either within things 

themselves (atoms) or the sampling procedure that determines the observation of the facts 

(randomization). He therefore rejects Bayesianism in its broadest sense which he accuses of being 

subjective, absurd and even dangerous when applied to diseases and therapy [1, p. 101].
4
 We are going 

to discuss the AIDS example which he uses to justify this claim in the next section. 

The adoption of causal determinism and abandonment of probabilities
5
 characterize his account of 

medical hypothesis testing and his concepts of evidence and confirmation. For Bunge, it is necessary 

to subject medical hypotheses to tests of two kinds − a conceptual test according to his postulate (S5), 

evaluating whether the hypothesis is consistent with the bulk of prior knowledge; and an experimental 

test that can only be conducted through a randomized controlled trial (RCT). Bunge conceives 

randomization into a treatment and control group necessary to correct for biases that are due to the 

heterogeneity of human individuals. Only randomization could guarantee an equal distribution of all 

unknown variables with a possible influence on the outcome between treatment and control group, “so 

that the intervention stand out as the only cause of the difference in the outcome of the study” [1, p. 

142]. 

This argument echoes the one made by the evidence-based medicine (EBM) movement that has 

always considered RCTs as the “gold standard” providing the best available evidence, because only 

RCTs would theoretically balance any unknown factors between treatment and control group 

confounding the association between an intervention (the cause) and its effect. Hence, RCTs (and their 

meta-analyses) were conventionally placed on top of the so-called “evidence hierarchy”, in which non-

randomized trials and observational studies are graded with much lower evidence quality [19]. We 

agree with EBM proponents who claim that “the higher the quality of evidence, the closer to the truth 

are estimates of diagnostic test properties, prognosis, and the effects of health interventions” [19]; 

however, if high quality evidence is set equivalent to particular quantitative research methods 

generating the evidence as suggested by various EBM “evidence hierarchies”, this amounts to 

embracing a positivist-empiricist philosophy.
6
 Such reasoning has evoked much criticism from both 

medical practitioners [20–23], methodologists and philosophers of science [24–30]. 

                                                             
3 He broadly distinguishes three kinds of causal hypotheses: (i) Null hypotheses of no association between two 

putatively causally connected variables. (ii) General hypotheses of the form “X is a cause of that disease” or “the 

mechanism of X is Y”. (iii) Particular hypotheses such as “that individual is likely to suffer from that disease”. 

 
4 This sounds like an argument by definition. Bunge postulates a meaning for “probability” and then concludes 

that the Bayesian conception is absurd. However, we are not going to pursue this point further here. 
5 Bunge seems to have missed that Bayesians of the personalist stripe are ontological determinists and epistemic 

probabilists. 
6 We use the term positivist-empiricist referring to a conjunction of concepts of logical positivism and Humean 

empiricism. The former rejects any reference to unobservable (metaphysical) entities, while the latter describes 



 

Figure 2. Bunge’s “biomedical research rigor” hierarchy. Such a pyramid is the stereotype of an 

”evidence hierarchy” widely promoted especially in the early phases of the EBM movement [19]. 

Bunge rejects most of the criticisms against the evidence hierarchy and “uphold[s] the ruling 

opinion that the RCT is the gold standard of biomedical research [since] it is the most objective and 

impartial, hence also the most reliable and responsible, method for assessing the effectiveness of 

medical interventions on members of heterogenous populations” [1,page 149]. According to Bunge, 

RCTs are necessary, although not sufficient, to establish the truth of a medical hypothesis. They are 

insufficient because they overlook mechanisms of action. Therefore, Bunge proposes a new pinnacle 

of the methodological hierarchy (the “platinum standard”) consisting of (i) double-blind and placebo-

controlled RTCs with (ii) the explicit statement of a mechanism of action which can account for the 

observed associations (Figure 2). The order below his supposed platinum standard is analogous to the 

traditional EBM evidence pyramid in that it ranks evidence from RCTs higher than that from non-

RCTs (e.g. case-control or cohort studies) which in turn deliver evidence that is ranked higher than 

that from case series and case reports. Through his emphasis on evidence for mechanisms contributing 

to the platinum standard, Bunge departs from EBM in which studies providing evidence for 

mechanisms are ascribed the lowest quality at the bottom of the various evidence hierarchies [31]. In 

this way he attempts a rationalism-empiricism synthesis that “is fruitful only jointly with realism” [1, 

p. 81]. However, Bunge’s views on the epistemological merits of research methodologies below RCTs 

appear even more extreme than those of EBM; he simply denies that they have any power for testing 

causal hypotheses: 

[O]nly RCTs allow researchers to find out whether a medical treatment is effective. (If 

preferred, this method is used to find out whether propositions of the form “This therapy is 

effective” are true or false.) [1, p. 143] 

                                                                                                                                                                                              
the scientific endeavor to test causal hypotheses by finding quantitative associations between observed events. 

Indeed, the literature on the philosophical and methodological foundations of EBM emphasizes statistical 

methodologies and avoids any reference to a particular ontology [2,19]. 



Bunge uses the word “true” referring to the concept of factual truth that he sharply distinguishes 

from probability. For him, truth is a property of propositions such as hypotheses, while probability is a 

property of individual random facts (“things and events out there”, p. 99) and therefore ontological. 

Truth values measure the degree to which a hypothesis corresponds to the facts and are measured by 

conducting experiments. In contrast, probability values are theoretically assumed, guessed or 

calculated by frequencies, but never directly measured. Hence, it is not the goal of RCTs to estimate 

probabilities of individual facts, but rather to estimate truth values of hypotheses. Concerning the 

assignment of such truth values to scientific hypotheses Bunge writes: 

The aim of an experiment, contrary to that of an observation or a measurement, is to garner 

empirical data relevant to a hypothesis, to test it and find out its degree of factual (or 

empirical) truth (true, true within such an error, or false). When there is a theory 

(hypothetico-deductive system of propositions) referring to the same facts, the hypothesis 

that undergoes an empirical test can also be assigned a theoretical truth value. In both cases, 

the truth in question is factual, not formal or mathematical [1, page 131]. 

Therefore, according to Bunge, it is empirical data stemming from an experimental study and 

being relevant to a hypothesis that are necessary for both testing the hypothesis and assigning it a truth 

value. Such data then become evidence: 

A datum becomes evidence when confronted with a hypothesis: in this case it either 

confirms or weakens the hypothesis to some extent [1, page 28]. 

Thus, in Bunge’s view data that are relevant to a hypothesis are evidence for the hypothesis and 

simultaneously confirm/disconfirm and assigns a truth value to it. However, Bunge gives no 

unequivocal answer to the question of how exactly a causal hypothesis is supposed to be confirmed or 

refuted. On one occasion he claims that “[o]nly the unveiling of a mechanism can confirm or refute a 

causal guess” (p. 100), while on another occasion he states that “confirming or refuting a causal 

hypothesis, is what is gained when one subjects it to a controlled experiment” (p. 155). We will show 

in section 4 how the important role of both mechanisms and statistical data for confirming a causal 

hypothesis follows naturally from a Bayesian analysis of causal hypotheses. We also show how a 

conceptual distinction between evidence and confirmation is helpful to understand scientific inference 

including inference in the medical sciences. In contrast to Bunge’s description of medical hypothesis 

testing, our concepts of evidence and confirmation are able to account for prior knowledge, 

uncertainties in inference and the objective comparison between different hypotheses based on 

observed data. 

4. A critique of Bunge’s medical philosophy 

Having reviewed the ontological and epistemological principles of Bunge’s medical philosophy, 

which heavily rests on his general account of systemism, we are now going to formulate our major 

critique against Bunge’s account: 

Humans are open systems ⇒ 

(C1) The confirmation of hypotheses is inherently stochastic and must be distinguished from the notion 

of objective truth; only comparisons between hypotheses in light of background knowledge and their 

ability to explain the observed data are objective 

(C2) RCTs are neither necessary nor sufficient to establish the truth of a causal claim 

(C3) Testing of causal hypotheses requires taking into account background knowledge and the context 

within which an intervention is applied 

In the following three subsections we will justify our claims (C1) to (C3) in more detail. 



4.1. Evidence and confirmation as separate concepts 

According to von Bertalanffy, who is cited in Bunge’s book as a pioneer of systemism, every 

living system is an open system [14,18]. In system terms, open systems are characterized by steady 

interactions between the different components of the systems, the systems as a whole with their 

components and the systems and their components with other systems and their components in the 

environment. These interactions would give rise to events and hence causality, because interactions 

represent causal relationships between events; however, they are so complex and dynamic that 

causality cannot be considered as a constant conjunction of events. That would only be the case in 

closed systems, something that can be only be established artificially through particular experimental 

setups in some natural sciences such as physics. In natural open systems, however, causality arises 

from a tendency on behalf of the system to produce certain patterns or regularities under particular 

contexts [32]. As a consequence, there are no universal regularities of the form “whenever event X, 

then event Y”, only what appear as such on average and what Lawson has named “demi-regularities”. 

Conceptualizing humans as open systems, it becomes clear that the same medical intervention applied 

in different study settings not always leads to the same outcome since the outcome depends on the 

environment/ context in which it occurs. It is crucial to point out that statistical methodologies not 

only presuppose, but only work in closed systems if the goal is to establish causality [33]. One must 

therefore accept that variations in regularity are predicted to occur in experimental studies in biology, 

medicine and sociology. This will require the utilization of probabilities: 

Variations in regularity are generally specified probabilistically or stochastically, as random 

processes occurring in the ontic domain. Probability is a measure of the likelihood of an 

event occurring. The re-conceptualization of stochastic event regularities using the concepts 

of probability, might be styled ‘whenever event x, then on average event y’ [33]. 

For realists, the truth of causal hypotheses cannot be established in an objective way through 

statistical data alone due to the unavoidable limitations of experiments conducted on biological open 

systems, or in other words the impossibility to achieve complete closure of a biological open system in 

order to nail down the true causal effect of an intervention. It follows that the confirmation or 

disconfirmation of a hypothesis by statistical data is not about assigning (objective) truth values as 

Bunge claims, but about raising or lowering an agent’s (subjective) belief in the truth of the 

hypothesis. Once framed, a realist will seek to scrutinize a causal hypothesis in further tests which 

hopefully provide stronger and stronger confirmation of it [32]. At the same time, the realist will 

consider different competing hypotheses/models about the data-generating causal processes that she 

attributes to different entities that are or may be real; the data may then decide between these 

hypotheses in an objective way.  

We have developed two distinct Bayesian accounts to capture these two concepts about the 

testing of statistical hypotheses [34,35]. The first is an account of belief/confirmation, the second of 

evidence. Many Bayesians interpret confirmation relations in various ways. For us, an account of 

confirmation explicates a relation, C(D,H,B) among data D, hypothesis H, and the agent’s background 

knowledge B. For Bayesians, degrees of belief need to be fine-grained. A satisfactory Bayesian 

account of confirmation, according to us, should be able to capture this notion of degree of belief. In 

formal terms:  

D confirms H to some degree if and only if P(H|D) > P(H) 

The posterior/prior probability of H could vary between 0 and 1. Confirmation becomes strong or 

weak depending on how great the difference is between the posterior probability, P(H|D), and the prior 

probability of the hypothesis, P(H). P(H|D) represents an agent’s degree of belief in the hypothesis 



after the data are accumulated.
7
 P(H) stands for an agent’s degree of belief in the hypothesis before the 

data for the hypothesis have been acquired. The likelihood function, P(D|H), provides an answer to the 

question “how likely are the data given the hypothesis”? P(D) is the marginal probability of the data 

averaged over the hypothesis being true or false. The relationships between these terms, P(H|D), P(H), 

and P(D|H), and P(D) are succinctly captured in Bayes’ theorem:  

P(H|D) = P(D|H)×P(H)/P(D) > 0. 

While this account of confirmation is concerned with belief in the truth of a single hypothesis, our 

account of evidence compares the merits of two hypotheses, H1 and H2 (which could be ¬H1) relative 

to the data D, auxiliaries A, and background information B. We conceive the evidence of one 

hypothesis versus the other as an objective function of the data generating process
8
, which takes place 

via observed or unobserved mechanisms within the system under study. This is also how 

Bandyopadhyay, Brittan and Taper interpret the likelihood that determines the evidence [35, p.30]: 

It is natural to assume that the “propensity” of a model to generate a particular sort or set of 

data represents a causal tendency on the part of natural objects being modeled to have 

particular properties or behavioral patterns and this tendency or “causal power” is both 

represented and explained by a corresponding hypothesis.  

As such, evidence provides the link between “the Real” about which we construct hypotheses and 

“the Empirical” which we observe as patterns or regularities.
9
 Our concept of evidence is therefore 

consistent with a realist-systemic ontology. Note that this concept also fulfills Bunge’s postulate (S5) 

by explicitly taking background knowledge into account. Such background knowledge and auxiliaries 

allow deriving evidence through a variety of methodologies, as long as the data are relevant to an 

aspect of the hypotheses being compared. For example, observing a high correlation between 

treatment X and effect Y in a RCT may in theory provide the strongest evidence for the claim that X 

causes Y when the alternative is that X is no direct cause of Y, but X and Y are correlated because 

both are caused by some third (confounding) factor. In contrast, a single case report of a patient taking 

a drug and developing a serious side effect together with background knowledge about the biological 

actions of the drug may provide strong evidence for the hypothesis that the drug is harmful in 

particular contexts.
10

 Finally, preclinical in vitro and in vivo studies may provide strong evidence in 

favor of a particular mechanism underlying an observed correlation between treatment and outcome.  

Because evidence is not a belief relation, but a likelihood ratio, it need not satisfy the probability 

calculus. The data D constitute evidence for H1&A1&B against H2&A2&B if and only if  

[P(D|H1,A1&B)/ P(D|H2,A2&B)] > 1. 

Bayesians use the Bayes factor (BF) to make this comparison, while others use the likelihood 

ratio (LR) or other functions designed to measure evidence. For simple statistical hypotheses with no 

                                                             
7 More precisely, we can speak of the degree of belief in the truth of the hypothesis; this unifies Bunge’s 

arguments about hypotheses being confirmed and hypotheses being assigned truth values.  
8 The data generating process is covered by the auxiliary hypotheses which can be about mechanisms. These 

auxiliaries serve as links between theoretical entities of the system under study and observable features in nature, 

in this way generating observable predictions [51]. 
9 The distinction between the Real and the Empirical is borrowed from Critical Realism which itself exhibits many 

features of systems thinking [50]. 
10 An example is a recent case report of a patient with chronic kidney disease experiencing severe lactic acidosis 

from taking the widely prescribed anti-diabetic drug metformin [52]. In the case report, the authors state their 

background knowledge as follows: “In the setting of dehydration with resultant acute kidney injury, metformin 

can accumulate, leading to type B lactic acidosis, especially in the presence of other nephrotoxic agents (ACEi and 

loop diuretics)”. They conclude to “use this patient as an example of the population that actually needs dosing 

adjustments”, a theoretical generalization supported by the evidence obtained from observations on this single 

patient. 



free parameters, the Bayes factor and the likelihood ratio are identical, and capture the bare essentials 

of an account of evidence without any appeal to prior probability. However, the LR becomes an 

inadequate measure of evidence whenever there are free parameters to estimate; the greater the 

number of parameters, the more biased the LR becomes. This is what information criteria such as AIC 

or BIC try to account for [36]. For hypotheses under which there are unknown parameters θ, the 

densities
11

 P(D|H,A&B) are obtained by integrating over the parameter space, so that  

P(D|H,A&B) = ∫P(D|θ,H,A&B)π(θ|H,A&B)dθ [37]. 

An immediate corollary of the evidential condition (E) is that there is equal evidential support for 

both hypotheses only when BF=1 (or LR=1). The numerical value of the BF or LR which 

distinguishes weak from strong evidence for H1 versus H2 is determined contextually and may vary 

depending on the nature of the problem. It also follows that evidence is accompanied by confirmation 

and vice versa in the special case that two hypotheses are mutually exclusive and jointly exhaustive. In 

this case, if the data provide evidential support for H against ¬H, i.e. P(D|H) > P(D|¬H), then it 

follows from Bayes’ theorem that P(H|D) > P(H). However, even in this case a hypothesis for which 

the evidence is very strong may not be very well confirmed while a claim that is very well confirmed 

may have no more than weak evidence going for it [35, p.38]. Finally, we note that in many scientific 

studies, no precise quantitative determination of likelihoods, priors and posteriors of hypotheses might 

be possible. Even then our concepts remain useful for making qualitative or comparative statements 

about hypotheses. For example, a qualitative evidential statement may be “the data provide 

more/equal/less evidence for H1 compared to H2”; a comparative statement relating to confirmation 

may be “H1 is better confirmed/equally confirmed/less confirmed by the data than H2”.
12

  

We will now demonstrate the usefulness of our confirmation/evidence distinction using an 

example provided by Bunge himself, the purpose of which was supposed to reject Bayesianism as 

unreasonable [1]: 

It is well known that HIV infection is a necessary cause of AIDS: no HIV, no AIDS. In other 

words, having AIDS implies having HIV, though not the converse. Suppose now that a given 

individual b has been proved to be HIV-positive. A Bayesian will ask what is the probability 

that b has or will eventually develop AIDS. To answer this question, the Bayesian assumes 

that the Bayes’ theorem applies, and writes down this formula: P(AIDS|HIV)=P(HIV|AIDS). 

P(AIDS)/P(HIV), where an expression of the form P(A) means the absolute (or prior) 

probability of A in the given population, whereas P(A|B) is read (or interpreted) as “the 

conditional probability of A given (or assuming) B.” 

If the lab analysis shows that b carries the HIV, the Bayesian will set P(HIV)=1. And, since 

all AIDS patients are HIV carriers, he will also set P(HIV|AIDS) = 1. Substituting these 

values into Bayes’ formula yields P(AIDS|HIV) = P(AIDS). But this result is false, since 

there are persons with HIV but no AIDS. What is the source of this error? It comes from 

assuming tacitly that carrying HIV and suffering from AIDS are random facts, hence subject 

to probability theory. The HIV-AIDS connection is causal, not casual; HIV infection is only 

a necessary cause of AIDS. In conclusion, contrary to what Bayesians (and rational-choice 

theorists) assume, it is wrong to assign probabilities to all facts. Only random facts, as well 

as facts picked at random, have probabilities. 

                                                             
11 These probabilities of the data are also known as marginal or integrated likelihoods; some authors also denote 

them as “evidence” [e.g., 53,54], which must not be confused with our account of evidence that always implies a 

comparison between two competing simple statistical hypotheses. 
12 See Klement [55] for such a qualitative medical application of the evidence/confirmation distinction. 



The example is supposed to show a paradox arising from Bayesian reasoning. The paradox is that 

a positive HIV test result provides no confirmation for the hypothesis AIDS, i.e., that b has or will 

develop AIDS, since the posterior probability of AIDS after obtaining a positive test result is the same 

as its prior probability. However, the paradox only arises because Bunge is wrong in two assumptions: 

First, that a positive test result is “true”, so that P(HIV)=1, and second that the test has perfect 

sensitivity, so that P(HIV|AIDS)=1. Both assumptions are at odds with realistic assumptions about 

tests on open systems which are never perfect. Regarding Bunge’s first assumption, he mistakenly 

identifies “knowing or observing the data” with “the probability of the data” [35, p.137]. For a 

Bayesian realist the positive test result is the realization of some data generating mechanisms (in this 

case, mechanisms of the disease AIDS) modelled by a binary random variable taking on the value of 

either 0 or 1, so that the correct way of writing P(HIV) is 

P(HIV=1)=∑P(HIV=1|Hi)P(Hi)=P(HIV=1|AIDS)P(AIDS)+P(HIV=1|¬AIDS)P(¬AIDS). 

This expression includes both the true positive rate (sensitivity) and false positive rate (1- 

specificity) none of which are exactly 100% or 0%, respectively, in medical tests. In this specific 

example, the assumptions P(HIV|AIDS)≈1 and P(HIV|¬AIDS)≈0 can indeed be justified based on 

generally very high sensitivity and specificity of HIV tests (although there is clear variation in these 

test performances across different settings [38], emphasizing the importance of environment/context). 

However, the prior probability of b having or not having AIDS before the test result is known is also 

important. In general, observing HIV is the case does not therefore imply P(HIV)=1.  

On our account, a positive test indeed provides strong evidence for the AIDS hypothesis because 

P(HIV|AIDS)≫P(HIV|¬AIDS). In accordance with our intuition, this does not depend on our prior 

beliefs about the person having or not having AIDS in the first place. What we should believe about b 

having AIDS after the positive test result has been obtained is however a different question, and again 

in accordance with our intuition, the answer to this question should now depend on the context, e.g. 

what we know about the individual and its social relationships. Bunge is not able to capture these 

intuitions.  On his account, solving the inverse problem of going from the results of a medical test or 

some sign S of a disease D to the precise diagnosis of D can only be achieved if there is a single 

mechanism M that when conjoined with S is necessary and sufficient for D to occur. In the AIDS 

example above his reasoning goes as follows: AIDS occurs ⟺ HIV infection & slow immune reaction, 

where slow immune reaction describes the mechanism by which HIV leads to immune system failure. 

More generally his reasoning is (p. 88): 

For all x: (Dx ⟺ Mx) & For all x: (Mx ⟺ Sx) ∴ For all x: (Dx ⟺ Sx) 

Bunge’s solution presupposes that the mechanisms causally linking the signs and the disease 

always operate the same way, regardless of the context. In other words, he presupposes a closed 

system, which is not even approximately the case given that medical tests have sensitivities and/or 

specificities varying across contexts and often less than 100%. 

Bunge simply fails to realize that medical (as well as biological and social) observations are never 

“facts” because we deal with open and systems and hence uncertain inferences. 

4.2. RCTs and the truth claim 

We are now investigating Bunge’s claim that RCTs are necessary to infer the truth of a causal 

hypothesis in more detail. To this aim, it is helpful to first review some methodological principles of 

RCTs. A good overview has recently been provided by Deaton and Cartwright [27], and we follow 

their account to a large extent. Without loss of generality we assume that the medical hypothesis to be 

tested in a RCT is a proposition of the form “treatment T is effective” the truth of which is typically 

assessed by measuring some particular outcomes in the randomly allocated treatment and control 

groups. To measure the truth of a medical hypothesis then means to measure the true average 



treatment effect (ATE) of the intervention, where the ATE is the difference between the average 

outcome in the treatment group and the average outcome in the control group.
13

 Assuming a linear 

causal model for the individual treatment effects one could write for an individual outcome 

𝑌𝑖 = 𝛽𝑖𝑇𝑖 + ∑ 𝛾𝑗𝑥𝑖𝑗

𝐽

𝑗=1

. 

Here 𝑌𝑖 is the outcome for patient 𝑖, 𝑇𝑖 is a treatment indicator (𝑇𝑖 = 1 if treatment, 𝑇𝑖 = 0 if control), 

𝛽𝑖 the individual treatment effect for patient 𝑖, and the 𝑥’s are observed or unobserved other linear 

causes of the outcome. By averaging the effects in both treatment (T) and control (C) group and 

subtracting the means one obtains an estimate for the ATE 

𝑌̅𝑇 −  𝑌̅𝐶 = 𝛽̅𝑇 + ∑ 𝛾𝑗(𝑥̅𝑇𝑖𝑗 − 𝑥̅𝐶𝑖𝑗)

𝐽

𝑗=1

  (ATE) 

The major interest in conducting a RCT is on 𝛽̅𝑇 which is the true ATE in case that the averages of the 

other causes are exactly balanced between both groups. Bunge claims that the aim of randomization is 

to bring the error term on the right-hand side of the (ATE) equation as close to zero as possible. 

However, this is not what any RCT can guarantee [24,26]. What randomization actually does is 

guaranteeing that the error term is zero only in expectation. The expectation refers to an infinite 

number of repeated randomizations of the trial sample into treatment and control group – for an 

individual randomization the estimated ATE can be arbitrarily far away from the true ATE. Repeating 

the trial and estimating the ATE many times allows one to estimate a mean ATE and its standard error 

– this is the true benefit of randomization. Contrary to what Bunge claims, therefore, randomization 

will not guarantee that an individual RCT will provide us with an estimate of the ATE that is close to 

the truth. Instead, if there is background knowledge about the main other causes of the outcome one 

would be better of matching patients according to these other causes without randomization. But 

background knowledge is exactly what is omitted by Bunge when he proposes RCTs as the gold 

standard of clinical trials. Deaton and Cartwright put it this way: 

The gold standard or “truth” view does harm when it undermines the obligation of science to 

reconcile RCTs results with other evidence in a process of cumulative understanding. 

The conception of patients as open systems forces us to accept that we can never infer the true 

effect of a treatment through RCTs, even if we would be able to repeat one and the same trial an 

infinite number of times. The reason is that in each repetition, some changes in the environment or 

context in which the RCT is conducted are unavoidable. The best we can therefore do is to seek higher 

and higher confirmation for our hypotheses and determine their evidence against realistic competing 

hypotheses. But these goals are achievable by collecting relevant data across a variety of study types 

of both statistical and mechanistic character. A famous example is the establishment of the hypothesis 

that smoking causes lung cancer that was based on observational and laboratory data, but not on 

RCTs. Surprisingly, Bunge himself has used this example in one of his previous papers [16]: 

For example, since the mid-20th century, it has been known that lung cancer and smoking 

are strongly correlated, but only laboratory experiments on the action of nicotine and tar on 

living tissue have succeeded in testing (and confirming) the hypothesis that there is a definite 

causal link underneath the statistical correlation: we now know definitely that smoking may 

cause lung cancer. 

Note that for Bunge it was knowledge of the mechanisms that confirmed the hypothesis that 

smoking causes lung cancer. However, on our account, the strong correlational data between smoking 

                                                             
13 Actually, the very significance of knowing the average treatment effect for medical practice may be questioned. 

See Subramanian et al. [56] for a brief commentary.   



and lung cancer on its own provided a strong degree of confirmation for the hypothesis that smoking 

causes lung cancer. Knowing the mechanism regarding how smoking may cause lung cancer provided 

an additional, independent confirmation of this hypothesis so that the total confirmation became higher 

than with either the statistical or mechanistic data alone.
14

 However, causation was not established by 

the observational studies alone since the data they provided for a direct causal relationship between 

smoking and lung cancer was interpreted as not providing strong enough evidence compared to 

alternatives such as a “smoking gene” increasing both the tendency to smoke and to develop lung 

cancer.
15

 Only by knowing the carcinogenic mechanisms of tar and nicotine directly linking smoking 

and lung tumorigenesis was the observed correlation to be interpreted as strong data that smoking 

directly causes lung cancer instead of both being due to some third factor. Given our likelihood-based 

account of evidence, which must be comparative, we have three possible ways to compare two 

hypotheses. One could be a comparison between a causal hypothesis and a statistical hypothesis. The 

second could be a comparison between a causal hypothesis with another causal hypothesis. The third 

and final one could be between a statistical and another statistical hypothesis. The current scenario is 

concerned with case one in which a comparison is made between a causal hypothesis and a non-causal 

statistical hypothesis. Given the accumulated data regarding several observational studies on the 

proportion of tar in tobacco, the hypothesis that smoking causes cancer was supported more strongly 

than the hypothesis that smoking and cancer were merely correlated without implying any causal 

connection between them. This evidential relationship between the hypotheses, smoking causes 

cancer, and smoking and cancer are statistically related, given the data, holds independent of what an 

agent believes about those hypotheses and data. Therefore, from the basis of our account of evidence, 

we could say that data provide strong evidential support for the hypothesis that smoking causes cancer 

as against its alternative. So, from the perspectives of both accounts of evidence and confirmation, the 

hypothesis “smoking causes cancer” is more evidentially supported by data than its alternative 

hypothesis as well as it is strongly confirmed. This both-way vindication is possible because of the 

theorem: If two hypotheses are mutually exclusive and jointly exhaustive as well as simple statistical 

hypotheses, then data will provide evidential support for a hypothesis over its alternative if and only if 

data will confirm the hypothesis to some degree: 

[Pr(D|H)/Pr(D|¬H)] > 1 iff Pr(H|D) > Pr(H). 

Another example, also mentioned by Bunge himself [1, p. 147], is appendectomy to treat 

appendicitis. In this case, conducting a RCT with a control group receiving sham operation would not 

only be unethical, but also not necessary to highly confirm the hypothesis that appendectomy is an 

effective treatment. The reason is that the mechanism (infection of the appendix) and the way to shut it 

down (by removing the appendix) are very well known. This example is noteworthy since it could 

serve to illustrate that a causal hypothesis may be established by knowledge of mechanisms alone 

without the necessity for statistical data.
16

 A third example is the treatment of the rare disease glucose 

transporter 1 (GLUT1) deficiency syndrome through prescribing a high-fat low carbohydrate 

ketogenic diet: despite only “low level” clinical evidence available, a recent consensus guideline 

recommends ketogenic diets as the treatment of choice for GLUT1 deficiency syndrome mainly based 

                                                             
14 This is a consequence of the so-called “variety-of-evidence thesis” [42,43]. On our account, this is a slight 

misnomer. We call this the “variety-of-data thesis”. 
15 See chapter 5 in Judea Pearl’s “Book of Why” [57] for a detailed historical summary on how causation between 

smoking and lung cancer became established, including the argument that a “smoking gene” might be the 

underlying confounding factor.   
16 The example is a counter-example to the Russo-Williamson thesis according to which both statistical and 

mechanistic evidence is required to establish a causal claim [58]. See also Claveau [59] for another counter-

example to the Russo-Williamson thesis from the social sciences. 



on the physiological mechanism that ketone bodies are able to cross the blood-brain barrier 

independent from GLUT1, providing an alternative fuel for the brain instead of glucose [39].
17

 

As these examples show, RCTs are neither necessary nor sufficient for determining whether some 

factors cause a disease or an intervention is effective. Rather, causal claims may be established based 

on a variety of data from mechanistic, observational and other study types that conventionally sit 

below RCTs in the “evidence hierarchy”. We note that the difference between mechanistic and 

statistical (or probabilistic) data is not one between qualitative and quantitative data, nor one between 

observations stemming from laboratory versus clinical studies. In fact, mechanistic hypothesis may be 

framed as statistical models and applied to clinical data. For example, in radiotherapy mathematical 

models describing the mechanisms of cell killing through DNA damage caused by ionizing radiation 

are frequently utilized. They may be used clinically to convert between different fractionation schemes 

having the same biological effect or for predicting radiotherapy outcomes such as tumor control and 

normal tissue complication probability [40,41]. In our interpretation, the main distinction between 

mechanistic and statistical data is that the former can explain why the latter are observed. In the 

radiotherapy example, the mechanism itself is stochastic as it describes the killing of cells which obeys 

statistical laws; however, it also explains why higher radiation doses result in higher probability of 

tumor control, and even allows the derivation of the mathematical form of the dose-response 

relationship [40].  

Each causal claim has both probabilistic and mechanistic consequences that may be observed or 

not. Therefore, either mechanistic or statistical data are able to confirm a causal claim to some degree, 

whereas data from both sources provide even stronger confirmation according to the “variety-of-

evidence thesis” [42,43]. Mechanisms can also serve as background knowledge to increase the 

evidence of a causal hypothesis over a merely statistical one; this was the case in the smoking and lung 

cancer example. Finally, the optimal methodology for establishing a causal claim may depend on the 

exact type of hypothesis posed, e.g., the claim that an intervention worked in some setting versus the 

claim that it works for a particular patients, or a claim about a harmful effect [28]. 

4.3. RCTs and background knowledge 

For any researcher, prior or background knowledge plays a crucial role for the evaluation of 

causal hypotheses. This is naturally captured in our account of evidence and confirmation described in 

section 4.1, but not in Bunge’s account relying on RCTs as necessary methods for hypothesis testing. 

Andrew Gelman [44] has pointed out that using tools such as randomization and p-values to enforce 

scientific rigor misses the most important point of causal inferences, which is interpreting and 

understanding the results within the context of background knowledge. RCTs are not designed to rely 

on background knowledge which “is an advantage when persuading distrustful audiences, but it is a 

disadvantage for cumulative scientific progress, where prior knowledge should be built upon, not 

discarded” [27]. Thus, demanding the conduct of a RCT as a necessary condition for confirming a 

causal hypothesis, as Bunge does, violates his own postulates (S4) and (S5), because it discourages 

grouping hypotheses into medical theories and makes only minimal assumptions about the validity of 

other benchmark items, i.e., background knowledge. Judea Pearl has emphasized that if an agent is 

able to use her background knowledge in order to frame a causal model of reality, RCTs are no longer 

the only means to estimate the effect of interventions. In this case observational studies can do just as 

good with two additional advantages: their conduction is often more practical, and they study 

populations in their natural environment, instead of an artificial environments created by experimental 

                                                             
17  Ketone bodies are produced under conditions of low insulin levels such as during fasting or very low 

carbohydrate intake; in this respect, ketogenic diets can mimic fasting without necessarily restricting energy 

intake. Ketone bodies are transported through the blood-brain barrier by monocarboxylate transporters; this 

transport mechanism is therefore completely insulin- and GLUT-independent.  



protocols [45]. It is also well known that RCTs are not immune to bias, so that poorly designed RCTs 

may provide less certain results than well designed observational studies [27]. Background knowledge 

of the structure and mechanisms in the system under study is also important for meaningfully 

interpreting RCT results, or generally results from any statistical study. Deaton and Cartwright 

illustrate this using Bertrand Russel’s famous chicken example [27, p.11]: 

The bird infers, on repeated evidence, that when the farmer comes in the morning, he feeds 

her. The inference serves her well until Christmas morning, when he wrings her neck and 

serves her for dinner. Though this chicken did not base her inference on an RCT, had we 

constructed one for her, we would have obtained the same result that she did. Her problem 

was not her methodology, but rather that she did not understand the social and economic 

structure that gave rise to the causal relations that she observed. 

The importance of taking background knowledge into account also arises each time that results 

are discordant either between individual RCTs or between a RCT and another study type. From a 

purely empiricist standpoint ignoring what we know about the interplay between an intervention, the 

context under which it is applied and its mechanisms, such discrepancies are usually explained by 

invoking certain quality criteria based on design and statistical arguments [46]. For example, if there is 

discrepancy between RTCs and observational studies, results from the former are usually taken to 

“override” results from the latter. However, acknowledging that observing an intervention effect 

presupposes some mechanisms at work whose activation in turn may be context-dependent opens up 

much more possibilities for interpreting negative study results or discrepancies between study types. In 

particular, studies investigating an intervention may vary in context, in the mechanism that is exerted, 

or in both simultaneously [46]. An example for the latter situation is the supplementation of 

antioxidant vitamins for preventing cardiovascular disease which have been declared ineffective based 

on mostly negative findings in RCTs, although evidence from observational studies showed preventive 

effects. Connelly [46] emphasizes the realist standpoint that different antioxidant vitamins may act via 

different mechanisms that in turn may depend on the age of an individual and whose effects may only 

be observed over much longer follow-up periods than usually used in RCTs. He concludes:  

It seems that an alternative realistic perspective on this question [whether antioxidant 

vitamins can prevent cardiovascular disease] is again ignored in favour of what purports to 

be an unassailable scientific observation of the results from RCTs. Here, once more, the 

effect of ignoring differences in mechanisms and contexts may be to close down research in 

this area prematurely. 

By claiming that only RCTs can establish or not establish the efficacy of medical interventions, 

both Bunge and EBM discourage realist thinking about mechanisms and contexts whenever RCT 

results are available. As the antioxidant example shows, such thinking may preclude scientific 

progress, especially when interventions and effects are related via complex mechanisms. This is 

despite EBM explicitly stating the importance of evaluating “the totality of evidence” as one of its 

epistemological principles [19]. Maybe this is also the reason why Bunge downgrades complementary 

and alternative medicine (CAM) as “unscientific”, because by its very nature CAM works with 

complex interventions differently from simple drug administrations for which an evidence hierarchy 

with RCTs on top appears inadequate [29]. While for Bunge mechanisms are essential for 

understanding empirical phenomena through what he calls mechanismic explanation [16], he restricts 

their main epistemological role within the context of scientific medicine to “boosting” the 

confirmation of causal hypotheses provided by RCTs – in fact, no mention is made in his book how 

mechanisms may be used in conjunction with methodologies other than RCTs. In our opinion, this 

underestimates the role mechanisms should play in medical hypothesis testing and treatment design. 

As the examples of appendectomy and GLUT1 deficiency syndrome given in subsection 4.2 show 



there are situations where data of mechanisms become equally or more important than statistical data 

for establishing a causal claim of treatment efficacy. 

As another example, consider the establishment of a causal relationship between benzo[a]pyrene 

exposure and carcinogenesis in humans despite a lack of clinical data. Wilde and Parkkinen [47] have 

argued that one is justified in believing that benzo[a]pyrene causes cancer in humans because animal 

studies have provided evidence for both the robustness of the causal association and the mechanisms 

at work. In this example, knowledge of mechanisms provides the basis for the extrapolation of study 

results across different contexts, or more generally for building a causal theory that can then be applied 

to varying contexts. Such a theory resting on mechanismic explanation is much more flexible than 

individual hypotheses. In particular, predictions can be made from one context to another. At the same 

time, once particular mechanisms have confirmed a causal theory, “we should attempt to eliminate 

alternative explanations by testing the potential effects of these mechanisms, particularly in contexts 

other than the one where the theory was created” [48]. In other words, we should try to establish 

evidence that the mechanisms that are part of our theory are at work across a variety of contexts. To 

this aim, even case studies are valuable tools because they usually study individuals within more 

natural environments different from the ones artificially created by clinical study protocols and at the 

same time perform more thorough measurements than epidemiological studies. 

5. Conclusions 

Mario Bunge has provided a unique treatise of the philosophy of medicine which is based on a 

realist-systemic ontology. In Bunge’s view, the world consists of systems, which in turn consist of 

components, structures, mechanisms and an environment. These four constituents should be taken into 

account when studying any individual system. Bunge supports the methodology of EBM which 

considers RCTs to possess the most rigorous study design and to provide the best evidence for 

establishing the truth of causal hypotheses. Both Bunge and EBM thereby adopt a Humean view of 

causality in which causes and effects are constant conjunctions of events which in Bunge’s ontology 

are mediated through mechanisms. However, as we have argued in this paper, the view of RCTs as the 

best or even the only methodology for achieving knowledge about the efficacy of medical 

interventions is incompatible with a realist-systemic ontology. The reason is that the Humean view of 

causality only holds in closed systems, but patients and study populations are heterogonous open 

systems, and even the most rigorously conducted RCTs cannot guarantee closure of the system under 

study. This implies that the Humean view of causality cannot be sustained in medicine. Hence, 

Bunge’s claim that RCTs are necessary to establish the truth of the efficacy of an intervention must be 

rejected. 

Another consequence of the failure of Bunge’s and EBM’s Humean view of causality is that we 

need a probabilistic account of both evidence and confirmation. We have provided such accounts in 

this paper, building on the subjective Bayesian concept of confirmation and the objective concept of a 

likelihood ratio or Bayes factor to compare two competing hypotheses. Our Bayesian account of 

evidence is compatible with a realist-systemic ontology insofar as evidence is conceived as an 

objective function of the data generating process, which takes place via observed or unobserved 

mechanisms within the system under study. Finally, we maintain that Bunge’s general critique of 

Bayesianism is based on wrong interpretations of central concepts of probability, as the AIDS example 

discussed in section 4.1 has shown. 

We agree with Bunge that statistical data alone are not sufficient for causal reasoning; instead, 

what is needed is a causal hypothesis or causal model which can only be arrived at by thinking about 

structures and mechanisms. However, Bunge must accept the critique of overrating the merits of RCTs 

since he fails to account for the epistemological role of both already established mechanisms and 

statistical associations observed in different contexts. In fact, the environment which determines 



whether causal effects will emerge or not, is almost completely neglected in his account of medical 

hypothesis testing. His conception of an evidence hierarchy is at best unnecessary, at worst however 

an obstacle to scientific progress in the design and evaluation of medical treatments for individual 

patients. An analogous proposition applies to EBM with its various forms of methodological 

hierarchies [28]. The role of background knowledge of both mechanisms and the stability of statistical 

regularities across various contexts must be taken into account, which requires a variety of research 

methodologies. For example, critical realism, which has an ontology similar to Bunge’s systemism
18

, 

embraces a multitude of methodologies co-existing along each other, with no particular general 

preference for one methodology over any other [49,50]. We, along with an increasing number of 

critical philosophers and medical methodologists [30], encourage a similar approach in medicine, 

where “[t]he important point is not whether a study is randomized or not, but whether it uses a method 

well suited to answer a question and whether it implements this method with optimal scientific rigor” 

[29, p.5]. This implies considering results from preclinical and theoretical modelling studies, non-

randomized cohort studies, observational and case studies along with those from RCTs (if available) in 

an integrated or “circular” [29] rather than dogmatic-hierarchical framework, evaluating evidence 

based on those methodologies that best provide the data relevant to the particular hypothesis under 

investigation. 
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