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Progress and Gravity:
Overcoming Divisions Between General Relativity and

Particle Physics and Between Physics and HPS

J. BRIAN PITTS

13.1 Introduction: Science and the Philosophy of Science

The ancient “problem of the criterion” is a chicken-or-the-egg problem regarding knowl-
edge and criteria for knowledge, a problem that arises more specifically in relation to
science and the philosophy of science. How does one identify reliable knowledge without
a reliable method in hand? But how does one identify a reliable method without reliable
examples of knowledge in hand? Three possible responses to this problem were entertained
by Roderick Chisholm: one can be a skeptic, or identify a reliable method(s) (“method-
ism”), or identify reliable particular cases of knowledge (“particularism”) (Chisholm,
1973). But why should the best resources be all of the same type? Might not some methods
and some particular cases be far more secure than all other methods and all other particu-
lar cases? Must anything be completely certain anyway? Why not mix and match, letting
putative examples and methods tug at each other until one reaches (a personal?) reflective
equilibrium?

This problem arises for knowledge and epistemology, more specifically for science and
the philosophy of science, and somewhere in between, for inductive inference. Reflective
equilibrium is Nelson Goodman’s method for induction (as expressed in John Rawls’s
terminology). One need not agree with Goodman about deduction or take his treatment of
induction to be both necessary and sufficient to benefit from it. He writes:

A rule is amended if it yields an inference we are unwilling to accept; an inference is rejected if it
violates a rule we are unwilling to amend. The process of justification is the delicate one of making
mutual adjustments between rules and accepted inferences; and in the agreement achieved lies the
only justification needed for either.

All this applies equally well to induction. An inductive inference, too, is justified by conformity
to general rules, and a general rule by conformity to accepted inductive inferences. Predictions are
justified if they conform to valid canons of induction; and the canons are valid if they accurately
codify accepted inductive practice. (Goodman, 1983, p. 64, emphasis in the original)

Most scientists and (more surprisingly) even many philosophers do not take Hume’s prob-
lem of induction very seriously, although philosophers talk about it a lot. As Colin Howson
notes, philosophers often declare it to be insoluble and then proceed as though it were
solved (Howson, 2000). I agree with Howson and Hans Reichenbach (Reichenbach, 1938,
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264 J. Brian Pitts

pp. 346, 347) that one should not let oneself off the hook so easily. That seems especially
true in cosmology (Norton, 2011). Whether harmonizing one’s rules and examples is suf-
ficient is less clear to me than it was to Goodman, but such reflective equilibrium surely is
necessary – although difficult and perhaps rare.

My present purpose, however, is partly to apply Goodman-esque reasoning only to a spe-
cial case of the problem of the criterion, as well as to counsel unification within physical
inquiry. What is the relationship between philosophy of science (not epistemology in gen-
eral) on the one hand, and scientific cosmology and its associated fundamental physics,
especially gravitation and space-time theory (not knowledge in general) on the other?
Neither dictation from philosopher-kings to scientists (the analogue of methodism) nor
complete deference to scientists by philosophers (the analogue of particularism) is Good-
man’s method. It is not popular for philosophy to give orders to science, but it once was.
The reverse is more fashionable, a form of scientism or at least a variety of naturalism. I
hope to show by examples how sometimes each side should learn from the other.

While Goodman’s philosophy has a free-wheeling relativist feel that might make many
scientists and philosophers of science nervous, one finds similar views expressed by a law-
and-order philosopher of scientific progress, Imre Lakatos. According to him, we should
seek

a pluralistic system of authority, partly because the wisdom of the scientific jury and its case law
has not been, and cannot be, fully articulated by the philosopher’s statute law, and partly because
the philosopher’s statute law may occasionally be right when the scientists’ judgment fails. (Lakatos,
1971, p. 121)

Thus there seems to be no irresistible pull toward relativism in seeking reflective
equilibrium rather than picking one side always to win automatically.

13.2 Healing the GR vs. Particle Physics Split

A second division that should be overcome to facilitate the progress of knowledge about
gravitation and space-time is the general relativist vs. particle physicist split. Carlo Rovelli
discusses

. . . the different understanding of the world that the particle physics community on the one hand and
the relativity community on the other hand, have. The two communities have made repeated and
sincere efforts to talk to each other and understand each other. But the divide remains, and, with the
divide, the feeling, on both sides, that the other side is incapable of appreciating something basic and
essential. . . . (Rovelli, 2002)

This split has a fairly long history going back to Einstein’s withdrawing from mainstream
fundamental physics from the 1920s – that largely being quantum mechanics, relativistic
quantum mechanics and quantum field theory. A further issue pertains to the gulf between
how Einstein actually found his field equations (as uncovered by recent historical work
(Renn, 2005; Renn and Sauer, 1999, 2007)) and the much better known story that Einstein
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Progress and Gravity 265

told retrospectively. Work by Jürgen Renn et al. has recovered the importance of Einstein’s
“physical strategy” involving a Newtonian limit, an analogy to electromagnetism, and a
quest for energy-momentum conservation; this strategy ran alongside the better advertised
mathematical strategy emphasizing his principles (generalized relativity, general covari-
ance, equivalence, etc.). Einstein’s reconstruction of his own past is at least in part a
persuasive device in defense of his somewhat lonely quest for unified field theories (van
Dongen, 2010). Readers with an eye for particle physics will not miss the similarity to
the later successful derivations of Einstein’s equations as the field equations of a massless
spin-2 field assumed initially to live in flat Minkowski space-time (Feynman et al., 1995),
in which the resulting dynamics merges the gravitational potentials with the flat space-
time geometry such that only an effective curved geometry appears in the Euler–Lagrange
equations. One rogue general relativist has recently opined:

HOW MUCH OF AN ADVANTAGE did Einstein gain over his colleagues by his mistakes? Typi-
cally, about ten or twenty years. For instance, if Einstein had not introduced the mistaken Principle
of Equivalence and approached the theory of general relativity (GR) via this twisted path, other
physicists would have discovered the theory of general relativity some twenty years later, via a path
originating in relativistic quantum mechanics. (Ohanian, 2008, p. 334, capitalization in the original).

It is much clearer that these derivations work to give Einstein’s equation than it is what
they mean. Do they imply that one need not and perhaps should not ever have given up flat
space-time? Do they, on the contrary, show that theories of gravity in flat space-time could
not succeed, because their best effort turns out to give curved space-time after all (Ehlers,
1973)? Such an argument is clearly incomplete without contemplation of massive spin-2
gravity (Freund et al., 1969; Ogievetsky and Polubarinov, 1965). But it might be persuasive
if massive spin-2 gravity failed – as it seemed to do roughly when Ehlers wrote (not that
he seems to have been watching). But since 2010 massive spin-2 gravity seems potentially
viable again (de Rham et al., 2011; Hassan and Rosen, 2011; Maheshwari, 1972) (though
some new issues exist). Do the spin-2 derivations of Einstein’s equations suggest a conven-
tionalist view that there is no fact of the matter about the true geometry (Feynman et al.,
1995, pp. 112, 113)? Much of one’s assessment of conventionalism will depend on what
one takes the modal scope of the discussion to be: Should one consider only one’s best
theory (hence the question is largely a matter of exegeting General Relativity, which will
favor curved space-time), or should one consider a variety of theories? According to John
Norton, the philosophy of geometry is not an enterprise rightly devoted to giving a spurious
air of necessity to whatever theory is presently our best (Norton, 1993, pp. 848, 849). Such
a view suggests the value of a broader modal scope for the discussion than just our best
current theory. On the other hand, the claim has been made that the transition from Special
Relativity to General Relativity is as unlikely to be reversed as the transition from classi-
cal to quantum mechanics (Ehlers, 1973, pp. 84, 85). If one aspires to proportion belief
to evidence, that is a startling claim. The transition from classical to quantum mechanics
was motivated by grave empirical problems; there now exist theorems (no local hidden
variables) showing how far any empirically adequate physics must diverge from classical.
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266 J. Brian Pitts

But a constructive derivation of Einstein’s equations from a massless spin-2 shows that one
can naturally recover the phenomena of GR without giving up a special relativistic frame-
work in a sense. The cases differ as twilight and day. Ehlers’s remarks are useful, however,
in alerting one for Hegelian undercurrents or other doctrines of inevitable progress in the
general relativity literature. A classic study of doctrines of progress is Bury (1920).

13.3 Bayesianism, Simplicity, and Scalar vs. Tensor Gravity

While Bayesianism has made considerable inroads in the sciences lately, it is helpful to
provide a brief sketch before casting further discussion in such terms. I will sketch a rather
simple version – one that might well be inadequate for science, in which one sometimes
wants uniform probabilities over infinite intervals and hence might want infinitesimals, for
example. Abner Shimony’s tempered personalism discusses useful features for a scientifi-
cally usable form of Bayesianism, including open-mindedness (avoiding prior probabilities
so close to 0 or 1 that evidence cannot realistically make much difference (Shimony, 1970))
and assigning non-negligible prior probabilities to seriously proposed hypotheses.

With such qualifications in mind, one can proceed to the sketch of Bayesianism. One
is not equally sure of everything that one believes, so why not have degrees of belief, and
make them be real numbers between 0 and 1? Thus one can hope to mathematize logic in
shades of gray via the probability calculus. Bayes’s theorem can be applied to a theory T
and evidence E:

P(T|E) = P(T)
P(E|T)
P(E)

. (13.1)

One wakes up with degrees of belief in all theories (!), “prior probabilities”. One opens
one’s eyes, beholds evidence E, and goes to bed again. While asleep one revises degrees of
belief from priors P(T) to posterior probabilities P(T|E). Today’s P(T|E) becomes tomor-
row’s prior P(T)′. Then one does the same thing tomorrow, getting some new evidence E′,
etc. Now the priors P(T) might be partly subjective. If there are no empirically equivalent
theories and everyone is open-minded, then eventually evidence should bring convergence
of opinion over time (though maybe not soon).

A further wrinkle in the relation between evidence and theory comes from looking at
the denominator of Bayes’s theorem, P(E) = P(E|T)P(T) + P(E|T1)P(T1) + P(E|T2)

P(T2)+ . . . . While one might have hoped to evaluate evidence theory T simply in light of
evidence E, this expansion of P(E) shows that such an evaluation is typically undefined,
because one must spread degree of belief 1 − P(T) among the competitors T1, T2, etc.
Hence the predictive likelihoods P(E|T1), etc., subjectively weighted, appear unbidden in
the test of T by E. Theory testing generically is comparative, making essential reference
to rival theories. This fact is sometimes recognized in scientific practice, but Bayesianism
can alert one to attend to the question more systematically.

Scientists and philosophers tend to like simplicity. Simplicity might not be objective, but
there is significant agreement regarding scientific examples. That is a good thing, because
there are lots of theories, especially lots of complicated ones, way too many to handle.
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If degrees of belief are real numbers (not infinitesimals), then normalization �iPi = 1
requires lots of 0s and or getting ever closer to 0 on some ordering (Earman, 1992, pp.
209, 210). There is no clear reason for prior plausibility to peak away from the simple end.
Plausibly, other things equal, simpler theories are more plausible a priori, getting a higher
prior P(T) in a Bayesian context. Such considerations are vague, but the alternatives are
even less principled.

One can now apply Bayesian considerations to gravitational theory choice in the 1910s.
One recalls that Einstein had some arguments against a scalar theory of gravity, which
motivated his generalization to a tensor theory. Unfortunately they do not work. As
Domenico Giulini has said,

On his way to General Relativity, Einstein gave several arguments as to why a special-relativistic
theory of gravity based on a massless scalar field could be ruled out merely on grounds of theoretical
considerations. We re-investigate his two main arguments, which relate to energy conservation and
some form of the principle of the universality of free fall. We find such a theory-based a priori
abandonment not to be justified. Rather, the theory seems formally perfectly viable, though in clear
contradiction with (later) experiments. (Giulini, 2008, emphasis in original)

Scalar (spin-0) gravity is simpler than rank-2 tensor (spin-2). Having one potential is
simpler than having ten, especially if they are self-interacting. With Einstein’s help, Gunnar
Nordström eventually proposed a scalar theory that avoided the theoretical problems men-
tioned by Giulini. Given simplicity considerations, Nordström’s theory was more probable
than Einstein’s a priori: P(TN) > P(TGR). Einstein’s further criticisms are generally mat-
ters of taste. So prior to evidence for General Relativity, it was more reasonable to favor
Nordström’s theory. As it actually happened, Einstein’s “final” theory and the evidence
from Mercury both appeared in November 1915, leaving little time for this logical moment
in actual history. Einstein’s earlier Entwurf theory (Einstein and Grossmann, 1996) could
be faulted for having negative-energy degrees of freedom and hence likely being unstable
(a problem with roots in Lagrange and Dirichlet (Morrison, 1998)), although apparently
no one did so.

Where was the progress of scientific knowledge–truth held for good reasons? Mercury’s
perihelion gave non-coercive evidence confirming GR and disconfirming Nordström’s the-
ory. It was possible to save Nordström’s theory using something like dark matter, matter
(even if not dark – Seeliger’s zodiacal light) of which the mass had been neglected (Rose-
veare, 1982). Hence there was scope for rational disagreement because Nordström’s theory
was antecedently more plausible

P(TN) > P(TGR)

but evidence favored Einstein’s non-coercively

0 < P(EMerc|TN) < P(EMerc|TGR).

The scene changed in 1919 with the bending of light, which falsified Nordström’s theory:
P(EL|TN) = 0. There were not then other plausible theories that predicted light bending,
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268 J. Brian Pitts

so P(EL|TGR) ≈ 1 >> P(EL). It is possible to exaggerate the significance of this result,
as happened popularly but perhaps less so academically (Brush, 1989), where a search for
plausible rival theories that also predicted light bending was made. (Bertrand Russell may
have considered Whitehead’s to be an example (Russell, 1927, pp. 75–80).) Unfortunately
many authors wrongly take Einstein’s arguments against scalar gravity seriously (Giulini,
2008). In the long run one does not make reliable rational progress by siding with genius
as soon as possible: Einstein made many mistakes (often correcting them himself), some of
them lucky (Ohanian, 2008) (such as early rejection of scalar theories), followed by barren
decades. Given this Bayesian sketch, it was rational to prefer GR over Nordström’s scalar
theory only when evidence from Mercury was taken into account, and not necessarily even
then. The bending of light excluded scalar theories but did not exclude possible rival tensor
theories.

13.4 General Relativity Makes Sense About Energy

Resolving conceptual problems is a key part of scientific progress (Laudan, 1977). In
the 1910s and again in the 1950s controversy arose over the status of energy-momentum
conservation laws of General Relativity. Given Einstein’s frequent invocation of energy-
momentum conservation in his process of discovery leading to General Relativity (Brading,
2005; Einstein and Grossmann, 1996; Renn and Sauer, 2007, 1999), as well as his retro-
spective satisfaction (Einstein, 1916), this is ironic. Partly in response to Felix Klein’s
dissatisfaction, Emmy Noether’s theorems appeared (Noether, 1918). Her first theorem
says that a rigid symmetry yields a continuity equation. Her second says that a wig-
gly symmetry yields an identity among Euler–Lagrange equations, making them not all
independent. For General Relativity there are four wiggly symmetries, yielding the con-
tracted Bianchi identities ∇μGμ

ν ≡ 0. In the wake of the conservation law controversies
there emerged the widespread view that gravitational energy exists, but it “is not local-
ized”. This phrase appears to mean that gravitational energy is not anywhere in particular,
although descriptions of it often do have locations. That puzzling conclusion is motivated
by mathematical results suggesting that where gravitational energy is depends on an arbi-
trary conventional choice (a coordinate system), and other results that the total energy/mass
does not.

While the energy non-localization lore is harmless enough as long as one knows the
mathematical results on which it is based, it has self-toxifying quality. Having accepted that
gravitational energy is not localized, one is likely to look askance at the Noether-theoretic
calculations that yield it: pseudotensors. The next generation of textbooks might then dis-
pense with the calculations while retaining the lore verbally. Because the purely verbal lore
is mystifying, at that point one formally gives license to a variety of doubtful conclusions.
Among these are that because General Relativity lacks conservation laws, it is false –
a claim at the origins of the just-deceased Soviet/Russian academician A. A. Logunov’s
high-profile dissent (Logunov and Folomeshkin, 1977). One also hears (for references see
Pitts (2010)) that the expansion of the universe, by virtue of violating conservation laws,
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is false (a special case of Logunov’s claim). One hears that the expansion of the universe
is a resource for creation science by providing a heat sink for energy from rapid nuclear
decay during Noah’s Flood. Finally, one hears that General Relativity is more open to the
soul’s action on the body than is earlier physics, because the soul’s action violates energy
conservation, but General Relativity already discards energy conservation anyway. That
last claim is almost backwards, because Einstein’s equations are logically equivalent to
energy-momentum conservation laws (Anderson, 1967). (If one wants souls to act on bod-
ies, souls had better couple to gravity also.) The question whether vanishing total energy
of the universe (given certain topologies) would permit it to pop into being spontaneously
is also implicated.

Given that Noether’s theorems – the first, not just the second – apply to GR, can one
interpret the continuity equations sensibly and block the unfortunate inferences? The
Noether operator generalizes canonical stress-energy tensor to give conserved quanti-
ties due to symmetry vector fields ξμ (Bergmann, 1958; Goldberg, 1980; Sorkin, 1977;
Szabados, 1991; Trautman, 1962). For simpler theories than GR, the Noether operator
is a weight 1 tangent vector density T

μ
ν ξ

ν , so the divergence of the current ∂μ(T
μ
ν ξ

ν)

is tensorial (equivalent in all coordinate systems) and, for symmetries ξν , there is con-
servation ∂μ(T

μ
ν ξ

ν) = 0. GR (the Lagrangian density, not the metric!) has uncountably
many ‘rigid’ translation symmetries xμ → xμ + cμ, where cμ,ν = 0, for any coordinate
system, preserving the action S = ∫

d4xL. These uncountably many symmetries yield
uncountable conserved energy-momentum currents. Why can they not all be real? The
lore holds that because there are infinitely many currents, really there are not any. But
just because it is infinite does not mean it is 0 (to recall an old phrase). Getting ∞ = 0
requires an extra premise, to be uncovered shortly. For GR, the Noether operator is a
conserved but non-tensorial differential operator on ξ , depending on ∂ξ also. Hence one
obtains coordinate-dependent results, with energy density vanishing at an arbitrary point,
etc., the usual supposed vices of pseudotensors. If one expects only one energy-momentum
(or rather, four), it should be tensorial, with the transformation law relating faces in dif-
ferent coordinates. But Noether tells us that there are uncountably many rigid translation
symmetries.

If one simply “takes Noether’s theorem literally” (Pitts, 2010) (apparently novelly,
although Einstein and Tolman (Tolman, 1930) said nice things about pseudotensors), then
uncountably many symmetries imply uncountably many conserved quantities. How does
one get∞ = 0? By assuming that the infinity of conserved energies are all supposed to be
faces of the same conserved entity with a handful of components – the key tacit premise
of uniqueness. Suppose that one is told in Tenerife that “George is healthy” and “Jorge
está enfermo” (is sick). If one expects the two sentences to be equivalent under transla-
tion (analogous to a coordinate transformation), then one faces a contradiction: George is
healthy and unhealthy. But if George and Jorge then walk into the room together, there
is no tension: George �= Jorge. An expectation of uniqueness underlies most objections
to pseudotensors, but it is unclear what justifies that expectation. Making more sense of
energy conservation makes its appearance in Einstein’s physical strategy in finding his field
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270 J. Brian Pitts

equations less ironic. Indeed, conservation due to gauge invariance is a key step in spin-2
derivations, which improve on Einstein’s physical strategy (Einstein and Grossmann, 1996;
Deser, 1970; Pitts and Schieve, 2001). Noether commented on converses to her theorems
(Noether, 1918); one should be able to derive Einstein’s equations from the conservation
laws, much as the spin-2 derivations do using symmetric gravitational stress-energy (hence
perhaps needing Belinfante–Rosenfeld technology).

But what is the point of believing in gravitational energy unless it does energetic things?
Can it heat up a cup of coffee? Where is the physical interaction? Fortunately these ques-
tions have decent answers: gravitational energy is roughly the non-linearity of Einstein’s
equations, so it mediates the gravitational self-interaction.

Why did Hermann Bondi change from a skeptic to a believer in energy-carrying gravi-
tational waves (Bondi, 1957)?1 Given a novel plane wave solution of Einstein’s equations
in vacuum, his equation (2), he wrote:

there is a non-flat region of space between two flat ones, that is, we have a plane-wave zone of finite
extent in a non-singular metric satisfying Lichnerowicz’s criteria [reference suppressed]. Consider
now a set of test particles at rest in metric (2) before the arrival of the wave. (Bondi, 1957)

After the passage of the wave, there is relative motion.

Clearly, this system of test particles in relative motion contains energy that could be used, for
example, by letting them rub against a rigid friction disk carried by one of them. (Bondi, 1957)

This argument has carried the day with most people since that time: gravitational energy-
transporting waves exist and do energetic things.

This argument has roots in Feynman (Anonymous, 2015) (DeWitt, 1957, p. 143) (Feyn-
man et al., 1995, xxv, xxvi) Kennefick (2007). John Preskill and Kip Thorne, drawing
partly on unpublished sources, elaborate:

At Chapel Hill, Feynman addressed this issue in a pragmatic way, describing how a gravitational
wave antenna could in principle be designed that would absorb the energy “carried” by the wave
[DeWi 57, Feyn 57]. In Lecture 16, he is clearly leading up to a description of a variant of this
device, when the notes abruptly end: “We shall therefore show that they can indeed heat up a wall,
so there is no question as to their energy content.” A variant of Feynman’s antenna was published
by Bondi [Bond 57] shortly after Chapel Hill (ironically, as Bondi had once been skeptical about the
reality of gravitational waves), but Feynman never published anything about it. The best surviving
description of this work is in a letter to Victor Weisskopf completed in February, 1961 [Feyn 61].
(Feynman et al., 1995, p. xxv)

Gravitational energy in waves exists in GR, and one of the main objections to local-
ization can be managed by taking Noether’s theorem seriously: there are infinitely many
symmetries and energies. Another problem is the non-uniqueness of the pseudotensor,
which one might address with either a best candidate (as in Joseph Katz’s work) or a phys-
ical meaning for the diversity of them in relation to boundary conditions (James Nester

1 I thank Carlo Rovelli for mentioning Bondi.
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Progress and Gravity 271

et al.). Even scalar fields have an analogous problem Callan et al. (1970). With hope
there as well, energy in GR, although still in need of investigation, is not clearly a serious
conceptual problem anymore. That is scientific progress à la Laudan.

13.5 Change in Hamiltonian General Relativity

Supposedly, change is missing in Hamiltonian General Relativity (Earman, 2002). That
seems problematic for two reasons: change is evident in the world, and change is evident in
Lagrangian GR in that most solutions of Einstein’s equations lack a time-like Killing vector
field (Ohanian and Ruffini, 1994, p. 352). A conceptual problem straddling the internal
vs. external categories is “empirical incoherence”, being self-undermining. According to
Richard Healey,

[t]here can be no reason whatever to accept any theory of gravity. . . which entails that there can be
no observers, or that observers can have no experiences, some occurring later than others, or that
there can be no change in the mental state of observers, or that observers cannot perform different
acts at different times. It follows that there can be no reason to accept any theory of gravity... which
entails that there is no time, or no change. (Healey, 2002, p. 300)

Hence accepting the no-change conclusion about Hamiltonian GR would undermine rea-
sons to accept Hamiltonian GR. Change in the world is safe. But what about the surprising
failure of Hamiltonian–Lagrangian equivalence?

A key issue involves where one looks for change, and relatedly, one what means
by “observables”. According to Earman (who would not dispute the point about the
scarcity of solutions with time-like Killing vectors), “[n]o genuine physical magni-
tude countenanced in GTR changes over time” (Earman, 2002). Since the lack of
time-like Killing vectors implies that the metric does change, clearly genuine physi-
cal magnitudes must be scarce, rarer than tensors. Tim Maudlin appeals to change in
solutions to Einstein’s equations: “stars collapse, perihelions precess, binary star sys-
tems radiate gravitational waves. . . ” but “a sprinkling of the magic powder of the
constrained Hamiltonian formalism has been employed to resurrect the decomposing
flesh of McTaggart. . . ” (Maudlin, 2002). Maudlin’s appeal to common sense and Ein-
stein’s equations is helpful, as is Karel Kuchař’s (Kuchař, 1993), but one needs more
detail, motivation and (in light of Kuchař’s disparate treatments of time and space)
consistency.

Fortunately the physics reveals a relevant controversy, with reformers recovering
Hamiltonian–Lagrangian equivalence (Castellani, 1982; Gràcia and Pons, 1988; Mukunda,
1980; Pons and Salisbury, 2005; Pons et al., 1997; Pons and Shepley, 1998; Pons et al.,
2010; Sugano et al., 1986). Hamiltonian–Lagrangian equivalence was manifest originally
(Anderson and Bergmann, 1951; Rosenfeld, 1930; Salisbury, 2010); its loss needs study.
In constrained Hamiltonian theories (Sundermeyer, 1982), some canonical momenta are
(in simpler cases) just 0 due to independence of L from some q̇i; these are “primary con-
straints”. In many cases of interest (including electromagnetism, Yang–Mills fields, and
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272 J. Brian Pitts

General Relativity), some functions of p, q, ∂ip, ∂iq, ∂j∂iq are also 0 in order to preserve the
primary constraints over time. Often these “secondary” (or higher) constraints are famil-
iar, such as the phase space analog ∂ipi = 0 of Gauss’s law ∇ · �E = 0, Gauss–Codazzi
equations embedding space into space-time in General Relativity, etc. Some constraints
have something to do with gauge freedom (time-dependent redescriptions leaving the state
or history alone). One takes Poisson brackets (q, p derivatives) of all constraints pairwise. If
the result is in every case 0 (perhaps using the constraints themselves), then all constraints
are “first-class”, as in Clerk Maxwell’s electromagnetism, Yang–Mills, and GR in their
most common formulations. In General Relativity, the Hamiltonian, which determines time
evolution, is nothing but a sum of first-class constraints (and boundary terms). Given that
first-class constraints are related to gauge transformations, the key question is how they are
related. Does each do so by itself, or do they rather work as a team? There is a widespread
belief that each does so individually (Dirac, 1964). Then the Hamiltonian generates a sum
of redescriptions leaving everything as it was, hence there is no real change. This is a classi-
cal aspect of the “problem of time.” Some try to accept this conclusion, but recall Healey’s
critique.

Because Einstein’s equations and common sense agree on real change, something must
have gone wrong in Hamiltonian GR or the common interpretive glosses thereon, but what?
Here the Lagrangian-equivalent reforming party has given most of the answer, namely, that
what generates gauge transformations is not each first-class constraint separately, but the
gauge generator G, a specially tuned sum of first-class constraints, secondary and primary
(Anderson and Bergmann, 1951; Castellani, 1982; Pons, 2005; Pons et al., 1997, 2010).
Thus electromagnetism has two constraints at each point but only one arbitrary function;
GR has eight constraints at each point but only four arbitrary functions. Indeed one can
show that an isolated first-class constraint makes a mess (Pitts (2014b,a), such as spoiling
the relation expected relation q̇ = δH

δp making the canonical momentum equal to the elec-
tric field or the extrinsic curvature of space within space-time. These canonical momenta
are auxiliary fields in the canonical action

∫
dtd3x(pq̇ −H), and hence get their physical

meaning from q̇. Because each first-class constraint makes a physical difference by itself
(albeit a bad one), the GR Hamiltonian no longer is forced to generate a gauge transfor-
mation by being a sum of them. There is change in the Hamiltonian formalism whenever
there is no time-like Killing vector, just as one would expect from Lagrangian equivalence.

We have been guided by the principle that the Lagrangian and Hamiltonian formalisms should be
equivalent . . . in coming to the conclusion that they in fact are. (Pons and Shepley, 1998, p. 17)

By the same token, separate first-class constraints do not change pq̇ − H by (at most) a
total derivative, but G does (Pitts 2014a, 2014b).

To get changing observables in GR, one should recall the distinction between internal
and external symmetries. Requiring that observables have 0 Poisson bracket with the elec-
tromagnetic gauge symmetry generator is just to say that things that we cannot observe (in
the ordinary sense) are unobservable (in the technical sense). By contrast, requiring that
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observables have 0 Poisson bracket with the gauge generator in GR implies that the Lie
derivative of an observable is 0 in every direction. Thus anything that varies spatiotempo-
rally is “unobservable” – a result that cannot be taken seriously. The problem is generated
by hastily generalizing the definition from internal to external symmetries. Instead one
should permit observables to have Lie derivatives that are not 0 but just the Lie derivative of
a geometric object – an infinitesimal Hamiltonian form of the identification of observables
with geometric objects in the classical sense (Nijenhuis, 1952), viz., set of components in
each coordinate system and a transformation law.

13.6 Einstein’s Real � Blunder in 1917

One tends to regard perturbative expansions and geometry as unrelated at best, if not
negatively related.

The advent of supergravity [footnote suppressed] made relativists and particle physicists meet. For
many this was quite a new experience since very different languages were used in the two com-
munities. Only Stanley Deser was part of both camps. The particle physicists had been brought up
to consider perturbation series while relativists usually ignored such issues. They knew all about
geometry instead, a subject particle physicists knew very little about. (Brink, 2006, p. 40)

But some examples will show how perturbative expansions can help to reveal the geometric
content of a theory that is otherwise often misunderstood, can facilitate the conception of
novel geometric objects that one might otherwise fail to conceive, and permit conceptual
and ontological insight.

Perturbative expansions can help to reveal the geometric content of a theory that one
might well miss otherwise. Einstein in his 1917 cosmological constant paper first rein-
vented a long-range modification of Newtonian gravity (Einstein, 1923) – one might call
it (anachronistically) non-relativistic massive scalar gravity – previously proposed in the
nineteenth century by Hugo von Seeliger and Carl Neumann. But he then made a false
analogy to his new cosmological constant �, a mistake never detected till the 1940s (Heck-
mann, 1942), not widely discussed till the 1960s, and still committed at times today.
According to Einstein, � was “completely analogous to the extension of the Poisson
equation to �φ − λφ = 4πKρ ” (Einstein, 1923). Engelbert Schücking, a former stu-
dent of Heckmann, provided a firm evaluation. “This remark was the opening line in a
bizarre comedy of errors” (Schucking, 1991). The problem is that � is predominantly 0th
order in φ (having a leading constant term), whereas the modified Poisson is 1st order in φ.
� gives a weird quadratic potential for a point source, but the modified Poisson equation
gives a massive graviton with plausible Neumann–Yukawa exponential fall-off (Freund
et al., 1969; Schucking, 1991). “However generations of physicists have parroted this non-
sense” (Schucking, 1991). Massive theories of gravity generically involve two metrics,
whereas � involves only one. Understanding geometric content sometimes is facilitated
by a perturbative expansion.
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13.7 Series, Non-linear Geometric Objects, and Atlases

Perturbative series expansions can also be useful for conceptual innovations. For example,
non-linear realizations of the “group” of arbitrary coordinate transformations have tended
to be invented with the help of a binomial series expansion for taking the symmetric square
root of the metric tensor (DeWitt and DeWitt, 1952; Ogievetskiĭ and Polubarinov, 1965;
Ogievetsky and Polubarinov, 1965). The exponentiating technology of non-linear group
realizations (Isham et al., 1971) is also at least implicitly perturbative. While classical
differential geometers defined non-linear geometric objects (basically the same as particle
physicists’ non-linear group realizations as applied to coordinate transformations) (Aczél
and Gołab, 1960; Szybiak, 1966; Tashiro, 1952), they generally provided no examples.

Perhaps the most interesting example involves the square root of the (inverse) metric
tensor, or rather a slight generalization for indefinite metrics. The result is strictly a square
root and strictly symmetric using x4 = ict; otherwise it is a generalized square root using
the signature matrix ηαβ = diag(−1, 1, 1, 1). One has rμαηαβrβν = gμν and r[μν] = 0.
Under coordinate transformations, the new components rμν ′ are non-linear in the old ones
(Ogievetsky and Polubarinov, 1965; Pitts, 2012). These entities augment tensor calculus
and have covariant and Lie derivatives (Szybiak, 1963; Tashiro, 1952).

Defining the symmetric square root of a metric tensor might seem more of a curios-
ity for geometric completists than an important insight – but the symmetric square root
of the metric makes an important conceptual difference with spinor fields used to repre-
sent fermions. Spinors in GR are widely believed to require an orthonormal basis (Cartan
and Mercier, 1966; Lawson and Michelsohn, 1989; Weyl, 1929). But they do not, using rμν

(Bilyalov, 2002; DeWitt and DeWitt, 1952; Ogievetskiĭ and Polubarinov, 1965; Ogievetsky
and Polubarinov, 1965). One can have spinors in coordinates, but with metric-dependent
transformations beyond 15-parameter conformal group (Borisov and Ogievetskii, 1974;
Isham et al., 1971; Ogievetskiĭ and Polubarinov, 1965; Pitts, 2012), the conformal Killing

vectors for the unimodular metric density ĝμν = (−g)− 1
4 gμν . Such spinors have Lie

derivatives beyond conformal Killing vectors – often considered the frontier for Lie dif-
ferentiation of spinors (Penrose and Rindler, 1986, p. 101) – but they sprout new terms in
£ξ ĝμν . One can treat symmetries without surplus structure and an extra local O(1, 3) gauge
group to gauge it away.

The (signature-generalized) square root of a metric, although not very familiar, fits fairly
nicely into the realm of non-linear geometric objects, yielding a set of components in every
coordinate system (with a qualification) and a non-linear transformation law. The entity
is useful especially if one wants to know what sort of space-time structure is necessary
for having spin- 1

2 particles in curved space-time (Woodard, 1984). Must one introduce an
orthonormal basis, then discard much of it from physical reality by taking an equivalence
class under local Lorentz transformations? Or can one get by without introducing anything
beyond the metric and then throwing (most of?) it away?

A curious and little known feature of this generalized square root touches on an assump-
tion usually made in passing in differential geometry. Although one can (often) make a
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binomial series expansion in powers of the deviation of the metric from the signature
matrix, and (more often) one can take a square root using generalized eigenvalues, there
are exotic coordinate systems in which the generalized square root does not exist due to the
indefinite signature (Bilyalov, 2002; Deffayet et al., 2013; Pitts, 2012). This fact is trivial to
show in two space-time dimensions (signature matrix diag(−1, 1)) using the quadratic for-
mula: just look for negative eigenvalues. The fact generally has not been noticed previously
because most treatments (a great many are cited in Pitts, 2012) worked near the iden-
tity. Such a point could have been noticed some time ago by Hoek, but a fateful innocent
inequality was imposed that restricted the coordinates (with signature +−−−).

We shall assume that [the metric tensor gμν ] is pointwise continuously connected with the
Minkowski metric (in the space of four-metrics of Minkowski signature) and has g00 > 0. (Hoek,
1982)

The lesson to learn is that there can be feedback from the fibers over space-time to the
atlas of admissible coordinate systems for non-linear geometric objects given an indefinite
signature. Naively assuming a maximal atlas causes interesting and quite robust entities
not to exist. Such a result sounds rather dramatic when expressed in modern vocabulary.
But coordinate inequalities are old (Hilbert, 2007), familiar (Møller, 1972), and not very
dramatic classically; coordinates can have qualitative physical meaning while lacking a
quantitative one. A principal square root is related to the avoidance of negative eigenval-
ues of gμνηνρ (Higham, 1987, 1997). Null coordinates are fine; the coordinate restriction
is mild. Amusingly, coordinate order can be important: if (x, t, y, z) is bad, switching to
(t, x, y, z) suffices (Bilyalov, 2002).

13.8 Massive Gravity: 1965–72 Discovery of 2010 Pure Spin-2

The recent (re)invention of pure spin-2 massive gravity (de Rham et al., 2011; Hassan
and Rosen, 2011) used the symmetric square root of the metric, as did the first invention
(Ogievetsky and Polubarinov, 1965), though not the second (Pitts, 2011; Zumino, 1970).
This problem has a curious history, from which Ogievetsky and Polubarinov (1965) have
been unjustly neglected. That paper highly developed the symmetric square root of the
metric perturbatively. It derived a two-parameter family of massive gravities, which, I note,
includes two of the original three modern massive pure spin-2 gravities with a flat back-
ground metric. In light of the dependence of the space-time metric on the lapse function
N in a 3 + 1 ADM split, there were only two Ogievetsky–Polubarinov theories with any
chance of being linear in the lapse (hence having pure spin-2 (Boulware and Deser, 1972)),
although the naive cross-terms are rather discouraging. These are the n = 1

2 , p = −2 the-

ory built around δαμ(g
μνηνα

√−g2
)

1
2 , a theory reinvented as equation (3.4) of Hassan and

Rosen (2011), and the n = − 1
2 , p = 0 theory built around δ

μ
α (gμνηνα

√−g0
)

1
2 . A truly

novel third theory is now known (Hassan and Rosen, 2011). A second novel modern result
is the non-linear field redefinition of the shift vector (Hassan et al., 2012), which allows
the square root of the metric to be linear in the lapse.
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More striking than the proposal of such theories long ago is the fact that in 1971–1972
Maheshwari already showed that one of the Ogievetsky–Polubarinov theories had pure
spin-2 non-linearly (Maheshwari, 1972)! Thus the Boulware–Deser–Tyutin–Fradkin ghost
(Boulware and Deser, 1972; Tyutin and Fradkin, 1972) (the negative energy sixth degree
of freedom that is avoided by Fierz and Pauli to linear order but comes to life non-linearly)
was avoided before it was announced. Unfortunately Maheshwari’s paper made no impact,
being cited only by Maheshwari in the mid-1980s. With Vainshtein’s mechanism also sug-
gested in 1972 (Vainshtein, 1972), there was no seemingly insoluble problem for massive
spin-2 gravity in the literature. Massive spin-2 gravity was largely ignored from 1972 until
c. 2000 largely because of failure to read Maheshwari’s paper. This example illustrates the
point (Chang, 2012) that the history of a science has resources for current science.

13.9 Conclusions

The considerations above support the idea that progress in knowledge about gravity can
be made by overcoming various barriers, whether between general relativity and particle
physics, or between physics and the history and philosophy of science. GR does not need
to be treated a priori as exceptional, either in justifying choosing GR over rivals or in
interpreting it. GR is well motivated non-mysteriously using particle physicists’ arguments
about the exclusion of negative-energy degrees of freedom, arguments that leave only a
few options possible. To some degree the same holds even for the context of discovery of
GR, given the renewed appreciation of Einstein’s “physical strategy”.

Because conceptual problems of GR often can be resolved, there is no need to treat it as
a priori exceptional in matters of interpretation, either. Regarding gravitational radiation,
Feynman reflected on the unhelpfulness of GR-exceptionalism:

What is the power radiated by such a wave? There are a great many people who worry needlessly at
this question, because of a perennial prejudice that gravitation is somehow mysterious and different—
they feel that it might be that gravity waves carry no energy at all. We can definitely show that they
can indeed heat up a wall, so there is no question as to their energy content. (Feynman et al., 1995,
pp. 219, 220)

The conservation of energy and momentum – rather, energies and momenta – makes sense
in relation to Noether’s theorems. Change, even in local observables, is evident in the
Hamiltonian formulation, just as in the Lagrangian/four-dimensional geometric form.

To say that GR should not be treated as a priori exceptional is not to endorse the
strongest readings of the claim that GR is just another field theory, taking gauge-fixing
and perturbative expansions as opening moves. The mathematics of GR logically entails
some distinctiveness, such as the difference between external coordinate symmetries (with
a transport term involving the derivative of the field) and internal symmetries as in elec-
tromagnetism and Yang–Mills. Identifying such distinctiveness requires reflecting on the
mathematics and its meaning, as well as gross features of embodied experience, but it does
not require conjectures about the trajectory of historical progress or divination of the spirit
of GR.
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Series expansions have their uses in GR. Einstein’s failure to think perturbatively in
1917 about the cosmological constant generated lasting confusion and surely helped to
obscure massive spin-2 gravity as an option. Many of the (re)inventions of the symmetric
generalized square root of the metric began perturbatively. It permits spinors in coordinates,
a fundamental geometric result, just as was Weyl’s (1929) impossibility claim. Perturbative
methods should not always be used or always avoided; they are one tool in the tool box for
the foundations of gravity and space-time.
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