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Abstract

The purpose of this paper is to elucidate the concept of an elementary
particle in the first-quantized Standard Model. The emphasis is upon the
mathematical structures involved, rather than numerical computations.
After the general concepts and philosophical outlook are introduced in the
opening section, Section 2 addresses the question of what a free elementary
particle is, paying particular attention to the relationships between the
configuration representation and momentum representation. Section 3
deals with gauge fields, Section 4 deals with interactions between particles
and gauge fields, Section 5 deals with composite systems, and Section 6
deals with the representation of Baryons, Mesons, and Hadrons. Section 7
addresses the interpretational question of whether an elementary particle
has only one intrinsic state, and Section 8 attempts to elucidate what an
interacting elementary particle is in the Standard Model.!

1 Introduction

In the Standard Model of elementary particle physics, the two basic types of
thing which are represented to exist are matter fields and gauge force fields. A
gauge force field mediates the interactions between the matter fields.

This paper will deal primarily with first-quantized, or ‘semi-classical’ parti-
cle physics, in which it is possible to represent interacting fields in a tractable
mathematical manner. The first-quantized approach is empirically adequate in
the sense that it enables one to accurately represent many of the structural fea-
tures of the physical world. Second-quantization, quantum field theory proper,
is required to generate quantitatively accurate predictions, but quantum field
theory proper is incapable of directly representing interacting fields.

In the first-quantized theory, a matter field can be represented by a cross-
section of a vector bundle, and a gauge force field can be represented by a
connection upon a principal fibre bundle.

IFor a comprehensive account of all these subjects, see McCabe, [1].



The first-quantized theory is rather curious in that the matter particles have
undergone the first step of quantization, apparently turning from point-like ob-
jects into field-like objects, whilst, at first sight, the gauge fields have undergone
no quantization at all. On both counts, this appearance may be deceptive. One
of the outputs from the first quantized theory is a state space for each type of
elementary particle, which becomes the so-called ‘one-particle subspace’ of the
second-quantized theory. The vector bundle cross-sections which represent a
matter particle in the first-quantized theory, are vectors from the one-particle
subspace of the second-quantized theory. The connections which represent a
gauge field can be shown, under a type of symmetry breaking called a ‘choice
of gauge’, to correspond to cross-sections of a direct sum of vector bundles.
The cross-sections of the individual direct summands are vectors from the one-
particle subspaces of particles called ‘interaction carriers’, or ‘gauge bosons’.
Hence, neither the matter fields nor the gauge fields of the first-quantized the-
ory can be treated as classical fields. Given these complexities, the terms ‘par-
ticle’ and ‘field’ will be used interchangeably throughout the text, without the
intention of conveying any interpretational connotations.

A particle is an elementary particle in a theory if it is not represented to
be composed of other particles. All particles, including elementary particles,
are divided into fermions and bosons according to the value they possess of
a property called ‘intrinsic spin’. If a particle possesses a non-integral value of
intrinsic spin, it is referred to as a fermion, whilst if it possesses an integral value,
it is referred to as a boson. The elementary matter fields are fermions and the
interaction carriers of the gauge force fields are bosons. The elementary fermions
represented in the Standard Model number six leptons and six quarks. The
six leptons consist of the electron and electron-neutrino (e, v,), the muon and
muon-neutrino (u, v,,), and the tauon and tauon-neutrino (7, v-). The six quarks
consist of the up-quark and down-quark (u,d), the charm-quark and strange-
quark (¢, s), and the top-quark and bottom-quark (¢,b). The six leptons have
six anti-leptons, (e, 7.), (u*,7,), (77,7;), and the six quarks have six anti-
quarks (u,d), (¢,3), (t,0). These fermions are partitioned into three generations.
The first generation, (e, v, u,d), and its anti-particles, is responsible for most
of the macroscopic phenomena we observe. Triples of up and down quarks bind
together with the strong force to form protons and neutrons. Residual strong
forces between these hadrons bind them together to form atomic nuclei. The
electromagnetic forces between nuclei and electrons leads to the formation of
atoms and molecules. (Manin, [2], p3).

The general interpretational doctrine adopted in this paper can be referred
to as ‘structuralism’, in the sense advocated by Patrick Suppes [3], Joseph Sneed
[4], Frederick Suppe [5], and others. This doctrine asserts that, in mathematical
physics at least, the physical domain of a theory is conceived to be an instance of
a mathematical structure or collection of mathematical structures. The natural
extension of this principle proposes that an entire physical universe is an in-
stance of a mathematical structure or collection of mathematical structures. In



particular, each type of particle is considered to be an instance of some species
of mathematical structure. Whilst the definition of structuralism is most often
expressed in terms of the set-theoretical, Bourbaki notion of a species of mathe-
matical structure, one could reformulate the definition in terms of mathematical
Category theory. One could assert that our physical universe is an object in a
mathematical Category, or a collection of such objects. In particular, one could
assert that each type of particle is an object in a mathematical Category.

One frequently finds in the literature the assertion that an elementary par-
ticle ‘is’ an irreducible, unitary representation of the local space-time symmetry
group G, (e.g. Sternberg, [6], pl49; Streater, [7], pl44). As such, this is an
expression of structuralism. In this paper, a free elementary particle is consid-
ered to be an irreducible, unitary representation of the universal cover of the
restricted Poincare group. To be precise, in first-quantized quantum theory, the
state space of a free elementary particle is represented to be a Hilbert space
equipped with an irreducible, unitary representation of the universal cover of
the restricted Poincare group. The structure of the state space of a particle does
not itself represent the type of thing which the particle is. In first-quantized
quantum theory, a particle is the type of thing which is represented to be a
cross-section of such-and-such a bundle over space-time, satisfying such-and-
such conditions. However, first-quantized quantum theory does not provide the
final word on what type of thing a particle is. One cannot answer a question
such as, ‘What type of thing is an electron?’, without a final, definitive theory,
but one can answer a question such as, “‘What type of thing is an electron repre-
sented to be in first-quantized quantum theory?’. The answer is that an electron
is represented to be a cross-section of such-and-such a bundle over space-time,
satisfying such-and-such conditions. When a final, definitive theory is obtained,
one will be able to remove the phrase ‘represented to be’ from such an answer,
and one will be able to state that an electron s a such-and-such mathematical
object.

2 What is a free elementary particle?

Free matter fields (‘free particles’) are matter fields which are idealized to be
free from interaction with force fields. In particular, this section is concerned
with the representation of free elementary particles, i.e. particles which are not
represented to be composed of other particles.

To specify the free elementary particles which can exist in a universe. i.e.
the free elementary ‘particle ontology’ of a universe, one specifies the projective,
infinite-dimensional, irreducible unitary representations of the ‘local’ symmetry
group of space-time.

The large-scale structure of a universe is represented by a pseudo-
Riemannian manifold (M, g). The dimension n of the manifold M, and the
signature (p,q) of the metric g, determine the largest possible local symmetry
group of the space-time. The automorphism group of a tangent vector space
T, M, equipped with the inner product { , ) = g.( , ), defines the largest



possible local symmetry group of such a space-time, the semi-direct product
O(p,q) ® RP2. If there is no reason to restrict to a subgroup of this, then
one specifies the possible free elementary particles in such a universe by speci-
fying the projective, infinite-dimensional, irreducible unitary representations of

O(p,q) ®R™.
In the case of our universe, the dimension n = 4, and the signature
(p,q) = (3,1), indicating three spatial dimensions and one time dimension.

An n-dimensional pseudo-Riemannian manifold such as this, with a signa-
ture of (n — 1,1), is said to be a Lorentzian manifold. Each tangent vec-
tor space of a 4-dimensional Lorentzian manifold is isomorphic to Minkowski
space-time, hence the automorphism group of such a tangent vector space is
the Poincare group, O(3,1) ® R*!, the largest possible symmetry group of
Minkowski space-time. In the case of our universe the actual local space-time
symmetry group is a subgroup of the Poincare group, called the restricted
Poincare group, SOg(3,1) ® R3>'. The projective, infinite-dimensional, irre-
ducible unitary representations of the restricted Poincare group correspond to
the infinite-dimensional, irreducible unitary representations of its universal cov-
ering group, SL(2,C) ® R>!. Hence, one specifies the free elementary particle
ontology of our universe by specifying the infinite-dimensional, irreducible uni-
tary representations of SL(2,C) ® R3!.

It is assumed, or reasoned, that the free particle ontology of a universe equals
the interacting particle ontology. In other words, although a realistic represen-
tation of particles involves representing their interaction with force fields, it is
assumed, or reasoned, that the set of particle types which exists in a universe
can be determined from the free particle ontology.

It is also assumed, or reasoned, that representations of the local symmetry
group of space-time are an adequate means of determining the free elementary
particle ontology. One could reason that elementary particles exist at small
length scales, and the strong equivalence principle of General Relativity holds
that Minkowski space-time, and its symmetries, are valid on small length scales.
i.e. the strong equivalence principle holds that the global symmetry group of
Minkowski space-time is the local symmetry group of a general space-time. One
can choose a neighbourhood U about any point in a general space-time, which
is sufficiently small that the gravitational field within the neighbourhood is
uniform to some agreed degree of approximation, (Torretti, [8], p136). Such
neighbourhoods provide the domains of ‘local Lorentz charts’. A chart in a
4-dimensional manifold provides a diffeomorphic map ¢ : U — R*. If R* is
equipped with the Minkowski metric, a local Lorentz chart provides a map
which is almost isometric, to some agreed degree of approximation, (Torretti,
[8], p147). One can treat each elementary particle as ‘living in’ the domain
of a local Lorentz chart within a general space-time (M, g). To simplify the
representational task, the fibre bundles used in the Standard Model are usually
assumed to be fibre bundles over Minkowski space-time. This is done with the
understanding that the base space of such bundles represents the domain of
an arbitrary local Lorentz chart, rather than the whole of space-time. Hence,
the elementary particles which exist in a general Lorentzian space-time still



transform under the global symmetry group of Minkowski space-time, namely
the Poincare group, or a subgroup thereof.

A fully realistic representation of each individual elementary particle would
begin with a Lorentzian manifold (M, g) which represents the entire universe,
and would then identify a small local Lorentz chart which the particle ‘lives in’.
The particle would then be represented by the cross-sections and connections of
vector bundles over this small local Lorentz chart. In terms of practical physics,
this would be an act of representational largesse, but in terms of ontological
considerations, it is important to bear in mind.

Where the gravitational field is very strong (i.e. where the space-time curva-
ture is very large), it is no longer valid to assume that the gravitational field is
uniform on the length scales at which elementary particles exist. Note that be-
cause gravity is geometrized in General Relativity, it is consistent to speak of free
elementary particles in a gravitational field. Where the gravitational field is very
strong, it is not valid to assume that free elementary particles transform under
the global symmetry group of Minkowski space-time. When the gravitational
field is very strong, elementary particles are represented by fibre bundles over
general, curved space-times. Again, this is done with the understanding that
the base space of such bundles represents a small region of space-time, rather
than the whole universe. These considerations weaken the assumption that the
representations of the Poincare group are an adequate means of determining
the free elementary particle ontology in a universe. However, one might still be
able to reason that the identity of elementary particles remains unchanged by
a strong gravitational field, hence one can identify the free elementary particle
ontology by studying the ontology under less extreme conditions.

The largest possible local symmetry group of our space-time, the Poincare
group O(3,1) ® R®!, is the group of diffeomorphic isometries of Minkowski
space-time M, a semi-direct product of the Lorentz group O(3,1) with the
translation group R3!. The Lorentz group is the group of linear isometries of
Minkowski space-time.

The Poincare group is a disconnected group which possesses four compo-
nents. One component contains the isometry which reverses the direction of
time, another component contains the isometry which performs a spatial re-
flection (it reverses parity), another component contains the isometry which
reverses the direction of time and performs a spatial reflection, whilst the iden-
tity component SOy(3,1)®R?! preserves both the direction of time and spatial
parity. The identity component SOy(3,1) ® R*! is variously referred to as the
restricted Poincare group, or the ‘proper orthochronous’ Poincare group, and is
often denoted as ﬂl in the Physics literature. Similarly, the identity component
of the Lorentz group, SOg(3,1), is variously referred to as the restricted Lorentz
group, or the ‘proper orthochronous’ Lorentz group, and is often denoted as fl
in Physics literature.

The physical evidence indicates that the local symmetry group of our space-



time is actually the restricted Poincare group. The spin group of Minkowski
space-time, Spin(3,1) = SL(2,C), provides the universal cover of the restricted
Lorentz group SOq(3,1), hence SL(2,C) ® R3! provides the universal cover of
the restricted Poincare group. Spin(3,1) = SL(2,C) is actually a double cover
of SO(3,1), hence SL(2,C) ® R*! is a double cover of the restricted Poincare
group.

One can present the infinite-dimensional, irreducible unitary representations
of SL(2,C) ® R*! in either the momentum representation (the Wigner repre-
sentation), or the configuration representation. In the momentum representa-
tion, each irreducible unitary representation of SL(2,C) @ R>! is provided by a
Hilbert space of square-integrable cross-sections of a vector bundle over a mass
hyperboloid or light cone in Minkowski (energy-)momentum space, T M. In
the configuration representation, each irreducible unitary representation is con-
structed from a space of mass-m solutions, of either positive or negative energy,
to a linear differential equation over Minkowski space-time M. The Hilbert
space of a unitary irreducible representation in the configuration representation
is provided by the completion of a space of mass-m, positive or negative energy
solutions, which can be Fourier-transformed into square-integrable objects in
Minkowski (energy-)momentum space.

The irreducible unitary representations of SL(2,C) @ R*! are parameter-
ized by mass m and spin s. In the Wigner approach, free particles of mass
m and spin s correspond to vector bundles Eﬁ:,s over mass hyperboloids/light
cones ¥, in Minkowski energy-momentum space T M. It is the Hilbert spaces
of square-integrable cross-sections of these vector bundles E,jfhs which provide
the irreducible unitary representations of SL(2,C) ® R3.

The Wigner approach uses the method of induced group representations, ap-
plied to semi-direct product groups. Given a semi-direct product G = H ) N,
the method of induced representation can obtain, up to unitary equivalence,
all the irreducible, strongly continuous, unitary representations of the group
G. Given that the local symmetry group of space-time is a semi-direct product
G = SL(2,C) ® R*!, the method of induced representation enables us to ob-
tain, up to unitary equivalence, all the irreducible, strongly continuous, unitary
representations of G = SL(2,C) ® R*!. In fact, the method of induced repre-
sentation enables us to classify all the irreducible, strongly continuous, unitary
representations of G = SL(2,C) ®R?*!, and to provide an explicit construction
of one case from each unitary equivalence class, (Emch, [9], p503).

For a particle of mass m and spin s, the Wigner construction obtains

a vector bundle E; . over ¥, and an irreducible unitary representation of
SL(2,C) ® R*! upon the space ['2(E}, ) of square-integrable cross-sections

of E;i‘hs. This representation is unique up to unitary equivalence. The anti-
particle is represented by the conjugate representation on the space I'z2 (£, )
of square-integrable cross-sections of the vector bundle E, . over the backward
mass hyperboloid/light cone ¥, . In other words, if the particle is represented
by the Hilbert space ., then the anti-particle is represented by the conju-
gate Hilbert space /. The two representations are related by an anti-unitary

transformation.



Whilst the Wigner approach deals directly with the irreducible unitary rep-
resentations of SL(2,C) ® R>!, the configuration space approach requires two
steps to arrive at such a representation. In the configuration space approach, for
each possible spin s, one initially deals with a non-irreducible, mass-independent
representation of SL(2,C) ® R*! upon an infinite-dimensional space. For spin
s, there is a finite-dimensional vector space Vs, such that the mass-independent
representation space can be either a set of vector-valued functions F(M, V;), or
a space of cross-sections I'(n) of a vector bundle n over M with typical fibre V5.
F(M, V) is T'(n) in the special case where 7 is the trivial bundle M x V.

One can also define, for each value of spin s, and possibly parity €, a
non-irreducible, mass-independent representation of SL(2,C) ® R*! upon an
infinite-dimensional space, where SL(2,C) is a Zy-extension of SL(2,C). For
spin s and parity e, there is a finite-dimensional vector space V; ., such that the
mass-independent representation space can be either a set F(M,V; (), or a set
of cross-sections of a vector bundle n over M with typical fibre Vj ..

These non-irreducible, mass-independent representations do not correspond
to single particle species. Each space of vector-valued functions, or each space of
vector bundle cross-sections, represents many different particle species. To ob-
tain the mass m, spin-s irreducible unitary representations of SL(2,C) @ R3!
in the configuration representation, one introduces linear differential equations,
such as the Dirac equation or Klein-Gordon equation, which contain mass as
a parameter. These differential equations are imposed upon the vector-valued
functions or cross-sections in the non-irreducible, mass-independent, spin-s rep-
resentation. Each individual particle species corresponds to the functions or
cross-sections for a particular value of mass.

Now, the Fourier transform is well-defined for any cross-section or func-
tion which is ‘rapidly decreasing’ at spatial infinity. Distributions defined upon
a space of rapidly decreasing cross-sections/functions are referred to as ‘tem-
pered’ distributions. With a slight abuse of the mathematical convention, I
will hereafter refer to rapidly decreasing cross-sections/functions themselves
as tempered. Thus, the Fourier transform is well-defined for any tempered
cross-section ¢ € .#(n), or tempered Vs-valued function, f(z) € ./ (M, V).
The mass-m, tempered solutions of the linear differential equations correspond,
under a Fourier transform, to vector valued functions over ¥;,, or the cross-
sections of vector bundles over ¥;,. The Fourier transform f (p) of a mass-m
tempered function f(z) defined on Minkowski space-time M, is a function de-
fined throughout Minkowski energy-momentum space 7,s M, but with support
upon the mass hyperboloid or light cone ¥;,. The same is true of the Fourier
transform z/AJ(p) of a mass-m tempered cross-section 1 (x). The mass-m tem-
pered solutions can be split into positive-energy and negative-energy solutions.
Under Fourier transform, the positive-energy mass-m solutions become vector-
valued functions/cross-sections on T M with support on the ‘forward-mass’
hyperboloid #,F. Under Fourier transform, the negative-energy mass-m solu-
tions become vector-valued functions/cross-sections on T M with support on
the ‘backward-mass’ hyperboloid 7, .

Given a function f(z) on Minkowski configuration space M, the Fourier
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transform f(p) on Minkowski energy-momentum space T M is defined to be

fo) = gz [ €0 @)t

or

~

f(po,p) — ﬁ /e—i(px—l)ot)f(x)dBX dt

Note that the indefinite Minkowski space inner product

(p, ) = pot — P12 — Paa — P3T3

is being used to define the Fourier transform here. The inverse Fourier transform
is defined to be

1 —i{p,x) [ 4
f(ff)zw/e { >f(p)dp

or

floet) = sz [ @00 f(paty

The mass-m tempered solutions can be split into positive-energy and
negative-energy solutions. Under Fourier transform, the positive-energy mass-m
solutions become vector-valued functions/cross-sections on 7' M with support
on the ‘forward-mass’ hyperboloid ¥,,. Under Fourier transform, the negative-
energy mass-m solutions become vector-valued functions/cross-sections on T, M
with support on the ‘backward-mass’ hyperboloid ¥, . For the sake of simplic-
ity, let us concentrate upon the case of V-valued functions.

The positive energy solutions f*(z) for mass m are those which are the
inverse Fourier transform of functions with support upon the forward mass-m
hyperboloid. From the expression for an inverse Fourier transform,

f(x,t) = /ei(p~x—pot)f(p)d4p

1
(2m)?
and from the fact that po(p) = w(p) = +(m3+ || p ||*)"/? on a forward mass
hyperboloid, it follows that a positive energy solution can be expressed as

f+(X,t) = (2;)2 /T*M ei(p‘x—pot)a(p) 9(p0)6(m2 - p2) d4p

1 i(p-x—w
= g | al) d'p(p)

where a(p) has support upon the forward mass hyperboloid ¥, a subset of

measure zero, but a(p) 0(po)d(m? —p?) is a tempered distribution in ./ (T M),
hence its inverse Fourier transform is well-defined.



In the natural measure d*p upon Minkowski energy-momentum space T M,
each forward mass hyperboloid or light cone ¥, is a subset of measure zero.
Given that the Fourier transform of a tempered, mass-m, positive-energy solu-
tion on M is a function with support upon a subset ¥, the inverse Fourier
transform of this function with respect to d*p would equal zero. The integral of
a function over a set of measure zero, equals zero. Hence, one takes the inverse
Fourier transform of the tempered distribution a(p) 0(po)é(m? — p?) instead.
O(po) is the Heaviside function, defined to be +1 when py > 0, and 0 when
po < 0. Needless to say, §(m? — p?) is the dirac delta function.

The negative energy solutions f~(x) for mass m are those which are the
inverse Fourier transform of functions with support upon the backward mass-
m hyperboloid. On a backward mass hyperboloid, the energy component is
negative, so po(p) = —w(p) = —(m>+ || p [|>)'/2, hence a negative energy
solution can be expressed as

Pt = s [ ) 0)i(n® —57) '

1 (p-x+w
= (2r)2 [//_ e!Pxt (p)t)c(p) d*p/w(p)

where ¢(p) has support upon the backward mass hyperboloid ¥, , a subset of
measure zero, but ¢(p) 6(—po)d(m?—p?) is a tempered distribution in .’ (T M).

Supposing that there is a linear differential equation which contains mass
as a parameter, and which can be imposed upon the V;-valued functions, one
can find subspaces F (M, Vs) of Vi-valued functions which are composed of
mass-m, positive energy solutions to this differential equation. Furthermore,
one can find subspaces .7, (M, Vy) of tempered Vi-valued functions which are
composed of mass-m, positive energy solutions to this differential equation. For
each such space, there is a yet further subspace consisting of functions with
square-integrable Fourier transforms on ¥, . (Note that the square-integrability
is defined with respect to a measure on ¥,", not a measure on Minkowski space-
time M). The completion of this topological vector space of V-valued functions
on M takes one into the space .’ (M, V) of Vi-valued tempered distributions
on M.2 The completion

A, C S (M, V)

is a Hilbert space which provides the configuration representation for a particle
of mass m and spin s. This Hilbert sub-space of .'(M, V) is equipped with an
irreducible unitary representation of SL(2, C)®R?!, and is unitarily isomorphic
to the Hilbert space for a mass m, spin s particle in the Wigner representation.

One can also find subspaces F,,(M,V;) which are composed of mass-m,
negative energy solutions to the relevant differential equation, and further sub-
spaces .7, (M, V;) of tempered, mass-m, negative energy solutions. The further
subspace of functions with square-integrable Fourier transforms on ¥, , once

2Private communication with Veeravalli Varadarajan



completed, is unitarily isomorphic to the Hilbert space for a mass m, spin s
anti-particle in the Wigner representation.

In terms of the Wigner representation, ‘first quantization’ is the process of
obtaining a Hilbert space of cross-sections of a vector bundle over ¥, . In terms
of the configuration representation, first quantization is the two-step process of
obtaining a vector bundle/function space over M, and then identifying a space
of mass-m solutions. There are two mathematical directions one can go after
first quantization:

One can treat the Hilbert space obtained, as the ‘one-particle’ state space,
and one can use this Hilbert space to construct a Fock space. This is the process
of ‘second quantization’. One defines creation and annihilation operators upon
the Fock space, and thence one defines scattering operators. One can use the
scattering operators to calculate the transition amplitudes between incoming
and outgoing free states of a system involved in a collision process. Calculation
of these transition amplitudes requires the so-called ‘regularization’ and ‘renor-
malization’ of perturbation series, but these calculations do enable one to obtain
empirically adequate predictions. Nevertheless, a Fock space is a space of states
for a free system. In the configuration representation, the space of 1-particle
states is a linear vector space precisely because it is a space of solutions to the
linear differential equation for a free system.

Although one could use either the Wigner representation or the configuration
representation, second quantization conventionally uses a Wigner representation
for the one-particle Hilbert spaces.

The other mathematical direction one can go, which conventionally uses the
configuration representation, is to treat first-quantization as an end in itself.
In the fibre bundle approach, a mass m, spin s particle can be represented by
the mass-m cross-sections of a spin-s bundle 7. This mass-independent bun-
dle 1 can, following Derdzinski, ([20]), be referred to as a free-particle bundle.
One can associate a vector bundle § with a gauge field, which can, again fol-
lowing Derdzinski, be referred to as an interaction bundle. One can take the
free-particle bundle 7, and with interaction bundle §, one can construct an inter-
acting particle bundle «. The mass-m cross-sections of this bundle represent the
particle in the presence of the gauge field. This is the route of the first-quantized
interacting theory. The first-quantized interacting theory is not empirically ad-
equate, and it is not possible to subject the first-quantized interacting theory
to second-quantization because the state space of an interacting system is not a
linear vector space; in the configuration representation, the space of states for an
interacting 1-particle system consists of vector bundle cross-sections which sat-
isfy a non-linear differential equation. There is no Fock space for an interacting
system.

E.Nelson stated that “First quantization is a mystery, but second quanti-
zation is a functor.” In Andrzej Derdzinski’s approach to particle physics, the

10



first step to first quantization is a functor as well. Working with the isochronous
Lorentz group O'(3, 1) rather than SOy (3, 1), Derdzinski introduces free-particle
bundles 7, which are ‘natural bundles’ in the sense that for each point z € M
in Minkowski space-time, there is a representation O (T, M) — Aut(n,), ([20],
p20-21). One therefore has a functor between the fibres of the tangent bundle
over space-time, and the fibres of the free-particle bundle. Elementary parti-
cles, says Derdzinski, correspond to irreducible natural bundles, in the sense
that the representation in each fibre is irreducible. The representations are per-
mitted to be double-valued, hence they become irreducible representations of a
double-cover SL(2,C) of OT(3,1). Although the Dirac spinor bundle o, used
in the first step to represent many elementary particles, possesses a reducible,
direct sum representation of SL(2,C) in each of its fibres, the corresponding
representation of SL(2,C) is irreducible.

If first quantization consisted of only this functorial first step, then the
functor would dictate that the relevant symmetry group would be the infinite-
dimensional group of cross-sections of the automorphism bundle Aut(n), the
bundle of all automorphisms in each fibre of 7. The first step is deceptive,
however, and when the second step is taken into consideration, one obtains a
Hilbert space .4, s, and a unitary representation of the finite-dimensional group
SL(2,C) ® R*! on J#, s. Such a Hilbert space is not invariant under the ac-
tion of the infinite-dimensional group of cross-sections of Aut(n). The original
functor is not relevant here.

Derdzinski defines a mass-independent configuration space vector bundle for
each possible combination of spin and parity. The space of sections of such
a configuration space vector bundle represents many different particle species,
each corresponding to the cross-sections for a specific mass. In addition, the
space of cross-sections includes both the positive energy and negative energy
cross-sections for each mass value. Hence, the space of cross-sections of a con-
figuration space bundle 1 includes the cross-sections for both the particles and
anti-particles of each mass value.

Derdzinski, ([20], p17-20), derives the following vector bundles to represent
free particles in the first step of the configuration space approach:

Spin Parity Charged bundle Neutral bundle

0 +1 M xC M xR

0 -1 MT*M®C AT* M

% +1 oL -

? -1 OR -

2 . g -
s>1l,s=keZ (—1)* SEkT*M @ C SkT* M
s>1,s=keZ (=)L | SET*M @ A T* M@ C | SET*M @ A*T* M

s=k+3,k>1keZ - nCSET*M® o -

The cross-sections of S§T*M consist of those cross-sections s of the k-fold
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symmetric tensor product of T*M which satisfy the equation As = 0. The
Laplacian A is defined with respect the pseudo-Riemannian metric g upon the
manifold M. SET* M is the space of pseudo-spherical harmonics in T, M.

In the case of a particle with s = k + %, for k > 1 and k € Z, the expression

nCSET*M®o

denotes the subset of S¥T* M ® o consisting of elements in the kernel of Clifford
multiplication. In this context, Clifford multiplication ¢ is a map

k k-1
c: (®T*M)®a—> (®T*M)®a

To illustrate the configuration space approach, let us outline its application
to the electron and the neutrino.

First note that the complex, finite-dimensional, irreducible representations
of SL(2,C) are indexed by the set of all ordered pairs (s1, s3), (Bleecker, [24],
p77), with

1 1
(81,52) S §Z+ X §Z+

In other words, the irreducible representations of SL(2,C) form a family 2°:52
where s; and sy run independently over the set {0,1/2,1,3/2,2,...}. The num-
ber s1 + s9 is called the spin of the representation. The standard representation
of SL(2,C) on C? is the 2'/2 representation, and the inequivalent conjugate
representation is the 2%1/2 representation.

291/24 = A*~1 is a conjugate representation to 2'/20A = A in the sense
that

PAZ V= A1 AecSL2,0C)

where . covers the parity reversal operation &. However, an element A*~!
is only conjugate to an element A within the enlarged, two-component group
SL(2,C). £ does not belong to SL(2,C), hence A*~! is not conjugate to A
within SL(2,C).

From the standard representation of SL(2,C) on C?, and its conjugate, one
can construct all the complex, finite-dimensional, irreducible representations
of SL(2,C) as subspaces of tensor product representations. Given the tensor
product representation

(® )@@

on the tensor product space (C?)®251 @ (C2)®22, the irreducible representation
95152 is the subrepresentation on the symmetric subspace (C?)©2%1 @ (C2)©2s2
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Now one can define, for each possible spin s, an infinite-dimensional, mass-
independent representation of SL(2,C) ® R*! upon a set of vector-valued func-
tions F (M, Vy). Letting f(z) denote an element of F(M, V), the representation
is defined as

f@) = f'(@) = 2°°2(A) - f(A} (@ — a))

To represent an electron, one starts with either a Dirac spinor bundle o, with
typical fibre C*, or with a space of C*-valued functions F (M, C*). In this case,
C* can be considered to possess either (1/2,0), an irreducible representation of
SL(2,C), or to possess T = 21/203,901/2 4 reducible direct sum representation
of SL(2,C).

To represent a neutrino, one starts with either a left-handed Weyl spinor bun-
dle o1, with typical fibre C2, or with a space of C2-valued functions F(M, C?).
To represent an anti-neutrino, one starts with either a right-handed Weyl spinor
bundle o, or, again, with a space of C2-valued functions F(M, C?). In the case
of the neutrino, C? is considered to possess 2'/2:, the standard irreducible rep-
resentation of SL(2,C), while in the case of the anti-neutrino, C? is considered
to possess 2%1/2, the conjugate irreducible representation.

Note that both the Dirac spinor bundle ¢ and the Weyl spinor bundle are
spin 1/2 vector bundles.

One cannot treat the electron and the neutrino so that they both corre-
spond to finite-dimensional irreducible representations of the same group G.
If one chooses G = SL(2,C), then the neutrino corresponds to an irreducible
representation, but the electron corresponds to a reducible representation. If
one chooses G = SL(2,C), then the electron corresponds to an irreducible rep-
resentation, but the neutrino does not correspond to any representation at all.
Instead, it is the direct sum of the neutrino and anti-neutrino fibre spaces which
provides an irreducible representation.

However, there are two points to bear in mind here: Firstly, the finite-
dimensional representations of SL(2,C) or SL(2,C) do not induce irreducible
representations upon the corresponding infinite-dimensional function spaces
or cross-section spaces, and this is true irrespective of whether the finite-
dimensional representation is itself irreducible, or a direct sum, reducible rep-
resentation. The first step in the configuration space approach obtains a non-
irreducible, infinite-dimensional representation of SL(2,C) @ R3!. Secondly, it
is only when the second step has been completed, when one has constructed a
Hilbert space from a subspace of solutions to a differential equation, that one
obtains the irreducible, infinite-dimensional representations for the electron and
the neutrino, and it is at this stage that the electron and neutrino can be seen
as irreducible, unitary representations of the same group, SL(2,C) ® R!.

In the case of the electron, one must distinguish the finite-dimensional rep-
resentation of SL(2,C) on C* from the infinite-dimensional representation of
SL(2,C) on F(M,C*) or I'(s). Both representations are non-irreducible.

From the fact that the representation of SL(2,C) on F(M,C*) or I'(o)
is non-irreducible, it follows that the representation of SL(2,C) ® R*! on

13



F(M,C*) or I'(0), is also non-irreducible. In other words, the representation
of the double cover of the restricted Poincare group on F(M,C*) or I'(o) is
non-irreducible. However, one can identify subspaces which are invariant under
the action of SL(2,C) ® R3! for each value of mass m, and for either positive
energy or negative energy. One can form the direct integral of these subspaces,
either

(/Om@f,:w,c4>> a5 </0°°@f;lw’@4)>

(/Om@rmo)) D (/Ow@r,—n(g)>

There is one invariant, positive energy direct summand for each value of
mass m € (0,00), and one invariant, negative energy direct summand for each
value of mass m € (0,00). Each set of ¢ € '} (o) and f(x) € F(M,C*)
consists of positive energy, mass-m solutions of the Dirac equation. However,
neither T} (o) nor Ff(M,C?*) provides the configuration space analogue of
the irreducible unitary Wigner representation I' Lz(E’I’TLl /2). Instead, one must
take the invariant subspace of positive energy, mass-m tempered cross-sections
(o), or the invariant subspace of positive energy, mass-m tempered functions
Z (M, Vs). From here, one takes the subspace of such functions which Fourier
transform into square-integrable cross-sections/functions on the forward mass
hyperboloid ¥,. One then completes this topological vector space to obtain
a Hilbert space ., C .#/(M,V;) which does possess a unitary irreducible
representation of SL(2,C) ® R

Whilst the Fourier transforms of the elements in .#,; (M, C*) are concen-
trated on the forward mass hyperboloid ¥, the elements of .7,f (M, C*), are
defined throughout Minkowski space-time. Positive-energy, mass-m solutions
of the Dirac equation are defined throughout Minkowski space-time. Whilst
each space of cross-sections I‘(E:"%l /2) in the Wigner representation is a space
of cross-sections over a different base 7,1, each space of functions .7} (M, C*)
or cross-sections .,/ (o) in the configuration representation, is over the same
base space M. Hence, one can imagine @, .} (M, C*) as a stack of function
spaces over M, each function space .7} (M,C*) in the stack containing the
functions, defined throughout M, which are tempered positive-energy solutions
of the Dirac equation for mass m. Similarly, one can imagine ,, ., (o) as a
stack of cross-section spaces over M.

An electron is represented by the Hilbert space ,%”njl 2 C (M, CH)
constructed from the space of mass m,, positive-energy tempered solutions
S 4 (M,C*) of the Dirac equation (or the cross-sectional analogue). Simi-
larly, a neutrino is actually represented by a Hilbert space %Jrl /2 C (M, C?)
constructed from the space of mass 0, positive-energy tempered solutions
ST (M, C?) of the Weyl equation (or the cross-sectional analogue). Both of

or
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these spaces provide a unitary, irreducible, infinite-dimensional representation
of SL(2,C) ® R*!. Hence, the electron and neutrino can be treated as irre-
ducible representations of the same group in the configuration space approach.

3 Gauge fields

In the Standard Model, each gauge force field corresponds to a compact con-
nected Lie Group G, called the gauge group. A gauge field with gauge group
G can either be represented by a connection on a principal fibre bundle P with
structure group G, or by a connection on a vector bundle § equipped with a
so-called ‘G-structure’.

Given a complex vector bundle ¢ of fibre dimension n, any matrix sub-group
G C GL(n,C) acts freely, from the right, upon the set of bases in each fibre.
Treating a basis as a row vector, (eq, ..., e,), it is mapped by g € G to another
basis (e, ..., e},) by matrix multiplication:

(6/17 "'76;) = (617 "'7671)9 = (gj1€j7 "'7gjn€j)

Needless to say, one sums over repeated indices in this expression.

In general, the G-action upon the set of bases in each fibre will possess
multiple orbits. The selection of one particular orbit of this G-action, in each
fibre of 4, is called a G-structure in 0, (Derdzinski, [20], p81-82). Because G acts
freely, it acts simply transitively within each orbit. A vector bundle § equipped
with a G-structure is sometimes referred to as a ‘G-bundle’.

Geometrical objects in each fibre of a vector bundle, such as inner products
and volume forms, can be used to select a G-structure. For example, if § is
a complex vector bundle of fibre dimension n, then the unitary group U(n)
acts freely upon the set of bases in each fibre. There are multiple orbits of
the U(n)-action in each fibre, but if each fibre is equipped with a positive-
definite Hermitian inner product, then the inner product singles out the orbit
consisting of orthonormal bases. By stipulating that an inner product selects the
orbit of orthonormal bases, one defines a bijection between inner products and
U(n)-structures. For any orbit of the U(n)-action, there is an inner product
with respect to which that orbit consists of orthonormal bases. Given any
basis (e, ..., ey), one can define an inner product which renders that basis an
orthonormal basis by stipulating that the matrix of inner products between the
vectors in the basis has the form diag {1,1,...,1}. Given any pair of vectors
v, w, they can be expressed as v = cye1 + -+ +cpe, and w = aje; + - - - + anén
in this basis, and their inner product is now defined to be

(v,wy = {c1€1 + -+ + cpen,a1€1 + -+ + aney) = crag + -+ + cpay

Once an inner product has been defined which renders (e, ..., e,) orthonor-
mal, all the other bases which can be obtained from (e, ..., €,) under the action
of U(n) must themselves be orthonormal.
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This bijection between inner products and U(n)-structures is, however,
merely conventional.> Given the specification of an inner product, the con-
vention is that a basis belongs to the U(n)-structure if the matrix of inner
products between its constituent vectors has the form diag {1,1,...,1}. Given
the specification of an inner product, one could alternatively fix an arbitrary
positive-definite Hermitian matrix, and stipulate that a basis belongs to the
U (n)-structure if the matrix of inner products between its constituent vectors
equals the chosen positive-definite Hermitian matrix. This would provide an
alternative bijection between inner products and U (n)-structures.

Following Derdzinski, we shall refer to a complex vector bundle § equipped
with a G-structure as an interaction bundle.

The selection of a G-structure in a vector bundle § is equivalent to the
selection of a principal G-subbundle of the general linear frame bundle of §.
Given the selection of a matrix sub-group G C GL(n,C), there are multiple
principal G-subbundles of the general linear frame bundle. These correspond to
the different orbits of the G-action upon the set of bases in each fibre of §. For
example, a vector bundle ¢ equipped with a U(n)-structure is equivalent to the
selection of a principal U(n)-subbundle @ of the general linear frame bundle of
0. The U(n)-structure in ¢ is determined by a positive-definite Hermitian inner
product in each fibre of 4. The corresponding principal bundle @ consists of the
set of orthonormal bases in each fibre of 4.

All the principal G-subbundles of a general linear frame bundle are mutu-
ally isomorphic; they share the same collection of transition functions as the
general linear frame bundle, and the same typical fibre, namely G. However,
whilst all the principal G-subbundles of a general linear frame bundle are mu-
tually isomorphic, the G-structure equipped vector bundles they correspond to
are not mutually isomorphic. For example, although all the principal U(n)-
subbundles of the general linear frame bundle of a complex vector bundle §, are
mutually isomorphic, the Hermitian vector bundles they correspond to are not
isomorphic as Hermitian vector bundles. Whilst they all share the same vector
bundle structure, namely ¢, the inner product spaces of their respective fibres
are not unitarily isomorphic. By design, the different principal G-subbundles of
a general linear frame bundle are obtained by assigning different inner products
and/or volume forms to the fibres of the complex vector bundle ¢.

For any principal G-subbundle P of the principal GL(n,C)-bundle of
all bases in §, the vector bundle § is isomorphic to the associated bun-
dle P x,) C", where p(G) is the standard representation of G on
C™. Let [((e1,...,en),(c1,..,cn))] denote an element from a fibre of the
associated bundle P x, C".  Given that [((e1,...,en),(c1,..,cn))] =
[((e1,.-y€n)g, g (c1, .y cpn))] for all g € G, there is a well-defined mapping from
an element such as [((e1, ..., en), (¢1, ..., ¢n))] to an element cre; + -+ - + ce, in
the corresponding fibre of 4.

A vector bundle of fibre dimension n, which is expressed as an associated
vector bundle P X,y C" via the standard representation of G C GL(n,C)

3Private communication with Andrzej Derdzinski
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on C", is notable because it already has a distinguished G-structure, provided
by the principal G-bundle to which it is associated. Hence, although the as-
sociated bundles P X,y C" derived from the general linear frame bundle of
0 are mutually isomorphic as vector bundles, in general they possess different
G-structures. Given a complex vector bundle 0, one has the GL(n, C)-bundle of
all linear frames F', and given the choice of a positive-definite Hermitian inner
product in each fibre of §, one has the U(n)-bundle of orthonormal frames Q.
As vector bundles, these objects are isomorphic:

§ = (FXagrme C") = (@ xum) C"),

As G-bundles, however, these objects are distinct. Whilst F' X gr,(5,c) C" has a
natural GL(n,C)-structure, @ Xy ,) C" has a natural U(n)-structure.

In contrast with the case of an associated bundle, a vector bundle expressed
as, say, a product bundle M x V', does not have a distinguished G-structure.

3.1 Classification of Principal G-Bundles

Whilst each gauge field corresponds to a particular compact and connected Lie
group G, the choice of a particular G does not uniquely determine a principal
fibre bundle P with structure group G, or a vector bundle ¢ with a G-structure.
In other words, the choice of a gauge group does not uniquely determine the
mathematical object upon which the representation of a gauge field is dependent.

In the case of a 4-dimensional manifold M, it is possible, for any Lie group
G, to classify all the principal G-bundles over M. Given that space-time is
represented by a 4-dimensional manifold, it is therefore possible to classify all
the principal G-bundles over any space-time M. Given that the specification of a
principal G-bundle is equivalent to the specification of a vector bundle equipped
with a G-structure, the classification of principal G-bundles over a space-time
M is equivalent to a classification of all the possible interaction bundles over
that space-time M.

Suppose that G is a simply connected Lie group. In this case, the principal
G-bundles over a four-dimensional manifold M are classified by the elements
of the fourth cohomology group over the integers H*(M;Z) of the manifold
M. In the event that M is compact and orientable, H*(M;Z) = Z, hence the
principal G-bundles, for a simply connected Lie group G over a compact and
orientable 4-manifold, are in one-to-one correspondence with the integers. In
the event that M is either non-compact or non-orientable, H*(M;Z) = {Id}.
This means that for a simply connected Lie group G, all the principal G-bundles
over a non-compact or non-orientable 4-manifold are trivial bundles, isomorphic
to M x G.

In the special case where the simply connected Lie group G is a special uni-
tary group SU(n), the element of H*(M;Z) which corresponds to a particular
principal SU (n)-bundle, is the second Chern class of that bundle. For different
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principal SU(n)-bundles, the second Chern class of the bundle corresponds to
different cohomology equivalence classes of the base manifold M. The case of
a special unitary group is of relevance to the Standard Model, where SU(2) is
involved with the electroweak force, and SU(3) is the gauge group of the strong
force.

Turning to non-simply connected Lie groups, take the case where G is a
unitary group U(n). In the case that G = U(1), the set of inequivalent principal
U(1)-bundles over any 4-manifold M is in one-to-one correspondence with the
elements of the second cohomology group over the integers H2(M;Z). The
element of H?(M;Z) which corresponds to a particular principal U (1)-bundle is
the first Chern class of that bundle. This case is relevant to the electromagnetic
force, which has gauge group U(1).

In the case of U(n), for n > 1, the set of inequivalent principal U(n)-bundles
over any 4-manifold M is in one-to-one correspondence with the elements of
H?(M;Z) @ H*(M;Z). The case of relevance to the Standard Model is G =
U(2), the gauge group of the electroweak force.

These results demonstrate that the choice of principal fibre bundle or inter-
action bundle is not determined by the gauge group. In the case of the electro-
magetic force, there are many principal U(1)-bundles {P; : i € H?(M;Z)} over
a space-time M, and for each different bundle P;, the standard representation
of U(1) on C! defines a different interaction bundle \; = P; XU(1) C' equipped
with a U(1)-structure. Similarly, in the case of the electroweak force, there are
many principal U(2)-bundles {Q; : i € H*(M;Z) & H*(M;Z)} over a space-
time M, and for each different bundle @Q;, the standard representation of U(2)
on C? defines a different interaction bundle 1; = Q; X (2) C? equipped with a
U (2)-structure.

In the case of the strong force, with simply connected gauge group SU(3),
a compact 4-manifold cannot possess a Lorentzian metric, hence if we accept
that space-time is Lorentzian, and therefore non-compact, it follows that, up
to isomorphism, the only principal SU(3)-bundle is S = M x SU(3). There
is therefore, up to isomorphism, only one vector bundle over space-time which
can be equipped with an SU(3)-structure, namely p = S X sU(3) C3 2 M x C3.
One can select many different SU(3)-structures in p by assigning different inner
products and volume forms to the fibres of p, and each such SU(3)-structure
corresponds to a different principal SU(3)-subbundle of the general linear frame
bundle of p, but each such principal SU(3)-bundle is isomorphic to M x SU(3).
Whilst it is not true to say that all SU(3)-interaction bundles are mutually iso-
morphic as oriented Hermitian vector bundles, they are all mutually isomorphic
as vector bundles.

Because Minkowski space-time is contractible, all its cohomology groups
are trivial. This entails that in the special case of the Standard Model over
Minkowski space-time, all the interaction bundles are trivial.
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3.2 Gauge connections

A gauge force field potential can be represented by a connection V on a princi-
pal fibre bundle (P, 7, M, G), where G is an m-dimensional Lie Group, 7 is the
projection mapping 7 : P — M, and M is n-dimensional space-time. A con-
nection on a bundle can be defined in terms of the assignment of a ‘horizontal’
subspace to the tangent vector space at each point of the bundle, (Torretti, [8],
p269-271). At each point p € P in the total space of a principal fibre bundle, the
vectors in the tangent vector space T}, P which are tangent to the fibre of P over
7(p), constitute an m-dimensional subspace called the space of vertical vectors
Vp. There are an infinite number of possible n-dimensional subspaces of T}, P
which, together with V,,, span the tangent vector space. Such an n-dimensional
subspace is called a horizontal subspace, H), and is such that T,P =V, ® H,.
A connection on the principal fibre bundle P smoothly assigns a horizontal sub-
space to each point, p — H), in a manner which respects the right action R, of
each g € G on P. Thus, a connection satisfies the condition:

Hpy = Rg*(Hp)

Fach connection V corresponds to a Lie-algebra valued one-form w on P.
For each point p € P, there is a natural isomorphism of V}, onto the Lie algebra
g of G, and the selection of a horizontal subspace H), enables one to extend
this mapping to the entire tangent vector space T}, P using the stipulation that
ker w, = Hp,. At each point p € P, a connection one-form is a mapping
wp : TP — g. Such a Lie-algebra valued one-form satisfies the condition:

wpg(Rgspv) = ad(g™")wy (v)

Although each connection V corresponds to a Lie-algebra valued one-form
w € AY(P,g), not every Lie-algebra valued one-form on P corresponds to a
connection on P. An element of A'(P,g) must satisfy the condition above so
that it respects the right action R, for each g € G, and must agree on V,, with
the natural isomorphism to g.

A connection on a principal fibre bundle P enables one to define parallel
transport between the fibres of P, to define parallel cross-sections of P, and to
define a covariant derivative upon the cross-sections of P.

3.3 Choice of Gauge and Gauge Transformations

There is a correspondence between cross-sections and trivializations of a prin-
cipal fibre bundle. A cross-section o : U — P picks out an element o(x) from
the fibre P, over each point x € U C M in a principal G-bundle, and thereby
establishes an isomorphism between the points in each fibre and the elements
of the structure group G. Each p € P, is mapped to the unique g € G which is
such that p = o(x)g. This defines an isomorphism between 7~(U) and U x G.

Picking out an element in each fibre of a principal fibre bundle P is equivalent
to picking out a basis for each fibre of the associated vector bundles. Picking out
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a basis in each fibre of a vector bundle § = P X, )V establishes an isomorphism
between each fibre §, and the typical fibre V. If a cross-section ¢ : U — P picks
out the basis () in each fibre of § =2 P x, () V over U, then each such fibre can
be expressed as d, = {[o(x),v] : v € V} and there is the natural isomorphism
[o(x),v] — v € V between ¢, and the typical fibre V.

Hence, a section of a principal fibre bundle determines both a trivialization
of the principal fibre bundle, and a trivialization of any associated vector bundle.
If a global cross-section exists for the principal bundle, then the principal bundle
and its associated vector bundles must be trivial. In the Standard Model over
Minkowski space-time, the relevant principal G-bundles and their associated
bundles are indeed trivial. However, there is no canonical trivialization; for
each global cross-section of P there is a different global trivialization of P. Each
different cross-section o can pick out a different element o(z) from the fibre P,
over a point x, and establish a different isomorphism between the points in the
fibre and the elements of the structure group G.

A cross-section o of the principal G-bundle P of some gauge field is called a
‘choice of gauge’. Assuming the cross-section o is global, it determines a global
trivialization ¢, of the associated vector bundle, § = P x,(g) V, expressed as
¢s : 6 — M x V. This establishes an isomorphism between each fibre d, and
x x V', hence the representation r of G on V induces a representation upon each
fibre. Expressing each fibre as §, = {[o(x),v] : v € V}, with respect to the
cross-section o(x), the representation r, of G on 0, is given by

re(g) + lo(2),v] = [o(2), g]

The representation of GG on each fibre of § induces a representation of G upon
the space of sections I'(§). Although the representation of G on I'(§) changes
with a different choice of gauge, it changes to an equivalent representation.

A gauge transformation can be defined in various ways, (Bleecker, [24], p46;
Sternberg, [6], pl114). For example, a gauge transformation of a principal fibre
bundle (P, 7, M,G) can be defined to be a diffeomorphism f : P — P which
satisfies the conditions:

f(pg)=f(p)g ; peEP ged ()

m(f(p)) = 7(p) (i)

Condition (i) means that a gauge transformation is an automorphism of
the total space P. The stipulation that f(pg) = f(p)g means that a gauge
transformation f is G-equivariant. Condition (ii) means that the fibres of P
remain fixed in a gauge transformation. The elements of each fibre are re-
arranged, but the fibres themselves are not permuted. A gauge transformation
re-arranges the elements in each fibre of the principal G-bundle in a way which
preserves the G-relationships between the different elements of the fibre.
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3.4 The Interaction bundle picture

In the interaction bundle picture, (Derdzinski, [20], p81-83), there is no need
to introduce a principal fibre bundle P to define a gauge connection, a choice
of gauge, or a gauge transformation. Instead, one deals with a vector bundle §
equipped with a G-structure, the interaction bundle. One introduces a bundle
G(9) of automorphisms of each fibre of §, and a bundle g(d) of endomorphisms
of each fibre of 0. A cross-section of G(4) specifies an automorphism of each
fibre of §, and a cross-section of g(d) specifies an endomorphism of each fibre of
0. Given the G-structure in each fibre of §, typically a Hermitian inner product,
perhaps in tandem with a volume form, an automorphism or endomorphism of
each fibre §, is a mapping which preserves this structure.

Each fibre of G(9) is a Lie group, and each fibre of g() is a Lie algebra. G(4)
is said to be a Lie group bundle, and g(¢) is said to be a Lie algebra bundle.
Each fibre of G(4) is isomorphic to the matrix Lie group G C GL(n,C), and
each fibre of g(¢) is isomorphic to the matrix Lie algebra g C gl(n,C), but the
isomorphisms are not canonical. It is necessary to fix a basis in a fibre J, to
establish an isomorphism between G(§), and G C GL(n,C). Similarly, it is
necessary to fix a basis in a fibre 0, to establish an isomorphism between g(d),
and g C gl(n,C).

Given an interaction bundle é equipped with a G-structure, there is a corre-
sponding principal fibre bundle P, with structure group G, whose fibres consist
of the bases in each fibre of § selected by the G-structure. A connection on §
consists of the selection of a horizontal subspace in each fibre of the tangent
bundle T'§, just as a connection on P consists of the selection of a horizontal
subspace in each fibre of the tangent bundle T'P. A connection upon a princi-
pal fibre bundle determines a connection upon any associated bundle, hence a
connection on P determines a connection on § = P x g C™. One can define a G-
connection on § to be a connection on § which is induced by a connection upon
the principal fibre bundle P, where P is the principal fibre bundle that corre-
sponds to the G-structure in §. Alternatively, one can define a G-connection on
0 to be a connection which is such that the objects defining the G-structure are
parallel with respect to the covariant derivative of the connection.

The space of connections on P, and the space of G-connections on § are
both affine spaces. In the case of the affine space of connections on P, the
translation space is AL(P, g), otherwise thought of as the space of cross-sections
of T*P ® (P x g). In the case of the space of G-connections on ¢, there is no
analogue of the space of cross-sections of 7*P ® (P x g). However, the affine
space of G-connections on § does have a translation space, namely the cross-
sections of T* M ® g(9). If we consider the space of G-connections on § as the
cross-sections of an affine bundle €(9), the translation space bundle of €(9) is
T*M @ g(d). One can equate the space of G-connections on § with the space of
connections upon the principal fibre bundle P, and these two affine spaces duly
have isomorphic translation spaces.

A choice of gauge corresponds to a cross-section ¢ of the principal fibre
bundle P, otherwise thought of as a collection of trivializing sections 1, .., ¥y,
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of 0 which respect the G-structure. e.g. if the G-structure consists of an inner
product, then the trivializing sections should be orthonormal. A choice of gauge
does two things:

e It selects a base connection wyp, and thereby (i) renders the space of con-
nections on P canonically isomorphic to its translation space A*(P, g), and
(ii) renders the space of G-connections on ¢ canonically isomorphic to its
translation space, the space of cross-sections of T* M ® g(9), (Derdzinski,
[20], p91).

e It renders g(d) canonically isomorphic with M x g.

In sum, a choice of gauge renders the space of connections canonically iso-
morphic with T*M & (M x g). In other words, a choice of gauge enables one
to treat a connection on P, or a G-connection on 4, as a Lie-algebra valued
one-form on the base space M. A choice of gauge corresponds to the selection
of a basis in each fibre §,, and this establishes an isomorphism between each
fibre g(d), and g C gl(n,C). In other words, a choice of gauge establishes a
correspondence between endomorphisms of 4, and n X n complex matrices.

To see why a choice of gauge selects a base connection wy, think of the choice
of gauge o as selecting a principal sub-bundle of P with structure group {Id}.
i.e. a principal fibre bundle for which each fibre consists of a single element,
the basis selected by o = 11, .., ¥,. This principal fibre bundle P, has a unique
connection. The tangent vector space at each point of the total space has the
same dimension as the base space. The vertical subspace is the zero vector, and
there is only one choice for the horizontal subspace, the entire tangent vector
space. Given that the Lie algebra of {Id} is {Id}, the Lie-algebra valued one-
form which specifies this unique connection maps the entire tangent vector space
to {Id}. The vertical subspace (the zero vector) is mapped to the Lie-algebra
{Id}, as required, and the horizontal subspace (the whole of the tangent space)
must belong to the kernel, and is therefore mapped to {Id}, also as required.

One can injectively map the sub-bundle P, back into the principal fibre
bundle P corresponding to the G-structure in §. Under the differential map of
this injection, the images of the horizontal subspaces on P, provide horizontal
subspaces H, ;) on P at each point in the codomain of the cross-section o. Given
Hg (5 one can then use the right action of G' to define horizontal subspaces at
all the other points of the fibres of P. One defines

Ha(a:)g = Rg* (Ha(z))

and this determines a connection upon P. This base connection on P then
induces a base G-connection on 4.

Given a choice of gauge o which selects a base connection wg on P, there is
a canonical isomorphism between the affine space of connections on P and the
translation space A'(P,g). To each connection one-form w, there is a unique
7 € AY(P,g) such that
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Ww=wo+T

The space of g-valued one-forms A!(P,g), with the group structure derived
from its vector space structure, acts transitively and simply transitively upon
the affine space of connection one-forms. Hence, the selection of a base con-
nection determines a canonical isomorphism between the space of connections
and A'(P,g). It remains true that not every element of A'(P, g) is a connection
one-form, but every connection one-form is an element of A'(P, g). Given a
base connection wy, and any 7 € A'(P, g), the sum wq + 7 is guaranteed to be a
connection one-form. This should not be taken to mean that every element of
AY(P,g) is a connection one-form.

In the interaction bundle § picture, a gauge transformation is a cross-section
of G(d). Hence, a gauge transformation selects, at each point x, an automor-
phism ¢, of the fibre d,. A gauge transformation is a bundle automorphism
which respects the G-structure in each fibre.

A cross-section of G(d) also acts upon the Lie algebra bundle of endomor-
phisms g(4). At each point z, the automorphism «, acts adjointly, as an inner
automorphism upon g(4),, mapping an endomorphism T to a,Ta, . A gauge
transformation changes a cross-section of g(d), hence it changes a cross-section
of T*M ® g(d). Gauge transformations therefore act upon the space of gauge
connections.

4 Interactions

Recall that in the first-quantized interacting theory, the interaction bundles
and free-particle bundles are conventionally bundles over Minkowski configura-
tion space. The principal fibre bundle and interaction bundle of a gauge field
are, by convention, bundles over Minkowski configuration space, and a mass-
independent vector bundle, associated with the free particles of spin s, is also,
by convention, a bundle over Minkowski configuration space.

Recall also that a specific particle species, of mass m and spin s, is repre-
sented by a Hilbert space constructed from the positive energy, mass-m, tem-
pered cross-sections of a spin-s vector bundle. The space of positive energy,
mass-m tempered cross-sections is a dense subspace of the Hilbert space, so for
convenience, we can consider a free particle of mass m and spin s to be rep-
resented by the positive energy, mass-m, tempered cross-sections .75 (n) of a
spin-s free-particle vector bundle 7.

A cross-section ¢ representing a free particles of mass m and spin s, must
satisfy free field equations, (Derdzinski, [20], p84),

P(x, (@), (V'9)(@), (V" ¢)(),...) = 0

for some value of mass m. V" here is the Levi-Civita connection on 7.
Free gauge fields, represented by G-connections V? on an interaction bundle
4, must satisfy the free-field Yang-Mills equations, (Derdzinski, [20], p84),
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div RV’ =0

RY’ is the curvature two-form of the connection V°.

The G-connections on § correspond to smooth cross-sections of an affine
bundle ¥ (6). The space of G-connections on 0 which satisfy the free-field Yang-
Mills equations correspond to a subspace of this cross-section space.

An interacting particle of mass m and spin s is represented by a positive
energy, mass-m solution of a V-dependent differential equation imposed upon
the cross-sections of a spin-s interacting-particle bundle a. The connection V°
is a connection upon the interaction bundle . The spin-s interacting particle
bundle « is a construction from the spin-s free-particle bundle 7, and the inter-
action bundle 4. In the simplest case, if the free-particle bundle is 7, then with
the interaction represented by § switched on, the interacting-particle bundle will
be the tensor product a =7 ® 0.

Recall that for the Standard Model over an arbitrary space-time, a gauge
group G does not, in general, determine a unique interaction bundle §, hence,
in general, a spin-s particle interacting with a group-G gauge field does not
have a unique interacting-particle bundle, even if one assumes the simplest type
of interacting particle bundle n ® 6. Instead, one has a family of interaction
bundles d;, and a consequent family of interacting-particle bundles n ® d;.

However, given that the interaction bundles and spinor bundles over
Minkowski space-time are trivial bundles, and given that the interacting-particle
bundles are constructed from tensor product and direct sum combinations of the
interaction and spinor bundles, it follows that in the special case of the Standard
Model over Minkowski space-time, the interacting-particle bundles are trivial
bundles.

Given that each interaction bundle over Minkowski space-time is isomorphic
to a product bundle, § 2 M x C", each trivialization, (i.e. choice of gauge), es-
tablishes an isomorphism between each fibre §, and the typical fibre C"*. Hence,
each trivialization (choice of gauge) induces a representation p of G upon the
space of sections I'(6), and therefore induces a representation Id, ® p of the
gauge group G upon the space of cross-sections I'(«v) of the spin-s interacting
particle bundle & = 7 ® 4. In this sense, one can say that a spin-s interacting
particle, represented by the cross-sections ¢ of @ = n ® ¢, transforms according
to a representation of G. However, the action of G here corresponds only to a
global gauge transformation. The more general case of a local gauge transforma-
tion corresponds to a cross-section of G(9), which selects a choice of gauge and
an element of the matrix group G at each point, to provide an automorphism
of §. The (infinite-dimensional) group of all such automorphisms G = I'(G(9))
acts upon the space of sections I'(d), thence it acts upon the space of sections
['(«). Hence, one can say that a spin-s interacting particle transforms under
the action of this infinite-dimensional group.

Note that G is an infinite-dimensional Lie group, and as an infinite-
dimensional manifold it possesses a locally compact topology. Hence G itself
is not a compact group. An interacting particle does not transform under an
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infinite-dimensional representation of a compact Lie group, rather, it trans-
forms under the action of an infinite-dimensional Lie group upon an infinite-
dimensional space.

Whilst a free-particle corresponds to an irreducible representation of the ‘ex-
ternal’ symmetry group, a particle with a gauge force field switched on trans-
forms under the same external symmetry group, and the infinite-dimensional
group of gauge transformations.

Whilst a free particle corresponds to a unitary, irreducible, infinite-
dimensional representation of SL(2,C) ® R*!, a particle interacting with a
gauge field of gauge group G does not correspond to a unitary, irreducible,
infinite-dimensional representation of SL(2,C) ® R*! x G. One could find,
and classify, all the infinite-dimensional, unitary, irreducible representations of
SL(2,C) ® R*! x G, as an extension of the Wigner classification. All the irre-
ducible representations of compact groups are finite-dimensional, so one could
set about taking all the tensor products of the unitary, irreducible, infinite-
dimensional representation of SL(2,C) @ R*! with the unitary, irreducible,
finite-dimensional representations of GG, to obtain all the infinite-dimensional,
unitary, irreducible representations of SL(2,C) @ R33! x G.* However, these
vector space representations do not correspond with the state spaces of inter-
acting particles, which are non-linear.

The ‘two-step’ approach to specifying a particle, in which one first introduces
a vector bundle, and then specifies that the particle corresponds to a special set
of cross-sections satisfying a differential equation, is vindicated by the nature
of the state space for an interacting particle. If one takes an exclusively Hilbert
space approach to free particles, based upon the unitary irreducible representa-
tions of SL(2,C) ® R*!, then the transition to interacting particles is difficult
to understand, given that they are not unitary irreducible representations of
anything.

An interacting particle ¢ does not transform under a representation of
SL(2,C) x G or a representation of (SL(2,C) ® R*!) x G. Instead, an in-
teracting particle v transforms under a group action of SL(2,C) ® R3!, and a
group action of G = I'(G(9)). However, there is a representation of SL(2,C)xG
upon the typical fibre of the interacting particle bundle n ® §. The typical fi-
bre of the spin-s free-particle bundle n will carry a spin-s representation of
Spin(3,1) = SL(2,C), and the typical fibre of the interaction bundle § will
carry a representation of the gauge group G of the interaction in question, so
the typical fibre of the tensor product 7 ® § must carry a representation of the
product group SL(2,C) x G.

Similarly, a gauge field connection pull-down A does not transform under a
representation of SL(2,C) x G or a representation of (SL(2,C) ® R31) x G.
Instead, a gauge field connection pull-down A transforms under a representa-
tion/group action of SL(2,C) ® R*!, and a representation/group action of
G = T'(G(d)). However, there is a representation of SL(2,C) x G upon R* ® g,
the typical fibre of the translation space bundle T* M ® g(9).

4Private communication with Heinrich Saller
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A crucial difference between an interacting particle and a gauge field is that
the representation of SL(2,C) x G upon the typical fibre of the interacting parti-
cle bundle n® ¢ uses the standard representation of G, whilst the representation
of SL(2,C) x G upon R* ® g, the typical fibre of the translation space bundle
T*M ® g(0), uses the adjoint representation of G.

Note also that there are two different group actions of G here. In the case of
an interacting particle, there is an action of G upon I'(§), whilst in the case of
the gauge field, there is an action of G upon I'(g(d)).

Given the representation of SL(2,C) x G upon the typical fibre R* ® g of
the gauge field translation space bundle T*M ® g(d), the selection of a basis
in g, or the restriction of the representation to SL(2,C) x Id, enables one to
decompose this representation as a direct sum

dim g
ST
i.e. one decomposes the representation into a direct sum of dim g copies of the
representation of SL(2,C) on R*.
Recall that a choice of gauge renders € (9), the affine bundle housing the G-

connections on ¢, canonically isomorphic with 7*M ® (M X g). The selection
of a basis in g then enables one to decompose M X g as the direct sum

dim g
P M xR,

and thereby enables one to decompose T*M ® (M X g) as the direct sum,
(Derdzinski, [20], p91):

dim g
P M
Given that SYT* M = T* M, this is the configuration space bundle for dim g
‘real vector bosons’, neutral particles of spin 1 and parity —1. Recall that a
spin-s configuration space bundle possesses, upon its typical fibre, either the
23152 complex, finite-dimensional, irreducible representation of SL(2,C), for
§ = 81 + S92, or a direct sum of such representations. Given that T*M is a real
vector bundle, it cannot possess upon its typical fibre a member of the £°1-52
family of complex representations, but it does possess the real representation of
SL(2,C) which complexifies to the 21/21/2 representation. In this sense, T*M
is a spin-1 configuration space bundle.
The differential equations for a spin 1, parity —1 bundle, (Derdzinski, [20],
p19), consist of the Klein-Gordon equation,

Oy = m2y

and the divergence condition

divy =0
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Under a choice of gauge, the cross-sections of the affine bundle %(§) =
EBdim 9 T* M which satisfy the free-field Yang-Mills equations, correspond to
the mass 0 solutions to these equations. This is easiest to see in the case of
electromagnetism, where a choice of gauge selects an isomorphism %' (\) = T* M
which maps a connection V to a real vector potential A. With the Lorentz choice
of gauge, the Maxwell equations upon a real vector potential,

OA=0, divA=0,

clearly correspond to the differential equations for a spin 1, parity —1 of mass
0.

Hence, under a choice of gauge, from the space of U(1) connections satisfying
the free-field Maxwell equations, one can construct a space which is the inverse
Fourier transform of the space of single photon spates I'2 (ES' 1) in the Wigner
representation.

The ‘gauge bosons’, or ‘interaction carriers’ of a gauge field are the spin 1,
mass 0, Wigner-representations of SL(2,C) ® R*!, which inverse Fourier trans-
form into spaces constructed from tempered, mass 0 cross-sections of the spin 1
bundles T* M. These spin 1 bundles belong to a decomposition @™ ® T* M of
the affine bundle €(6) housing the G-connections on §. At least, this is the case
under formal symmetry breaking. We will presently see that for gauge fields
which undergo spontaneous symmetry breaking, the decomposition changes.

Given that a choice of gauge renders the affine bundle 4’(4) isomorphic to
the translation space bundle T* M ® g(¢), and given that a choice of Lie algebra
basis then enables one to decompose the translation space bundle into separate
interaction carrier bundles, one might refer to the translation space bundle as
the interaction carrier bundle. In the case of the strong force, with G = SU(3),
one has dim SU(3) = 8, therefore one has 8 strong force interaction carriers,
the gluons. In the case of the electroweak force, with G = U(2), one has
dim U(2) = 4, therefore one has 4 interaction carriers: the photon +y, the W=
particles, and the Z° particle.

Note that whilst the interaction carriers can be defined by irreducible,
infinite-dimensional representations of SL(2,C) ® R*! alone in the Wigner
representation, cross-sections of the interaction carrier bundle T* M®g(J) trans-
form under both SL(2,C) ® R*! and G. The space of single-photon states in the
Wigner representation is the Fourier transform of a space of U(1)-connections
modulo gauge transformations. This is the reason that the gauge bosons in the
Wigner representation do not transform under the group of gauge transforma-
tions. Note also that it is only under symmetry breaking that the interaction
carrier bundle breaks into a direct sum of bundles housing the inverse Fourier
transforms of the Wigner representations.

Note that there is some distortion of meaning when people say that the
interaction carriers of a gauge field ‘belong to’ the adjoint representation of the
gauge group G. The interaction carriers of a gauge field belong to an infinite-
dimensional representation of (SL(2,C) ® R31) x G, which is certainly not the
same thing as the finite-dimensional adjoint representation of G. To reiterate,
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it is the representation of SL(2,C) x G upon the typical fibre of T* M ® g(d)
which uses the finite-dimensional adjoint representation of GG, tensored with a
finite-dimensional representation of SL(2,C) on R*.

Thus, in the case of the strong force, the gluons belong to an infinite-
dimensional representation of (SL(2,C) ® R*!) x G, with G = T'(SU(p)).
However, the representation of SL(2,C) x SU(3) upon the typical fibre of
the translation bundle T*M ® su(p) does use the eight-dimensional adjoint
representation of SU(3), tensored with a finite-dimensional representation of
SL(2,C) on R*. 1In the case of the electroweak force, the interaction carriers
of the unified electroweak force belong to an infinite-dimensional representa-
tion of (SL(2,C) ® R*!) x G, with G = T'(U(¢)). One has a representation of
SL(2,C) x U(2) upon the typical fibre of the translation bundle T*M ® u(s),
and this representation does use the four-dimensional adjoint representation of
U(2).

In addition to the formal symmetry breaking which obtains the 8 interaction
carriers of the strong force, one can apply formal symmetry breaking to the
interacting quark bundles to obtain quark ‘colours’, (Derdzinski, [20], p100).
The free-particle bundle for any quark flavour is the Dirac spinor bundle o.
With the strong interaction ‘switched on’, the interacting particle bundle for
any quark flavour is a tensor product o ® p. As before, p is an interaction
bundle for the strong force, a complex vector bundle, of fibre dimension 3,
equipped with a Hermitian inner product and compatible volume form in each
fibre. Recall that, in general, the tensor product of two vector spaces, J# ® %,
is isomorphic to the n-fold direct sum of .7 with itself, where n = dim %,
(Kadison and Ringrose, [26], p140). This entails that o ® p is isomorphic to
0 @ o @ o. The specific choice of isomorphism depends upon the choice of a
basis {v; : i« = 1,2,3} in each fibre of p. A ‘choice of gauge’ for the strong
force corresponds to the selection of a basis {v; : ¢ = 1,2,3} in each fibre of p
which is compatible with the SU(3)-structure in each fibre. Hence, a choice of
gauge corresponds to a cross-section of the principal bundle P, of all oriented,
orthonormal bases in the fibres of p. Thus, with a choice of gauge, o ® p can be
decomposed into a direct sum ®:=30; of sub-bundles o; C o ® p, each of which
is isomorphic with o.

At each point z, the fibre of each direct summand o; is the span of the set
of simple tensors {w ® v; : w € o, }. With the choice of basis {v; : ¢ = 1,2,3} in
Pz, it follows that v € p, can be expressed as c;v1 + cavs + c3v3, and that

WRUV=wWQ CcLv1 + C2V2 + C3V3
=WV +W R V2 + W Q C3V3
= C1w X V1 + oW X V2 + c3w @ V3

Given that the fibre of each direct summand o; over x is the span of the set of
simple tensors {w ® v;}, it follows that we have the mapping
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WOV =Cc1w® v + cow ® Vg + c3w R v3 — (crw, cow, caw) € (@ﬁf{’ai)z
Another way of thinking about it is that a choice of gauge determines an
orthogonal direct sum decomposition of each fibre of p:

Px = (Cl’Ul (&) Cl’Uz ) Cl’Ug

This, in turn, determines an orthogonal direct sum decomposition of each
fibre of the tensor product o ® p:

(0 ®p)s = 05 @ (Cloy & Clog & Clug)
= (0, ® Clvy) ® (0, ® Clon) @ (0, ® Clug)

Now o, ® Clv; 22 05, hence

(0, @ Clvy) @ (0, @ Cloy) @ (0, @ Clug) X0, B oy @ 0y

The three summands of the direct sum o @ o @ o, are the three so-called
‘colour sectors’ of a quark flavour. Each different cross-section of the principal
bundle P, selects a different decomposition of o0 ® p into the three colour sectors.
Selecting such a cross-section is also referred to as ‘formal symmetry breaking’.
Before the decomposition, one has a representation of SL(2,C) x SU(3) upon
the typical fibre of o ® p. After the decomposition, the only element of SU(3)
which preserves the selection of a basis in each fibre of p is Id. Hence, after
the decomposition, one merely has a (reducible) representation of SL(2,C) x
Id =2 SL(2,C) on the typical fibre of (0 ® p) &2 0 ® o ® 0. One can say
that the direct sum decomposition is obtained by restricting the representation
of SL(2,C) x SU(3) to a representation of SL(2,C), the double cover of the
restricted Lorentz group. One says that the SU(3)-symmetry has been broken.
This symmetry breaking is referred to as ‘formal’ because it doesn’t correspond
to a physical process.

A direct sum of free-particle bundles can be thought of as the free-particle
bundle which represents the generalization of the free-particles represented by
the individual bundles. It is in this sense that a quark with the strong force
switched on, can be thought of as a generalization of three quarks. Using the
metaphorical language of quark colours, a quark with the strong force switched
on can be thought of as a generalization of a red quark, a green quark, and a
blue quark. However, the fact that the tensor product bundle o ® p represents an
interacting-quark, and the individual bundles in the direct sum decomposition
are bundles that would represent a free-quark, indicates the artifice of such
thinking.

There is a significant difference between the strong force and the electroweak
force. Whilst the space of connections for the strong force decomposes as
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dim su(3)
“p)= P T'M

under formal symmetry breaking, the space of connections for the electroweak
force decomposes as

CW)=EN) B (T M@ N) ® T M,

an orthogonal direct sum decomposition under spontaneous symmetry breaking,
(Derdzinski, [20], p104-111).

Under formal symmetry breaking, the affine bundle €(¢) of electroweak
connections decomposes into T"M &T* M S T*M & T*M. A choice of gauge,
i.e. a cross-section of P,, has the dual effect of rendering %(¢) canonically iso-
morphic with the translation bundle T*M ® u(¢), and rendering the bundle
of skew-adjoint endomorphisms u(:) canonically isomorphic with the product
bundle M x u(2). A choice of gauge therefore renders %’(¢) canonically iso-
morphic with T*M ® (M x u(2)). A choice of basis in the Lie algebra u(2)
renders M x u(2) canonically isomorphic with &*(M x R!). In turn, this ren-
ders T* M ® (M xu(2)) canonically isomorphic with @*T* M. Formal symmetry
breaking therefore suggests that there are four interaction carriers for the unified
electroweak force, each of which is represented by cross-sections of the bundle
T* M, the bundle for a real vector boson, a neutral particle of spin 1 and parity
—1.

Under spontaneous symmetry breaking, one obtains a different decomposi-
tion of the affine bundle %(¢) of electroweak connections. Instead of using a
choice of gauge and a choice of Lie algebra basis to determine a decomposition,
one uses a constant length cross-section 1y of ¢ to select the decomposition.
However, the decomposition selected is not uniquely determined by the cross-
section 1yg...

Given a choice of 1y, the cross-section decomposes each fibre of ¢ into Ciyg +
¥g. This, in turn, selects a sub-bundle W (¢) of u(¢) consisting of endomorphisms
in each fibre which are such that ayy € ¥y and a(yg) C Cipy. Each fibre of
W (.) is a 2-dimensional real vector space. The choice of 1y alone determines a
decomposition of u(z) into W (z) + W (v).

Each fibre of the bundle of skew-adjoint endomorphisms u(¢) can be equipped
with a positive-definite metric ( , )p, 4, the choice of which is determined by
two positive real numbers pg, gg. These two numbers are related to the value of
the Weinberg angle 6 by tan? § = pg/qo.

If the fibre metric in u(¢) is fixed, and a choice of 1)y is fixed, the direct
sum decomposition of u(¢) into W(t) + W+(¢) is orthogonal, but no finer de-
composition is determined by the combination of ¥ and (, )p,.q- TO Obtain
a decomposition which is consistent with the four observed interaction carriers
of the broken electroweak force, one must use empirical considerations to select
an orthogonal decomposition of W+ (1) into a pair of real line bundles. With
these considerations, one defines y(¢) as the endomorphisms in each fibre of ¢
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which are such that aiy = 0, and one defines Z(1) = v*(¢). One then obtains
the orthogonal direct sum decomposition of u(¢):

u(e) =y(e) + W)+ Z(1)
It follows that the translation bundle 7*M ® u(:) decomposes as

T*"Mu(t) =T*MYL) + T"-MOIW(L)+T*M® Z(1)

Now, the cross-section 9 selects an affine sub-bundle %, (¢) consisting of
all the U(2)-connections on ¢ which make vy parallel. This affine bundle has
T*M ® (1) as its translation space bundle. Because the translation bundle of
the affine bundle @y, (¢) is T*M ® v(¢), the translation bundle of the following
affine bundle

Cpo(0) + T" MW () + T*M® Z(0),

is
T"M@y() +T"MW () +T"M® Z(1).

This is simply the translation bundle T*M ® u(¢) of %(:) under the orthog-
onal direct sum decomposition obtained above. Hence, the affine bundle
Cpo (V) FT* MW (1) +T*M® Z(1) and the affine bundle €(¢) possess the same
translation bundle. Given that an affine bundle can be rendered isomorphic with
its translation bundle, affine bundles with isomorphic translation bundles must
be isomorphic affine bundles. Hence, we have obtained an orthogonal affine
bundle decomposition:

C(1) = Cp () + T MRW() + T* M Z(1)

To complete this spontaneous symmetry breaking decomposition, one must
note some further isomorphisms. One has the affine bundle isomorphism
Gy (L) = € (N), obtained by defining A = v, and by restricting to A = -
those connections on ¢ which make vy parallel. One then has the isomorphisms
W) =2 Xand Z(¢) 2 (M x R). One then obtains the final decomposition

CW)=ZEN) + T M@ N+ T*M

The T* M summand corresponds to the Z° particle, a strictly neutral, spin
1 particle, but (T*M ® )) is the interacting particle bundle for W*, a spin 1
particle with the charge of an electron. The affine bundle ¢’(\) represents the
photon 7. Formal symmetry breaking has € (\) = T*M, hence the photon is a
strictly neutral, spin 1 particle.

When an interaction is ‘switched on’, one must deal with pairs (1, V?),
where 1) is a cross-section of the interacting-particle bundle «, and V° is a
connection on the interaction bundle d, (Derdzinski, [20], p84). Such pairs must
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satisfy coupled field equations, consisting of (i) the interacting field equation
upon the cross-sections ¢ of «, and (ii) the coupled Yang-Mills equation upon

the curvature Rvé of the connection V? on 4:

P (@, 9(@), (V" @ V°)$)(2), (V! @ V°)*¥)(),...) =0

div RV’ = CoJ (1)

The move from 7 to «, and the move from the use of V" in the free field equation,
to the use of (V7 ® V?) in the interacting field equation, is often referred to as
the ‘minimal coupling substitution’.

These coupled equations are non-linear, entailing that the set of all pairs
(v, V%) which solve the coupled equations does not possess a linear vector space
structure. Given a choice of gauge which renders %(d) canonically isomorphic
with T*M ® (M x g), the set of all pairs (1, V?) which solve the coupled
equations constitutes a non-linear subset of I'(a) x I'(T*M @ (M x g)). The
interacting field equation imposed upon the cross-sections v of « is linear, but
contains V° within its very definition. If one fixes V°, then the space of cross-
sections 1 of a which solve the interacting field equation, is a linear vector
space, but this should not be considered as the state space for the interacting
particle. Each different 1 entails a different current J (1), and a different V°
solving the coupled Yang-Mills equation div RV’ = Cy.J () with respect to
this current. This feeds back to the definition of the covariant derivative in the
interacting-particle equation, hence one cannot treat the solutions ¢ and V°
separately.

5 Composite systems

A bound and stable collection of particles can be referred to as a composite
system. In such a bound state, the particles involved tend to neutralize each
other’s ability to interact with the environment, so bunches of more than one in-
teracting particle can be described by the cross-sections of a free-particle bundle,
(Derdzinski, [20], p86-88).

Consider a collection of n particles, represented individually by cross-sections
of the vector bundles aq, ..., a,. If the collection is not necessarily considered
to form a bound system, it is represented collectively by cross-sections of the
cartesian product vector bundle oy X -+ - X o, (Derdzinski, [20], p22). The base
space of this cartesian product bundle is the cartesian product Mi x - - - x M,, of
the individual base spaces. However, the typical fibre of the cartesian product
vector bundle is understood to be the tensor product V; ® --- ® V,, of the
individual typical fibres, and not the cartesian product of the individual typical
fibres.

To emphasize, the vector bundle for the collection of n-particles is not the
n-fold tensor product bundle a1 ® --- ® ay,, but the n-fold cartesian product
aq X -+ X an. This is actually consistent with the quantum theoretical principle
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that the state space of a n-particle system is (a subspace of) the n-fold tensor
product of the individual particle state spaces. Given that the state space of an
interacting particle is not a linear vector space, let us suppose that each of the
vector bundles aq, ..., a, is a free-particle bundle, and that the state space of
each particle k is a vector subspace of the set of cross-sections I'(cy;). Consider
the simple case where each bundle «y is trivial, and the set of cross-sections
is isomorphic to F(M,C™), the space of C™-valued functions on M. Two
isomorphisms need to be considered here. Firstly,

FM,C") 2 FM)eC™
and then the fact that

n
Q) F(M) = F(M™)
It follows from these isomorphisms that

n

&) F(M,Cm) = ®(f(/\/l) ® C™)
)& (T

N]_-Mn ®Cm

[
®=
Kﬁ

= F(M", ®<cm

Given the assumption that I'(ay) =2 F(M,C™),

T(a1) @ @T(ay) = @f/\/tcmz F(M™,( ®<cm

This demonstrates, under the assumptions made here, that the states of the
n-particle system are represented by cross-sections of a vector bundle which has
a cartesian product M" as base space, and a tensor product ®"C™ as typical
fibre. In the case where I'(ay) = F(M,C™),

FM" (K C™) = T(ar x -+ x an))

hence

Tla)) @ @T(apn) Zl(a1 X - X)) ZT(01 @ - R ay,))

The vector bundle for a collection of n particles which are bound together to
form a composite system, is the n-fold tensor product a; ® -+ - ®@ ay, C g X -+ - X
a,. In other words, one restricts the base space to the subset of My x --- x M,
consisting of n-tuples (x1, ..., Z,) in which 1 = x5 = - -+ = x,,. This is naturally
isomorphic to M, (Derdzinski, [20], p22). From the fact that oy ® -+ ® a,, C
Q1 X+ X, it follows that (o ® -+ ®a,) C T'(ag X -+ X ). Hence, the fact
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that the bound states of an n-particle system are cross-sections of a1 ® - - - ® auyy,
remains consistent with the principle that the state space of a n-particle system
is (a subspace of) the n-fold tensor product of the individual particle state
spaces. Note, however, that particles require interactions to bind together, so
the ay will be interacting particle bundles in this case.

A composite system can possess orbital angular momentum about its centre
of mass, and as a consequence, if a composite system has an orbital angular
momentum of /A, its states belong to S§T* M ®@a; ®- - ® ay,, (Derdzinski, [20],
p12-13). (The S{T*M factor for the orbital angular momentum of a compos-
ite system should be distinguished from the SET*M factor for an elementary
system with intrinsic spin). There is then a surjective bundle morphism onto
a free-particle bundle 7, which represents the bound states of the composite
system as if it were a free elementary particle:

A composite system of spin s and mass m can be represented, in the con-
figuration space approach, by the cross-sections of a spin-s free-particle bun-
dle which provide mass m solutions to the relevant differential equation. The
Hilbert space constructed from these cross-sections is, under Fourier trans-
form, the Hilbert space for a spin s, mass m particle in the Wigner approach.
Hence, the irreducible unitary representations of the local symmetry group,
SL(2,C) ® R*!, can be used to represent not only free elementary particles,
but also stable and bound collections of elementary particles. A composite sys-
tem of spin s and mass m can be represented by Wigner’s spin s, mass m, uni-
tary, irreducible representation of SL(2,C) @ R*!. One might conclude from
this that the unitary, irreducible representations of SL(2,C) ® R*! specify not
merely the possible free elementary particles which can exist in a universe, but
all the possible free stable particles which can exist in a universe, whether they
be elementary or composite. One might also conclude that the irreducibility
of a representation of SL(2,C) ® R*! does not entail the elementarity of the
corresponding particle.

To resist this conclusion, one can argue that stable and bound collections of
elementary particles can only be idealised as free particles, given that interac-
tions are necessary to hold the parts together, and given that the constituent
particles do not exactly neutralize each other’s ability to interact with the en-
vironment. Whilst a free elementary particle is a physical idealisation, it is a
perfectly consistent concept. In contrast, a free composite particle is a concep-
tual idealisation. A free composite particle is only a consistent concept if one
idealises away any residual effects of the interactions which make the system a
composite system.

6 Baryons, Mesons and Hadron symmetries

The interacting elementary particles in each fermion generation can be parti-
tioned into so-called ‘multiplets’ by finite-dimensional irreducible representa-
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tions of the Standard Model gauge group SU(3) x SU(2) x U(1). However,
composite particles can also be partitioned into multiplets by group represen-
tations. In particular, composite systems which participate in the strong force,
referred to as ‘hadrons’, can be partitioned into hadron multiplets, (Derdzinski,
[20], p138-154). Hadrons are divided into quark-antiquark pairs, called mesons,
and quark triples, called baryons. The set of hadrons are partitioned into mul-
tiplets by representations of SU(n), for each 2 < n < 6. These symmetries are
referred to as hadron symmetries. The partition is different for each value of n.

The set of 6 quark flavours can also be partitioned into multiplets by repre-
sentations of SU(n), for each 2 < n < 6. These symmetries are referred to as
flavour symmetries. Once again, the partition is different for each value of n.
In the case of n = 3, it is important to distinguish this symmetry group from
the SU(3). colour symmetry group.

In general, if a hadron or a quark is represented by a free-particle bundle
7, then one obtains a hadron or quark multiplet by taking the tensor product
n® (M x W), where W is a complex vector space possessing an SU (n)-structure,
for 2 < n < 6. The number of hadrons or quarks in the multiplet equals the
dimension of W.

For each n, it is the lightest n quarks which belong to the SU(n) quark
flavour n-plet, with the remaining quarks each belonging to SU(n) singlets.
Given that the free-particle bundle of each quark flavour is the Dirac spinor
bundle o, the SU(n) quark flavour n-plet is housed by the vector bundle ¢ ®
(M x C™), where C™ possesses the SU(n)-structure which corresponds to the
standard representation of SU(n). Given a choice of oriented, orthonormal basis
in C", this vector bundle can then be decomposed into an n-fold direct sum of
.

For example, for n = 3, the u, d, s quarks belong to the SU(3) quark flavour
triplet. The free-particle bundle for this triplet is 0 ® (M x C?). Given the
choice of an oriented, orthonormal basis in C3, this bundle decomposes into
ocdodo.

Consider the baryons and mesons composed of the u,d, s quarks and their
antiquarks. Given the interacting particle bundle for an individual quark, o ® p,
a meson is represented by a free-particle bundle 7 satisfying the following map

ST"M@o@p5070 —1

and a baryon is represented by a free-particle bundle 7 satisfying the following
map

SST"MR0pR0@pR0@p —1n

The SU(3) meson multiplets are the multiplets of mesons composed of the
u,d, s quarks and antiquarks. To obtain the vector bundles which represent
these meson multiplets, one begins by forming the u, d, s interacting quark mul-
tiplet bundle o ® p ® (M x C3) and the u,d, s interacting antiquark multiplet

bundle 7 ® 5 ® (M x C3). Then one forms the 2-fold tensor product bundle
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cRPOMxCHRFTR5® (M x C3)

Adding the orbital angular momentum space, and re-arranging, one obtains

SiT"M @0 p5075® (M x C*@C3)

Using the surjective bundle morphism for mesons,

S(T"-M @00 pR7275 —1

one then obtains

n® (M xC3eC3)

Next, one looks for a decomposition of the representation of SU(3) on C*@C?
into irreducible direct summands. For each irreducible direct summand W, the
vector bundle n ® (M x W) represents a meson multiplet, with the dimension
of W being the number of mesons in the multiplet. In the case of C3 @ C3, it
decomposes into the direct sum of the 8-dimensional adjoint representation of
SU(3), and the 1-dimensional trivial representation. Hence, there are 8 mesons
composed of u, d, s quarks in one SU(3) octet, and one u, d, s meson in an SU(3)
singlet.

The SU(3) baryon multiplets are the multiplets of baryons composed of
the u,d, s quarks. To obtain the vector bundles which represent these baryon
multiplets, one begins by forming the u, d, s interacting quark multiplet bundle
0 ®p® (M x C3), and then one forms the 3-fold tensor product bundle

cRpRIMxCHRoRpIMxCHRo®pe (M x C?)

Adding the orbital angular momentum space, and re-arranging, one obtains

SST"M@0@pR0QpR0@p® (M xC3oC3eC?)

Using the surjective bundle morphism for baryons,

SST"MR0@pR0@pR0@p —1n

one then obtains

n®MxCeC*eC?)

Next, one looks for a direct sum decomposition of the representation of SU(3)
on C? ® C? ® C3 into irreducible direct summands. For each irreducible direct
summand W, the vector bundle n ® (M x W) represents a baryon multiplet,
with the dimension of W being the number of baryons in the multiplet. In the
case of C? ® C? ® C?, it decomposes into the direct sum of the 10-dimensional
space S3(C?) of symmetric tensors, two copies of the 8-dimensional adjoint
representation, and the 1-dimensional space of antisymmetric tensors A3(C3).
Hence, there are 10 baryons composed of u,d, s quarks in one SU(3) decuplet,

36



two SU(3) octets containing u, d, s baryons, and one u, d, s baryon in an SU(3)
singlet.

The hadron symmetry group SU(2) is referred to variously as the isotopic
spin group, the isospin group, and the isobaryic spin group. The hadron symme-
try group SU(2) should be distinguished from the weak isospin group SU(2)y..
The neutron and proton belong to an SU(2) hadron symmetry doublet. Al-
though each nucleon is a baryon, and can therefore be housed in the three-fold
tensor product 0 ® p ® 0 ® p ® 0 ® p, because each nucleon is a bound state
it can be treated as if it is a free elementary particle, housed in a free particle
bundle 1, and because it is a spin-1/2 particle, the free particle bundle is a
Dirac spinor bundle o. The neutron-proton doublet is then housed in the vector
bundle o ® (M x C?) = o G o, where C? is equipped with an SU(2)-structure. It
requires the choice of an oriented, orthonormal basis with respect to this SU(2)
structure in C2, to select a decomposition into ¢ @ o, and to thereby select a
neutron sub-bundle and a proton sub-bundle.

7 Does an elementary particle have a unique in-
trinsic state?

J.M.G.Fell has argued that an elementary particle has only one ‘intrinsic’ state,
(Fell and Doran, [27], p29-32).5 1 will argue below that this claim is not consis-
tent with the mathematical objects used to represent an elementary particle.

Recall that each free particle corresponds to a unitary representation of the
local, external (space-time) symmetry group SL(2,C) ® R?!. In the ‘passive’
approach to external symmetries, SL(2,C) @ R3! acts upon the set of (local)
inertial reference frames. Each g € SL(2,C) ® R*! maps a reference frame o
to a reference frame go. For each type of free particle, the group element g is
represented by a unitary linear operator T, on a Hilbert space. If v is the state
of a system as observed from a reference frame o, then w = Tyv will be the
state of the system as observed from the reference frame go. Fell argues that
if v and w are a pair of unit vectors in a Hilbert space such that w = T v for
some g € SL(2,C) ® R*!, then “in a sense,” v and w, “(or rather the rays
through them) describe the same ‘intrinsic state’...for the transition from one
state to the other can be exactly duplicated by a change in the standpoint of
the observer,” ([27], p30-31).

The state of a physical object is the set of all properties possessed by that
object. Let us agree to define an intrinsic property of an object to be a property
which the object possesses independently of its relationships to other objects,
and let us also agree to define an extrinsic property of an object to be a property
which the object possesses depending upon its relationships with other objects.
If the value of a quantity possessed by an object can change under a change of
reference frame, then the value of that quantity must be an extrinsic property
of the object, not an intrinsic property. The value of such a quantity must be

PR . .
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a relationship between the object and a reference frame, and under a change of
reference frame, that relationship can change.

When the intrinsic state of an object doesn’t change, it means that the in-
trinsic properties of the object don’t change. The extrinsic properties of an
object, its relationships with other objects, in particular its relationships with
a reference frame, can change even if the intrinsic properties of the object don’t
change. Hence, the intrinsic state of an object can remain unchanged even
though the overall state of the object, taking into account its extrinsic proper-
ties, does change.

To claim that an object has only one intrinsic state, as Fell claims for an
elementary particle, means that it can only possess one particular set of intrinsic
properties.

Fell assumes that the irreducibility of a representation is the defining char-
acteristic of an elementary particle representation, and argues that the group
action is “essentially” transitive upon the state space of such a representation.
He argues, therefore, that an elementary particle has only one ‘intrinsic’ state.
“It can never undergo any intrinsic change. Any change which it appears to
undergo (change in position, velocity, etc.) can be ‘cancelled out’ by an appro-
priate change in the frame of reference of the observer. Such a material system
is called an elementary system or an elementary particle. The word ‘elemen-
tary’ reflects our preconception that, if a physical system undergoes an intrinsic
change, it must be that the system is ‘composite’, and that the change consists
in some rearrangement of the ‘elementary parts’,” ([27], p31). Fell implies that
when an elementary system is observed to undergo a change within some ref-
erence frame o, it is the particle’s relationship to the reference frame o which
changes, not any of the particle’s intrinsic, non-relational properties.

The first objection to this argument is that the irreducible representations of
SL(2,C) ® R>! can be used to represent stable, composite systems as well as
elementary systems. If irreducibility entails only one intrinsic state, then stable,
composite systems would also have only one intrinsic state.

The argument that irreducibility itself entails only one intrinsic state is
flawed anyway. This argument only has plausibility if one thinks in terms of
classical particle mechanics. In quantum theory, there is no reason why the
irreducibility of a particle representation should entail that there is only one
intrinsic state. The field-like aspects of particles in quantum theory make for an
infinite-dimensional state space. This is true in non-relativistic quantum me-
chanics, first-quantized relativistic quantum theory and second-quantized rela-
tivistic quantum theory. Because a free elementary particle is represented in
the first-quantized theory by an infinite-dimensional irreducible representation
of SL(2,C) ® R3!, the finite-dimensional space-time symmetry group cannot
act transitively upon the state space. There are many changes in the state of an
elementary particle which cannot be cancelled out by a change in observational
standpoint. In fact, there is an uncountable infinity of such changes! This is
essentially because the state of an elementary particle is represented by a field-
like object, a cross-section of a vector bundle, and one can change the value
of the cross-section in an independent fashion at different points of space-time.
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A change of reference frame, in the restrictive, Special Relativistic sense man-
dated by SL(2,C) ® R>!, is a more rigid, global transformation. SL(2,C) acts
transitively® upon the set of one-dimensional subspaces in the typical fibre of a
free particle bundle 7, but the transformation

fof=22(4) f(A (2 — a))

permits only a global SL-symmetry in each fibre, and a global shift in reference
frame, a global shift in the field values assigned to coordinate quadruples. The
idea that an elementary particle has only one intrinsic state is destroyed by the
infinite-dimensional nature of particle representations in quantum theory.

Mathematically, it is quite possible to introduce an infinite-dimensional
group of external symmetries. Each fibre of a free particle bundle 7 is equipped
with an SL(2, C) structure, hence one has an automorphism bundle SL(7), con-
sisting of all the automorphisms in each fibre of 1. The typical fibre of SL(n) is
isomorphic to SL(2,C). The space of cross-sections £ = I'(SL(n)) is the group
of vertical bundle automorphisms of 7. &€ provides an infinite-dimensional group
which acts upon the cross-sections of the free-particle bundle n. Given a cross-
section ¢ (z) of n, and an element a(x) of &, the cross-section is simply mapped
to a(x)y(x). It seems reasonable to call &€ = T'(SL(n)) a group of external
(space-time) symmetries because it provides a double cover of T'(SOy(TM)),
the infinite-dimensional group of local oriented Lorentz transformations. This
is the group of vertical automorphisms of the oriented Lorentz frame bundle.
The latter consists of all the orthonormal bases {e, : p© = 0,1,2,3} of the
tangent spaces at all the points of the manifold M, such that each ey is a
future-pointing, timelike vector, and such that each {e; : i = 1,2, 3} is a right-
handed triple of spacelike vectors. This principal fibre bundle has the restricted
Lorentz group SOg(1,3) as its structure group. A cross-section of the automor-
phism bundle SOy(T M) selects a linear isometry of the tangent space at each
point, and thereby maps an oriented Lorentz frame at each point into another
oriented Lorentz frame.

To reiterate, whilst SL(2,C) @ R*! does act upon cross-sections of 7 as
well as the base space, Minkowski space-time M, it does not act transitively
upon the space of cross-sections. Given that SL(2,C) acts transitively upon
the set of one-dimensional subspaces in the typical fibre of 1, and given that
the choice of SL-symmetry can be locally varying in the infinite-dimensional
group € = I'(SL(n)), one needs to take a combination of this group with a
group of transformations of the base space M, to obtain a group which does act
transitively upon the space of cross-sections. Consider SL(2,C) ® R>!, treated
purely as point transformations of the base space. In this sense, SL(2,C) @ R*?
consists of the ‘active’ counterparts of the group of transformations between
inertial reference frames. The combination of £ with this group acts transitively
upon the set of cross-sections in 7 representing free particle states. Hence, if £
and SL(2,C) ® R*! were both physical symmetry groups of a free elementary
particle, then a free elementary particle would only have one intrinsic state.

SPrivate communication with Shlomo Sternberg
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Recall, however, that a free particle bundle 1 houses many different particle
species. The various %, s which are constructed out of cross-sections of n
are not invariant under the action of the infinite-dimensional group £. Whilst
one particular particle may be represented by the space constructed from the
mass m, positive-energy solutions of a differential equation in 7, the group & is
more than capable of mapping such cross-sections into objects which solve that
differential equation for a different mass value, or which don’t solve the equation
at all. The automorphism group of each .54, s is the unitary group % (Hn,s)
into which SL(2,C) ® R*! is mapped, as manifested under Fourier transform
in the Wigner representation. £ is not a group of automorphisms of any &, ,
even if it is the group of vertical automorphisms of 7.

Note that Fell includes changes of velocity, i.e. accelerations, amongst the
things which can be cancelled out by a change of reference frame. This implies
that Fell is not merely thinking of the transformations between inertial reference
frames provided by SL(2,C) ® R*!, but general coordinate transformations.
It also implies that he considers an interacting elementary particle to only have
one intrinsic state. By definition, a free particle cannot undergo acceleration,
hence a representation of SL(2,C) ® R>! is quite adequate to define a free
particle.

In the case of an interacting, first-quantized, elementary fermion, one forms,
in the simplest case, an interacting particle bundle 7 ® §, and in contrast with
the free-particle case, one does use the infinite-dimensional group of vertical au-
tomorphisms of 4 as a physical symmetry group. This is a significant difference
between external symmetries and internal symmetries. Recall that the internal
symmetry group is the infinite-dimensional group of cross-sections G = I'(G(0))
of an automorphism bundle G(§). This means that any change in the internal
degrees of freedom of an interacting particle, even if the change occurs in an
independent fashion at different points in space-time, can be cancelled out by
an internal symmetry (gauge transformation). This allows the group of internal
symmetries to act transitively upon the infinite-dimensional space of internal
states of an interacting particle. The gauge groups SU(3), U(2), SU(2), and
U(1) act transitively” upon the set of one-dimensional subspaces in the typical
fibres of the relevant interaction bundles, and because an internal symmetry
is, in each case, a locally varying cross-section of the corresponding G(J), the
infinite-dimensional group G = I'(G(9)) of internal symmetries acts transitively
upon the space of internal states of an interacting elementary particle. It is
the external degrees of freedom which prevent an elementary particle, free or
interacting, from having only one intrinsic state.

To reiterate, an interacting elementary particle can undergo accelerations,
so in addition to £ and G, one would require general coordinate transformations
to cancel out all possible changes. Given that the base space M is Minkowski
space-time, one can assume that all the physical reference frames correspond
to global charts. The general coordinate transformations between physical ref-
erence frames in Minkowski space-time form an infinite-dimensional subgroup
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of Dif f(R*). The active counterparts of these particular coordinate transfor-
mations form an infinite-dimensional subgroup of Dif f(M). The groups of
vertical bundle automorphisms, £ and G, can be combined with this subgroup
of Dif f(M). For an interacting elementary particle to have only one intrin-
sic state, £, G and this subgroup of Dif f(M), would all have to be physical
symmetry groups. The fact that this subgroup of Dif f(M) is not a physical
symmetry group entails that an acceleration is an intrinsic change of state.
One can define the physical symmetry group to be the group under which
the intrinsic properties of an object remain unchanged. Conversely, one can
define intrinsic properties to be those properties which remain unchanged under
the action of the physical symmetry group, and extrinsic properties to be those
properties which change under the action of the physical symmetry group.

Fell claims that a composite object can possess different intrinsic properties
at different times, but he also appears to hold an ‘endurantist’ notion of the
identity of an object over time. The endurantist position holds that the same
object is capable of possessing a property at one time, and not possessing that
property at another time. Now, one can argue that properties which are ca-
pable of being possessed by an object at one time, and not being possessed at
another time, are properties which are possessed in relation to certain times,
(Weatherson, [13], Section 1.1). If moments of time correspond to the state of
other objects in the universe, then one might argue that properties which are
possessed by an object in relation to certain times, must be extrinsic properties.
Under this argument, then, the endurantist position entails that all properties
capable of change must be extrinsic properties. Under the endurantist view, one
might have to concede that the changing properties of all objects, composite or
elementary, are extrinsic properties.

There is, however, an alternative ‘perdurantist’ view, which holds that an
object has temporal parts, and different temporal parts can possess different
properties. Under the perdurantist view, the different temporal parts can pos-
sess different intrinsic properties.

In perdurantism, the ascription of a property to an object at a particular
time corresponds to the ascription of a property to a temporal part of a 4-
dimensional object. The proposition ‘x possesses F at time t’ means that ‘x’
is a 4-dimensional object which has a temporal part ‘t’ possessing the property
‘F’. Quentin Smith describes the notion of temporal parts in these terms: “If an
object x is a whole of temporal parts, then x is composed of distinct particulars,
each of which exists at one instant only, such that whatever property x is said
to have at a certain time is [possessed by] the particular (temporal part) that
exists at that time,” ([28], p84). With the notion of temporal parts, an object
can be defined to undergo change if “one temporal part of x possesses a certain
property F' at one time and...another temporal part of x does not possess F at
another time,” ([28], p84). Smith contrasts the ‘temporal parts’ notion of change
with the notion that “the particular that possesses the property at one time is
identical with the particular that does not possess the property at another time,”
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(28], p84).

One might claim that any object, composite or elementary, can possess dif-
ferent intrinsic properties at different times. This, and Fell’s claim that only
a composite object can possess different intrinsic properties at different times,
may both be inconsistent with endurantism, but consistent with perdurantism.

To render the notion of variable intrinsic properties consistent with enduran-
tism, may require one of the following lines of attack: one might argue that an
object can possess an ‘internal’ clock, hence the claim that an object can only
possess a changing property in relation to certain times does not entail that such
properties are only possessed by an object depending upon its relationships with
other objects. In addition, one might argue that a changing property can be
an intrinsic property even if the times at which it is possessed by an object
are relationships between that object and other objects in the universe. The
intrinsic-ness of a property, one might argue, is not affected by the relationships
which are necessary to define the times at which it is possessed.

8 What is an interacting elementary particle in
the Standard Model?

To reiterate, whilst a free elementary particle in our universe corresponds to an
infinite-dimensional, irreducible unitary representation of the ‘external’ space-
time symmetry group SL(2,C) ® R*!, an interacting elementary particle trans-
forms under the external symmetry group SL(2,C) ® R*!, and an infinite-
dimensional group of gauge transformations G. The latter is associated with
a compact, connected Lie group G, the ‘gauge group’ or ‘internal symmetry
group’ of the interaction(s) in question. The spectrum of interacting elementary
particles which can exist, and the mathematical definition of what an interact-
ing elementary particle is, changes with different gauge groups. All the non-
gravitational interactions in our universe are collected together, and partially
unified, in the so-called ‘Standard Model’. This Standard Model has a gauge
group G = SU(3) x SU(2) xU(1) which includes the strong force, and unifies the
electromagnetic and weak interactions. This gauge group defines which inter-
acting elementary particles are consistent with the electroweak-unified Standard
Model: they are those which belong to interacting particle bundles or interac-
tion carrier bundles possessing a finite-dimensional irreducible representation of
SL(2,C)xSU(3)xSU(2)xU (1) upon their typical fibres. However, because our
universe has undergone electroweak symmetry breaking, the gauge group has
broken from SU(3) x SU(2) x U(1) into SU(3) x U(1)q, and the interacting ele-
mentary particles with which we are most familiar, actually correspond to bun-
dles that possess a finite-dimensional representation of SL(2,C)x SU(3)xU(1)q
upon their typical fibres.

The spectrum of interacting elementary particles, and the definition of what
an interacting elementary particle is, changes again in a Grand Unified Theory
(GUT), where the gauge group unifies the strong and electroweak interactions.
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For example, in the Spin(10) GUT, an interacting elementary fermion corre-
sponds to an interacting particle bundle which possesses a finite-dimensional
irreducible representation of SL(2,C) x Spin(10) upon its typical fibre. For
the collection of distinct elementary fermions identifiable in each fermion gen-
eration of today’s universe, there is only one corresponding elementary fermion
in the Spin(10) GUT. Such an elementary fermion is represented by an inter-
acting particle bundle o7, ® ¢, (Derdzinski, [20], p127). The interaction bundle
¢ is a complex vector bundle of fibre dimension 16, which possesses the irre-
ducible spinorial representation of Spin(10) upon its typical fibre, whilst o, is
the left-handed Weyl spinor bundle, possessing the (1/2,0) irreducible repre-
sentation of SL(2,C) upon its typical fibre. o, ® ¢ is a complex vector bundle
of fibre dimension 32, which is capable of representing an entire fermion gener-
ation, such as (e, v.,u,d), as a single elementary fermion. The fermions which
are considered to possess distinct identities after GUT symmetry breaking and
electroweak symmetry breaking, are merely considered to be different states
of a single fermion in the Spin(10) GUT. After symmetry breaking, changes
between such states are no longer possible, and different types of elementary
fermions are identifiable. GUTSs permit transmutations between the quarks and
leptons in a fermion generation because they are represented as merely quark
states and lepton states of a single type of elementary fermion. After GUT sym-
metry breaking, quarks and leptons become elementary fermions with distinct
identities.

Supersymmetry attempts to take this process a step further, postulating a
Supergroup as the gauge group, so that bosons and fermions can be treated as
merely different states of the same type of elementary particle.

In the Standard Model of the particle world in our universe, a select col-
lection of finite-dimensional irreducible representations of SL(2,C) x SU(3) x
SU(2) x U(1) are said to define the elementary particle multiplets. A particle
multiplet in our universe can be represented by an interacting particle bundle «
or interaction carrier bundle 7*M ® g(J) which possesses a finite-dimensional
irreducible representation of SL(2,C) x SU(3) x SU(2) x U(1) upon its typical
fibre. The gauge bosons and each generation of interacting elementary fermions
are partitioned into multiplets by a collection of finite-dimensional irreducible
representations of SU(3) x SU(2) x U(1), each of which is tensored with a
finite-dimensional irreducible representation of SL(2,C).8

This select collection of finite dimensional irreducible representations of
SL(2,C)x SU(3) x SU(2) x U(1) define the set of actual interacting elementary
particles, boson or fermion, consistent with the electroweak-unified Standard
Model. These irreducible representations only correspond to multiplets when
interpreted in terms of the spectrum of interacting elementary particles consis-
tent with the electroweak-broken Standard Model. It is the gauge bosons and

8Because these representations of SU(3) x SU(2) x U(1) have a common Zg-kernel, the
gauge group of the Standard Model is arguably SU(3) x SU(2) x U(1)/Z¢. See McCabe, [1],
Chapter 5, for a full account.
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interacting elementary fermions which exist after electroweak SSB which are
partitioned into multiplets by the finite-dimensional irreducible representations
of SL(2,C) x SU(3) x SU(2) x U(1). Also note that whilst the elementary
interacting particles consistent with the electroweak-unified Standard Model,
correspond to irreducible representations of SL(2,C) tensored with irreducible
representations of the gauge group SU(3) x SU(2) x U(1), the elementary in-
teracting particles consistent with the electroweak-broken Standard Model, cor-
respond to reducible or irreducible representations of SL(2,C) tensored with
irreducible representations of the gauge group SU(3) x U(1)g.

With the tacit understanding that each of the following representations is
tensored with an irreducible representation of SL(2,C), the particles in the first
fermion generation are partitioned into multiplets by a select collection of finite-
dimensional irreducible representations of SU(3) x SU(2) x U(1) in the following
way, (Baez, [14] and [15]; Schiicker, [29], p30-31):

e The neutrino and the ‘left-handed’ part of the state-space of the electron
(v, er), transform according to the (1,2,-1) irreducible representation of
SU(3)xSU(2)xU(1). i.e. The tensor product of the trivial representation
of SU(3) with the 2-dimensional standard representation of SU(2) with
the 1-dimensional representation of U (1) with hypercharge -1.

e The left-handed part of the state-spaces of the up quark and down
quark (ur,dr) transform according to the (3,2,1/3) representation. i.e.
The tensor product of the standard representation of SU(3) with the
2-dimensional standard representation of SU(2) with the 1-dimensional
representation of U(1) with hypercharge 1/3.

e The right-handed part of the state-space of the electron er transforms
according to the (1,1,-2) representation.

e The right-handed part of the state-space of the up quark ug transforms
according to the (3,1,4/3) representation.

e The right-handed part of the state-space of the down quark dg transforms
according to the (3,1,-2/3) representation.

The list of particle multiplets here is based upon the assumption that the
neutrino is massless.

The irreducible representations of U(1) are specified here by the hypercharge
y, which comes in integer multiples of 1/3. However, because the irreducible
representations of U(1) are indexed by the integers, one needs to take 3y to
obtain the index of the U(1) representation. In other words, the hypercharge y
representation of U(1) maps €% to €*3¥%. The standard representation of SU(3)
is denoted here by a ‘3’ to signify the dimension of the representation, and
the standard representation of SU(2) is denoted by a ‘2’, again to signify the
dimension of the representation.
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Each irreducible representation of SU(3) x SU(2) x U(1) corresponds to at
least one vector bundle which possesses that representation upon its typical
fibre.

The only two free-particle bundles used in the Standard Model multiplets
are oy and op, the left-handed and right-handed Weyl spinor bundles, re-
spectively. These bundles possess upon their typical fibres the (1/2,0) and
(0,1/2) complex, finite-dimensional, irreducible representations of SL(2,C).
The interacting-particle bundles which correspond to elementary fermion mul-
tiplets in the Standard Model, are obtained by tensoring a Weyl spinor bun-
dle with an interaction bundle that possesses an irreducible finite-dimensional
representation of SU(3) x SU(2) x U(1). Hence, to specify which elementary
fermion multiplets exist in the Standard Model, it is first necessary to specify
which finite-dimensional irreducible representations of SU(3) x SU(2) x U(1)
are selected for use.

Given that the interacting elementary particles with which we are most
familiar are the interacting elementary particles which exist after electroweak
symmetry breaking, when the gauge group has changed from SU(3) x SU(2) x
U(1) to SU(3) x U(1)q, the interacting elementary fermions with which we
are most familiar correspond to interacting particle bundles which possess a
representation of SL(2,C) x SU(3) x U(1)g upon their typical fibres. The
representation of SL(2,C) upon the typical fibre of such bundles is often a
reducible direct sum representation, corresponding to the Dirac spinor bundle
o =0y +0R.

As ever, it must be emphasized that the state spaces of interacting fermions
and gauge bosons are not finite-dimensional, nor are they the vector space rep-
resentations, reducible or irreducible, of any group. The finite-dimensional irre-
ducible representations of the Standard Model gauge group, SU(3) x SU(2) x
U(1), either correspond to representations upon the typical fibres of interacting-
particle bundles, or to adjoint representations upon the typical fibres of inter-
action carrier bundles, whilst the state spaces of interacting fermions and gauge
bosons are constructed from cross-section spaces of these bundles.

If an interaction bundle § possesses a finite-dimensional representation of
SU(3) x SU(2) x U(1) upon its typical fibre, then given a free-particle bundle 7
equipped with a finite-dimensional representation of SL(2,C) upon its typical
fibre, the interacting particle bundle « constructed from § and 7 will possess a
finite-dimensional representation of SL(2,C) x SU(3) x SU(2) x U(1) upon its
typical fibre. If the representation of SU(3) x SU(2) x U(1) is irreducible, if the
representation of SL(2,C) is irreducible, and if the interacting particle bundle
is the tensor product a = 7 ® d, then the representation of SL(2,C) x SU(3) x
SU(2) x U(1) upon the typical fibre of o will also be irreducible.

If the state space, or part of the state space, of an interacting fermion is
represented by a set of cross-sections of the interacting particle bundle o =
n ® J, then these states of the interacting particle, these cross-sections of «,
transform under a group action of SL(2,C) ® R3!, and under the action of
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the infinite-dimensional group of gauge transformations G = I'(G(d)), with G =
SU(3) x SU(2) x U(1).

An elementary fermion multiplet in the electroweak-unified Standard Model,
typically contains parts of the state spaces of one or more of the elementary
fermions which exist after electroweak symmetry breaking. In addition, different
parts of the state space of an elementary fermion after electroweak symmetry
breaking can correspond to different irreducible representations of SL(2,C) x
SU(3) x SU(2) x U(1).

It is sometimes said that the particles in a multiplet can transform into each
other under a gauge transformation. If true, this would mean that the finite-
dimensional irreducible representations of SL(2,C) x SU(3) x SU(2) x U(1)
determine which particles, or which parts of the state spaces of particles, can
transform into each other under a gauge transformation. However, the different
sets of cross-sections which represent the different particles within a fermion
multiplet, are often defined by the requirement that they satisfy differential
equations with respect to different values of mass. This implies that the states
of the different particles within a multiplet cannot transform into each other
under a gauge transformation. The state space parts contained in a multiplet
may be cross-sections of the same vector bundle, but they are disjoint subsets
of the space of bundle cross-sections.

The direct sum of all the interacting-particle bundles of the elementary
fermion multiplets, possesses upon its typical fibre a reducible representation
of SL(2,C) x SU(3) x SU(2) x U(1). This reducible representation is the direct
sum of the irreducible representations corresponding to each multiplet. The di-
rect sum interacting particle bundle represents a generalized particle, a sort of
amalgam of all the elementary fermions whose state space parts were contained
in the multiplets.

Although it is possible for two elementary particles, or parts of their state
spaces, to correspond to the same finite-dimensional irreducible representation
of SU(3) x SU(2) x U(1), but to different finite-dimensional irreducible repre-
sentations of SL(2,C), this does not occur in our universe.

The anti-particle multiplets correspond to the conjugate/dual irreducible
representations of SU(3) x SU(2) x U(1). If a particle multiplet uses the index
k irreducible representation of U(1), then the anti-particle multiplet uses the
index —Fk irreducible representation. In terms of the irreducible representations
of SU(n), for n > 2, with spins (s1,...,S,—1), the conjugate representation is
the (sp—1, ..., $1) representation, (Derdzinski, [20], p134). In general, this means
that the conjugate representation is an inequivalent irreducible representation,
but note, as an exception, that the conjugate representation is equivalent in
the special case of SU(2). The inner product in each representation space
establishes an equivalence between the conjugate representation and the dual
representation.

Given an interaction bundle § which possesses an irreducible representation
of SU(3) x SU(2) x U(1), the conjugate bundle § possesses the conjugate/dual
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representation.

Given an interacting particle bundle n ® ¢, the interacting anti-particle bun-
dle is 7 ® 8. The interacting particle bundles which represent the elementary
fermion multiplets of the Standard Model are obtained by tensoring either left-
handed oy, or right-handed or Weyl spinor bundles with interaction bundles
that possess irreducible representations of SU(3) x SU(2) x U(1). Now, o1, and
or are mutually conjugate bundles i.e. or = 0. Hence, given a particle multi-
plet bundle o, ®4, the anti-particle multiplet is represented by oz ®4, and given
a particle multiplet bundle o ® §, the anti-particle multiplet is represented by
or ® J.

Given that each irreducible representation of SU(3) x SU(2) x U(1) is pos-
sessed by the typical fibre of at least one vector bundle, one can form the
direct sum of the particle multiplet interaction bundles to obtain an interac-
tion bundle k = @®,d; which possesses the reducible direct sum representation
(1,2,-1)®(3,2,1/3)®(1,1,-2)®(3,1,4/3)® (3,1, —2/3) upon its typical fibre.
One can then form the following interacting particle bundles: o, ® K, o ® K,
or, R, and og ®%. Given that « is a direct sum of interaction bundles Kk = ®;;,
it follows that

oL ®Kk=®;(0p ® )

and

R ® Kk =®;i(0r ® )
and

oL ®F = ®;(0L ®6;)
and

OR®F = ®i(0r ® 0;)

Note, however, that within the multiplets of a fermion generation, both
right and left-handed Weyl spinor bundles are tensored with the bundles that
possess the irreducible representations of SU(3) x SU(2) x U(1). Some of the
particle multiplets are represented by interaction bundles tensored with oy,
and some are represented by interaction bundles tensored with og. Similarly,
within the multiplets of an anti-fermion generation, both right and left-handed
Weyl spinor bundles are tensored with the bundles that possess the irreducible
conjugate representations of SU(3) x SU(2) x U(1). Hence, some of the particle
anti-multiplets are represented by interaction bundles tensored with o7, and
some are represented by interaction bundles tensored with og. It is therefore
incorrect to represent a fermion generation with either o7 ® k or og ® K, and it
is incorrect to represent an anti-fermion generation with either o7, ® K or cg ® K.

To conclude, and to return to the main question of this section, an in-
teracting elementary particle is the type of thing which is represented in the
first-quantized, electroweak-unified Standard Model, to be a cross-section of a
bundle over space-time possessing a finite-dimensional irreducible representation
of SL(2,C) x SU(3) x SU(2) x U(1) upon its typical fibre.
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