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Abstract

According to Jens Høyrup, the propositions 1 to 10 of book 2 of Euclid’s Elements function as a critique of previous non-rigorous procedures of Old Babylonian mathematics. Høyrup’s remarks on his notion of critique are disseminated throughout his works. Here, we take them into account to make an integrated presentation of the notion of critique that also looks to reveal features left implicit in Høyrup’s account.
1. Introduction
Addressing the relation of Old Babylonian mathematical procedures and those of Euclid’s Elements (in particular problems 1 to 10 of book 2), Høyrup considers that Old Babylonian procedures are “geometric and reasoned though ‘naive’” (Høyrup 2007, p. 9). This is to be contrasted with the propositions in Euclid's Elements. Regarding the proposition 6 of book 2 (II.6), Høyrup writes:

Euclid’s text does not solve a problem; what it does is to make a “critique” (in quasi Kantian sense) of the traditional naive technique, showing that what was traditionally “seen” to be correct can in fact be proved according to the best standards of theoretical geometry. But apart from the insertion of the argument in a deductive structure, where earlier propositions are made use of, the basic idea of the proof remains the same [...] Elements II.1–10 is evidently not meant to open new land but to go carefully over and thus consolidate the well-known [...] – to be a “critique of mensurational reason”, showing why and under which conditions (e.g., really right angles) the traditional ways could be accepted. (Høyrup 2007, pp. 10-11)

To better understand what is implied in this excerpt we must take into account that for Høyrup, “critique [is] understood as investigation of the conditions and limits of the validity of the argument” (Høyrup 2011, p. 10); or as he puts it elsewhere, “critique” is intended to determine the “extent to which and the conditions under which [a procedure] is justified” (Høyrup 2004, p. 19).

     According to Høyrup, the proposition II.6 corresponds to “problems where sides are added to or subtracted from square areas and to rectangular problems where the difference between the sides is given” (Høyrup 2002, pp. 96-97). Høyrup gives BM 13901 #1 and YBC 6967 as examples of procedures for which II.6 shows why and under which conditions we can sustain the correctness of the procedures (Høyrup 2007, pp. 10-1; Høyrup 2011, pp. 31). 

     Even if II.6 corresponds to “exactly what is done for instance in YBC 6967” (Høyrup 2002, p. 97), there are significant differences. A first aspect we can take into account is that:

The Old Babylonian areas and lines are measurable […] their magnitude can be calculated in numbers; nothing similar is found in the Elements. (Høyrup 2002, p. 98)

Regarding how the Old Babylonian procedure is articulated, Høyrup calls the attention that:  

[YBC 6967] says nothing about parallel lines, and does nothing to demonstrate that one rectangle equals another. It tacitly takes for granted that if the excess length is bisected, then the part of the rectangle that lies along this excess belongs together with it. Instead of proving that another rectangle is equal to the moiety of the excess it moves the piece around, making it “hold” a square area (without arguing explicitly that this area is square) together with that part of the excess that remains in place. (Høyrup 2002, pp. 97-98)

According to Høyrup:

In this sense, the Babylonian method is naive. We see immediately that the procedure is correct, and we have to make an effort to see what precisely we have presupposed when believing that [a rectangle] when moved to fit unto [the remaining part of the initial figure, in this way forming a gnomon] will contain a square. (Høyrup 2002, p. 98)

Instead, in the Elements: 
Euclid […] is able to show, on the basis of definitions, postulates and common notions, that everything is as it should be, provided that angles are really right according to the definition, etc. That is, he presents us with a critique of traditional mensurational reason. (Høyrup 2011, p. 31)
In this work, we will address Høyrup’s notion of critique by considering his main example, that of II.6 being a critique of Old Babylonian procedures like YBC 6967. In section 2 we will consider the procedure YBC 6967. Section 3 addresses proposition II.6. Finally, section 4 tries to clarify Høyrup’s notion of critique by taking into account the previous sections.
2. Old Babylonian procedures. The case of YBC 6967
Let us start directly by considering the procedure in the tablet YBC 6967:

Obverse 
1.    [The igib]ûm over the igûm, 7 it goes beyond

2.    [igûm] and igibûm what?

3.    Yo[u], 7 which the igibûm
4.    over the igûm goes beyond

5.    to two break: 3°30´;

6.    3° 30´ together with 3° 30´

7.    make hold: 12°15´.

8.    To 12°15´ which comes up for you

9.    [1` the surf]ace append: 1`12°15´.

10.  [The equalside of 1`]12°15´ what? 8°30´.

11.  [8°30´ and] 8°30´, its counterpart, lay down.

Reverse
1.    3°30´, the made-hold,

2.    from one tear out,

3.    to one append.

4.    The first is 12, the second is 5.

5.    12 is the igibûm, 5 is the igûm.

In this problem, we consider two numbers, the igûm (“the reciprocal”) and the igibûm (“its reciprocal”), whose product is 60. Treating these numbers as the width and length of a rectangular, its area is 60. We are told that the length exceeds the width by 7. The procedure to determine the length and width goes as follows (see figure 1). After drawing a rectangle representing the pair of reciprocals, we (can imagine to) mark the position where the “excess” of the length over the width begins and mark also the middle point of the “excess”. Then, according to Høyrup:

This excess is bisected and the rectangle transformed into a gnomon, still of area 60, which is “appended” to the completing square [with an area of] 12 1/4. The side of the completed square – its “equalside” – must then be 8 1/2, which is “laid down” together with “its counterpart”, as two sides of the completed square. “Tearing out” that part of the excess which was moved in order to “hold” the complement (termed takīltum, “the made-hold”) we get the igûm; putting it back to its original position we restore the igibûm. (Høyrup 2002, p. 57)
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Figure 1. Cut-and-paste manipulations in the procedure YBC 6967.
Let us go through the procedure step by step. In line 1 we are told that the reciprocal (igibûm) of a number (igûm) exceeds it by 7. This number must be understood in the context of an implicit metrological system: the number signifies a concrete quantity. As Eleanor Robson mentioned:
Numbers […] were attributes of sets of countable objects (4 beer jugs, 600 sheep, middle-size grain storage jars) or properties of measurable objects (a field boundary of 10 rods-which can itself be thought as a set of standard-length measuring rules). (Robson 2008, p. 52)

It might not be clear to what concrete quantities we might associate the igûm and the igibûm. We know that when considering numbers associated with the metrological systems for horizontal length or area, in the procedures the units of these numbers are not written and remain implicit (Høyrup 2002, p. 17). Also, during the mathematical procedures, numbers (known or unknown) are identified with measurable segments (Høyrup 2002, p. 34), even if in the last stance these numbers might be attributed to another metrological system.
 This means that we might consider that the igûm and the igibûm are given in nindan (approximately 9 m), which is the basic unit of horizontal distance (Høyrup 2002, p. 17).

     In line 2 we are explicitly asked to find the two unknown numbers, the igûm and the igibûm. Line 3-5 must be interpreted in terms of cut-and-paste manipulations.
 In the first place, we consider the igûm and the igibûm as the width and the length of a rectangle (see figure 1 top). Here we need to pause. What is a rectangle in Old Babylonian mathematics? First, we must consider the following:

Old Babylonian area geometry is based on defining components: external lines […] in many cases, the names for the defining component and the figure itself are identical. Both the circle and the circumference have the Akkadian name kippatum from the verb kapāpum “to curve”, while both the square and its side are called mitḫartum, from the reflexive stem of maḫārum “to be equal and opposite” […] These naming conventions are not mere happenstance but the result of a fundamentally boundary-oriented conceptualization of two-dimensional space. (Robson 2008, p. 64) 
Regarding the rectangle, while the Akkadian name is not very informative (see Robson 2008, 64), the larger side is named “flank” or “long side” while the other side is named “front”, which corresponds, in actual rectangular land plots, to the side parallel to an irrigation channel (Høyrup 2002, p. 34; Mori 2007, p. 48). We must also notice that while the sides of the rectangle can be related to measured lengths, nothing is said about adjacent sides making a right angle. According to Høyrup while there was no theoretical concept of right angle in Old Babylonian mathematics, “a practical concept of the right angle relevant for area measurements, must have existed” (Høyrup 1990, p. 287, footnote 121). While Babylonian field plans or geometrical diagrams are in general, in Robson’s words, “topological rather than metrical” (Robson 2008, p. 61), it is also the case that right angles are tentatively drawn as such; the other angles can be quite different from the value they should have; e.g., in the field plan MIO 1107, an angle of 120º appears in the drawing as 180º (Høyrup 2002, p. 105). But, it is also the case that the Old Babylonians made figures that, importantly, can be considered as “metrical”. The drawings in tablet BM 15285, that originally consisted in around forty illustrated geometric problems, are in Høyrup’s words “fairly precise” (Høyrup 2002, p. 105; for the drawings see Robson 2008, pp. 48-49). According to him, “even on the convex reverse of BM 15285, the supposedly right angles never err by more than 5º” (Høyrup 2002, p. 105).

      On tablet MS 3051 we find the drawing of an equilateral triangle inscribed in a circle and in tablet TMS 1 we find the drawing of an isosceles triangle also inscribed in a circle. As Jöran Friberg remarks, these drawings are “made to scale so that the proportions are correct” (Friberg 2007, p. 210) and, according to Høyrup, “the circle [in TMS 1] is drawn with a compass, and the sides and height of the inscribed triangle traced after a ruler” (Høyrup 2002, p. 265). The height of the isosceles triangle, divides it, so to speak, in two right-angled triangles, making an accurate rendering of right angles. In this way, it is attested the drawing of circles with a compass, the drawing of lines with a ruler, and possibly some aid to draw perpendicular lines.

     Returning to YBC 6967, following the indications of lines 3-5, we must “break” the “excess” of the length to the width in two equal parts; i.e., we bisect the rectangle at the distance 3,5 nindan from its extremity and move that part and attach it to the square (that is part of the rectangle) with sides equal to the igûm, in this way forming a gnomon (see figure 1 center). In lines 6-7 two segments with a length of 3,5 nindan are taken to determine or “hold” a square. This square has an area of 12,25 sar (or square nindan). In lines 8-9 we “append” to this square the gnomon (the “surface”), which has the same area as the initial rectangle, 60 sar. The completed figure – forming a large square – has an area of 72, 25 sar. In line 10 we determine the square root (the “equalside”) of the square, which is 8,5 nindan. In line 11, we “lay down” one of the sides of the square and its “counterpart”, which possibly means drawing two lines with length 8,5 nindan, or simply writing down the value next to two sides of the large square (Høyrup 1990, p. 264; Høyrup 2002, p. 40). In lines 1-3, on the reverse side of the clay tablet, we “tear out” (subtract) 3,5 nindan from one side, obtaining 5 nindan, which is the width of the rectangle (i.e. the igûm), and we “append” (add) to another side the 3,5 nindan, obtaining 12 nindan, which is the length of the original rectangle (i.e. the igibûm) (see figure 1 bottom). Lines 4-5 gives us these values.
     In Høyrup’s view, this procedure made in terms of cut-and-paste manipulations, which presupposes a practical geometry, is naive (Høyrup 2002, p. 98). This can be easily seen when contrasting the Old Babylonian approach with that of Euclid:

Instead of intuitively cutting pieces off the rectangle and moving them around. the first part of the proof constructs a diagram, in which equality of various parts can be argued with theoretical rigor. (Høyrup 2002, p. 98)

Being a form of “mensurational reason” (i.e. based on a practical geometry) the Old Babylonian procedures lack the notion of (exact) equality. We simply cannot show the exact equality of various parts of a geometric diagram. Even the first manipulation of the initial rectangle has a vagueness that cannot be avoided.  In practical geometry, we cannot bisect the rectangle exactly at the distance 3,5 nindan from its extremity. To mark the point where we will bisect the rectangle we need to resort, e.g., to a ruler. Using it, we can determine not an exact point but a point that is in an interval given by 3,5  ( (n nindan, where (n is the uncertainty in the measurement made with the adopted instrument. This uncertainty is inherent to the measurement – a value resulting from a measurement cannot be an exact value, there is always an uncertainty associated with it (Taylor 1997, pp. 8-9). Besides the lack of a notion of (exact) equality, there is also no fully developed notion of angle or at least right angle. Whatever notion of right angle existed it was a conception not mature enough to be framed in relation to a metrological system that made possible angle measurements. But, even if this had been the case, we would still have left the problem of having the uncertainty in the value of a hypothetical numerical angle determined in terms of a practical geometry. Without having (exact) right angles one simply cannot guarantee, e.g., that opposite sides of rectangular figures are parallel. This is to be contrasted with the construction in II.6 where Euclid “carefully constructs by means of parallels” (Høyrup 2017, pp. 190-191). In these circumstances, it was impossible for Old Babylonians to determine the “extent to which and the conditions under which [a procedure] is justified” (Høyrup 2004, p. 19).
3. Elements II.6 as a critique of the procedure in YBC 6967 

Let us consider the proposition II.6 which is the locus of Høyrup's view that (part of) the planar geometry of the Elements is a critique of Old Babylonian procedural texts addressing similar matters. The relevant part of proposition II.6 for our purpose is as follows:

For let any straight line AB be bisected at the point C, and let a straight line BD be added to it in a straight line. I say that the rectangle contained by AD, DB together with the square on CB is equal to the square on CD. For let the square CEFD be described on CD, [Prop. 1.46] and let DE be joined; through point B let BG be drawn parallel to either EC or DF, through the point H let KM be drawn parallel to either AB or EF, and further through A let AK be drawn parallel to either CL or DM. [Prop. 1.31] 
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Figure 2. Lettered diagram of proposition 6 of book 2.
Then, since AC is equal to CB, AL is also equal to CH. [Prop. 1.36] But CH is equal to HF. [Prop. 1.43] Therefore AL is also equal to HF. Let CM be added to each; therefore the whole AM is equal to the gnomon NOP. But AM is the rectangle AD, DB, for DM is equal to DB; therefore the gnomon NOP is also equal to the rectangle AD, DB. Let LG, which is equal to the square on BC, be added to each; therefore the rectangle contained by AD, DB together with the square on CB is equal to the gnomon NOP and LG. But the gnomon NOP and LG are the whole square CEFD, which is described on CD; therefore the rectangle contained by AD, DB together with the square on CB is equal to the square on CD. (Euclid 1956 vol.1, pp. 385-386) 
Here, we reproduce the part where the lettered diagram
 is constructed and the part where the deductive reasoning
 is made considering this construction. According to Høyrup, the part corresponding to the deductive reasoning “follows the pattern of the cut-and-paste procedure of YBC 6967 precisely” (Høyrup 2005, p. 104). Let us recall that in this procedure a small rectangle is cut from the one initially constructed and attached to it forming a gnomon. This area detached from the figure corresponds in II.6 to the rectangle AL, and when attached in a new position to the rectangle HF. In the procedure, we form a small square which corresponds in II.6 to the square LG (the square on CB). The large square in the procedure, formed by “appending” the gnomon to the small square, corresponds in II.6 to the square CEFD. In fact, if we look at figure 1 bottom, representing all the positions of areas during the cut-and-paste manipulations it is similar to the diagram of II.6. The evident difference is that in II.6 “we do not move areas around and glue them together, [e.g.] we prove that one area ([the rectangle AL]) is equal to another ([the rectangle HF])” (Høyrup 2005, p. 104). 
     According to Høyrup, it is the rigorous construction of the diagram that distinguishes II.6 from the Old Babylonian procedure of YBC 6967: “the important difference is the presence of the first part” (Høyrup 2005, p. 104). In this way, “the first part […] of proposition II.6 can thus be seen as a critique which consolidates the well-known. (Høyrup 2005, p. 105)
As we will see just next, while Høyrup places the critique in the construction of diagrams, this refers only to II.6 “on its own” and not to all the previous propositions it relies on. Due to the structure of the Elements, we cannot make a clear separation of a construction part and the deductive part since many constructions rely on previously proven propositions. In fact, Høyrup explicitly acknowledges the role of definitions, postulates, and common notions, which evidently are not part of II.6 (Høyrup 2011, p. 31), and mentions that “earlier propositions are made use of” (Høyrup 2007, p. 10).
     To understand how constructions are made, it will be sufficient to address the very first step of the construction in II.6: “For let any straight line AB be bisected at the point C” (Euclid 1956 vol.1, p. 385). In Old Babylonian practical geometry, we would simply pick up a ruler and mark the middle point of the segment. In fact, this corresponds to what is done in lines 3-5 of YBC 6967: we “break” the “excess” of the length to the width (having 7 nindan) in two equal parts; i.e. we bisect the rectangle at the distance 3,5 nindan from its extremity. 

     With the Elements, we have an altogether different situation. Segments are not measured as a (positive integer) number of base units or subunits of a metrological system; i.e., they are not determinable in relation to a concrete standard through a measuring procedure. The length of segments can be compared but not in numerical terms. A segment can be lesser or greater than another and, most importantly, equal. This is not a sort of experimental equality in which we might consider that the uncertainty is negligible. This is an exact equality. Of crucial importance is also the notion of angle. We have exactly right angles (and exact perpendicularity), obtuse angles (which are angles greater than a right angle), and acute angles (which are angles lesser than a right angle). As with the case of segments, while we can compare angles, there is no number associated to them (resulting from the existence of a metrological system for their measurement). As such, there is no uncertainty related to them. 
     In the Elements, to cut in half a segment is not a straightforward matter. We do not have the length of AB as a measured number. We must rely on previous attested (proved) constructions or steps to achieve this. This is shown in proposition 10 of book 1 (Euclid 1956 vol.1, p. 267).
 We are given a segment (a finite straight line), according to postulate 1, which is named AB. We then construct upon AB an equilateral triangle using proposition I.1. This proposition relies on the notion of circle with a radius AB in which all radii joining the center with the circle have the exact same length (that of the radius), as we can see in definitions 15 and 16, and postulate 3. From the exact equality of the radii of two circles with the same radius AB follows the exact equality of the three segments forming the sides of the triangle ACB (Euclid 1956 vol.1, pp. 241-242). Afterward, the angle ACB is cut in half by a segment CD, adopting the construction of I.9 (Euclid 1956 vol.1, p. 264), and where the notion of angle is given in definitions 8 to 12. To cut the angle ACB, which as defined is the inclination of the (adjacent) segments CA and CB, a point F is taken at random on CA, and a segment CE with the exact same length of CF is cut off from CB. The points F and E are joined forming the segment FE, and an equilateral triangle is drawn downward using the procedure of I.1. We join the vertex of the downward triangle to the vertex C of the triangle ACB forming a segment that cuts exactly in half the angle ACB. This segment crosses the originally given segment AB at a point D. Now, since ACB is an equilateral triangle, AC is exactly equal to CB and CD is a segment shared by the two triangles ACD and BCD, which as we have seen have exactly equal angles at the vertex C. By proposition I.4, if two triangles have two sides equal between them and equal angles enclosed by their sides, then their bases are exactly equal (Euclid 1956 vol.1, pp. 247-248). In this way, the segment AD is exactly equal to the segment BD, and so point D cuts exactly in half the segment AB.
     As we can see, the very first step in the construction in II.6 relies on definitions, postulates and common notions (e.g. in I.1); also, on the exactness of the length of segments, and on the exactness of angles (making possible an exact angle to be cut in two exact halves). Importantly, it also relies on a deductive reasoning taking advantage of these “exactnesses”.
    This is, according to Høyrup, where the critique of Old Babylonian procedures like YBC 6967 is manifested. It is now the moment to look closer at Høyrup’s articulations of his notion of critique, distinguish between several aspects of it, and consider the views presented in this section.
4. Høyrup’s “critique” in the light of Elements II.6
First, we must understand that “critique” is not a commentary on mathematics but something that is manifested in the mathematics itself. One can notice it, e.g., by comparing different moments of mathematical development. According to Høyrup, an elementary form of critique is already at work in the Old Babylonian period. As he mentions, “though less important than in Greek geometry, critique is not absent from Babylonian mathematics” (Høyrup 2012, p. 377). This can be noticed, e.g., in the adoption of a norm of concreteness in some procedures. Regarding this issue, we can notice in the lines 2-3 of the reverse of tablet YBC 6967 that before “appending” 3º30´to the left side of the gnomon, it is first “torn out” from below (see figure 1 bottom). In their mathematical terminology, we have “from one tear out, to one append”. As Høyrup notices, “early Old Babylonian texts present the same step in analogous problems, often in a shortened phrase “append and tear out”” (Høyrup 2012, p. 379). What we have then in YBC 6967 is the adoption of a norm of concreteness – if they were thinking in terms of cut-and-paste manipulations that could be realized in practice then one cannot “append” previous to “tearing out”. As such the further development of the mathematical terminology corresponds to – and is a trace of – a critique of older “less rigorous” ways. “Critique” then has two related meanings: a) as parts of newer mathematics that we take to improve on parts of previous mathematics; b) as the actual process of criticism and analysis that must have existed leading to the noted changes and which can only be attested by these changes in the mathematics and not by “second-order” commentaries.
     Some of Høyrup’s comments in his writings refer to meaning b). For example, Høyrup mentions that the inclusion of a parallel postulate in the Elements responds to a “metatheoretical critique” (Høyrup 2012, p. 377). However, “critique” is here to be understood as the meaning a). In this way, e.g., the proposition II.6 “is an instance of deliberate critique” (Høyrup 2017, p. 191). When considered in relation to previous mathematics that we find non-rigorous, the propositions II.1-10 themselves are a critique that consolidates previous naive mathematics: “the whole sequence Elements 1-10 can be shown […] to be critiques of the techniques used to solve the traditional riddles” (Høyrup 2011, p. 31). With this same meaning a), Høyrup writes that we can make a critique of BM 13901 #1 by “emulating the proof of Elements II.6” (Høyrup 2010, p. 14, footnote 18). That is, the procedure II.6 is the critique. 
     As we have already seen in the previous section, Høyrup is even more specific. He makes a clear distinction between two parts of the proposition. We can identify one of them as the construction of the lettered diagram, and the other as the deductive reasoning made taking into account this diagram. According to Høyrup:
The first part of the proof constructs a diagram, in which equality of various parts can be argued with theoretical rigor; what goes on in the second part is then equivalent to the naive procedure, but because of the way the diagram is constructed it is no longer naive. (Høyrup 2002, p. 98)
The implication of this view in relation to the notion of critique is made explicit in another writing:

The second part of the proof follows the pattern of the cut-and-paste procedure of YBC 6967 precisely. The important difference is the presence of the first part. Thanks to this, things are not just “seen”, they are as firmly established as required by the norms of Greek geometry […] The first part of the proof of proposition II.6 can thus be seen as a critique which consolidates the well-known. (Høyrup 2005, pp. 104-105)
The construction of a lettered diagram is the critique of older ways. Recalling the introduction, we can notice that this critique as embodied in the construction is supposed to have two aspects. The construction of the diagram is taken to show “why and under which conditions […] the traditional ways could be accepted” (Høyrup 2002, p. 401). In a way, by showing its own rigor and how it is established, the construction of the diagram gives us the “limits” within which the naive approach must be taken to operate to be justifiable. 
     Regarding the conditions in the light of which the construction is rigorous, Høyrup mentions:

Euclid […] is able to show, on the basis of definitions, postulates and common notions, that everything is as it should be, provided that angles are really right according to the definition, etc. (Høyrup 2011, p. 31)
From this excerpt, we can notice that while the critique is articulated in the construction it needs the definitions, postulates and common notions to be realized. This is made clear in relation to the crucial notion of angle. According to Høyrup:
An early step in the unfolding of Greek theoretical critique was the establishment of definitions […] Of particular interest are the definitions of the various classes of (rectilinear) angles [...] A clear notion of a right angle is evidently essential for making proofs like that of Elements II.6. (Høyrup 2005, p. 106)
Regarding the “why”, it is somewhat implicit in Høyrup’s writings, because it is by setting the conditions in a particular way and making the construction in a particular way that we see why the construction is rigorous and why in the light of this the older approach might be acceptable (as a sort of approximation to the rigorous approach; an aspect also left implicit by Høyrup). Accordingly:

[propositions II.1–10] presuppose the definition of what a right angle is (likely never to have been discussed by the practical geometers of earlier times, who will have had no difficulty in distinguishing a good from a skew corner) as well as the postulate that was necessitated by this definition (since it turned out not to be self-evident from the definition that all right angles are equal). On this basis, the proof of II.6 (which we may take as our prototype) constructs the rectangles and squares [of the diagram] meticulously and shows the necessary equalities; in this way the text shows that what had “always” been done is indeed justifiable on the best theoretical foundations.  (Høyrup 2004, p. 141)

Several important features are left somewhat implicit in Høyrup’s articulations of his notion of critique, both in relation to the “conditions” as to the “why”. These can be seen in our presentation of the first step of the construction in II.6. The construction itself relies on a deductive reasoning where each necessary element is ultimately justified in terms of definitions, postulates, and common notions. The deductive character that, in relation to II.6 considered on its own, Høyrup locates in the second “non-critique” part of the proof, in fact, is also present in the construction (since it relies on previous propositions). In this way, it is one of the elements of the “why” the constructions are rigorous. Other crucial elements implicit in Høyrup’s views are what we have called the exactness of segments and angles (which in terms of the concepts of the Elements means that they are magnitudes;
 see books 5 and 6). It is not simply that we have definitions and postulates, e.g., in relation to segments and angles. The main point is that segments and angles are “things” to which the common notions apply. For example, common notion 1 states that “things which are equal to the same thing are also equal to one another” (Euclid 1956 vol. 1, p. 222). Segments and angles are such that, e.g., two segments or two angles can be exactly equal. As mentioned previously, they can also be compared in term of one being lesser than or greater than the other. This is the crucial aspect that enables, by adopting a deductive reasoning within the construction, to show, afterward, “the necessary equalities” (Høyrup 2004, p. 141). The exactness of segments and angles, to which Høyrup points to when, e.g., mentioning “really right angles” (Høyrup 2007, p. 11), are essential elements of the “conditions” of propositions as critique.
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� See, e.g., Høyrup (2002, pp. 55-57). Regarding the notation adopted in the reconstruction of lost or damaged passages, see, e.g., Høyrup (2002, p. 42).


� For example, in YBC 4663 we have at some point to calculate the reciprocal of a wage (Robson 2008, p. 89). If we cannot have this value directly by consulting a reciprocal table, we need to determine it by a cut-and-paste procedure like YBC 6967 in which the wage is implicitly treated as a length in nindan (Robson 2008, pp. 107-109).


� Regarding the cut-and-paste procedures or manipulations, adopted by Old Babylonians to solve mathematical problems see, e.g., Høyrup (2002, pp. 11-14), Høyrup (2010).





� On the lettered diagrams of Greek mathematics see chapter one of Netz (1999).


� On the deductive reasoning in the Elements see Avigad et al. (2009).


� We changed some of the letters in a couple of lettered diagrams of other propositions considered in the proof of I.10 so that we can refer to the various constructions within the presentation of proposition I.10.


� According to Ian Muller, “the most appropriate interpretation of magnitudes in the Elements involves construing them as abstractions from geometric objects which leave out of account all properties of those objects except quantity: i.e., length for lines, area for planar figures, volume for solids, size, however characterized, for angles” (Muller 1981, p. 121).
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