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Abstract

Historians recently rehabilitated Einstein’s “physical strategy” for

General Relativity (GR). Independently, particle physicists similarly

re-derived Einstein’s equations for a massless spin 2 field. But why

not a light massive spin 2, like Neumann and Seeliger did to Newton?

Massive gravities are bimetric, supporting conventionalism over geo-

metric empiricism. Nonuniqueness lets field equations explain geome-

try but not vice versa. Massive gravity would have blocked Schlick’s

critique of Kant’s synthetic a priori. Finally in 1970 massive spin 2

gravity seemed unstable or empirically falsified. GR was vindicated,

but later and on better grounds. However, recently dark energy and

theoretical progress have made massive spin 2 gravity potentially vi-

able again.
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1 Einstein’s Physical Strategy Re-

Appreciated by GR Historians

Einstein’s General Relativity is often thought to owe much to his var-

ious principles (equivalence, generalized relativity, general covariance,

and Mach’s) in contexts of discovery and justification. But a promi-

nent result of the study of Einstein’s process of discovery is a new

awareness of and appreciation for Einstein’s physical strategy, which

coexisted with his mathematical strategy involving various thought

experiments and principles. The physical strategy had as some key in-

gredients the Newtonian limit, the electromagnetic analogy, coupling

of all energy-momentum including gravity’s as a source for gravity,

and energy-momentum conservation as a consequence of the grav-

itational field equations alone (Janssen, 2005; Brading, 2005; Renn,

2005; Renn and Sauer, 1999; Janssen and Renn, 2007; Renn and Sauer,

2007). Einstein’s mathematical strategy sometimes is seen to be less

than compelling (Norton, 1995; Stachel, 1995), leaving space that one

might hope to see filled by the physical strategy.

It has even been argued recently, contrary to longstanding views

rooted in Einstein’s post-discovery claims (Feynman et al., 1995), that

he found his field equations using his physical strategy (Janssen and

Renn, 2007). Just how the physical strategy led to the field equations

is still somewhat mysterious, resisting rational reconstruction (Renn

and Sauer, 2007).

2 Particle Physicists Effectively Rein-

vent Physical Strategy

There is, however, an enormous body of relevant but neglected physics

literature from the 1920s onward. In the late 1930s progress in par-

ticle physics led to Wigner’s taxonomy of relativistic wave equations

in terms of mass and spin. “Spin” is closely related to tensor rank;

hence spin-0 is a scalar field, spin-1 a vector, spin-2 a symmetric ten-

sor. “Mass” pertains to the associated “particles” (quanta) of the field

(assuming that one plans to quantize). (The constants c and ~ are set
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to 1.) Particle masses are related inversely to the range of the relevant

potential, which for a point source takes the form 1

r
e−mr . Hence the

purely classical concepts involved are merely wave equations (typically

second order) that in some cases also have a new fundamental inverse

length scale permitting algebraic, not just differentiated, appearance

of the potential(s) in the wave equation—basically the Klein-Gordon

equation. Despite the facade of quantum terminology—there is no

brief equivalent of “massive graviton”—much of particle physics liter-

ature is the systematic exploration of classical field equations covariant

under (at least) the Poincaré group distinctive of Special Relativity—

though the larger 15-parameter conformal group or the far more gen-

eral ‘group’ of transformations in General Relativity are not excluded.

Hence drawing upon particle physics literature is simply what elimi-

native induction requires for classical field theories.

In this context, Fierz and Pauli found in 1939 that the linearized

vacuum Einstein equations are just the equations of a massless spin-2

field (Fierz and Pauli, 1939). Could Einstein’s equations be derived

from viewpoints in that neighborhood? Yes: arguments were de-

vised to the effect that, assuming special relativity and some standard

criteria for viable field theories (especially stability), along with the

empirical fact of light bending, Einstein’s equations were the unique

result—what philosophers call an eliminative induction (Kraichnan,

1955; Gupta, 1954; Feynman et al., 1995; Weinberg, 1964; Ogievet-

sky and Polubarinov, 1965; Deser, 1970; van Nieuwenhuizen, 1973;

Boulanger and Esole, 2002). The main freedom lay in including or

excluding a graviton mass.

If particle physicists effectively reinvented Einstein’s physical strat-

egy, how did they get a unique result, in contrast to the residual

puzzles found by Renn and Sauer (Renn and Sauer, 2007)? The

biggest difference is a new key ingredient, the elimination of nega-

tive energy degrees of freedom, which threaten stability. Eliminating

negative energy degrees of freedom nearly fixes the linear part of the

theory (van Nieuwenhuizen, 1973), and fixes it in such a way that

the nonlinear part is also fixed almost uniquely. Technical progress

in defining energy-momentum tensors also helped. Such derivations

bear a close resemblance to Noether’s converse Hilbertian assertion
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(Noether, 1918)—an unrecognized similarity that might have made

particle physicists’ job easier.

3 How Particle Physics Could Have

Helped Historians of GR

The main difficulty in seeing the similarity between Einstein’s phys-

ical strategy and particle physicists’ spin-2 derivation of Einstein’s

equations is the entrenched habits of mutual neglect between commu-

nities. If one manages to encounter both literatures, the resemblance

is evident. Particle physics derivations subsume Einstein’s physical

strategy especially as it appears in the little-regarded Entwurf, bring-

ing it to successful completion with the correct field equations, using

weaker and hence more compelling premises. Thus the Entwurf strat-

egy really was viable in principle. In particular, Einstein’s appeal to

the principle of energy-momentum conservation (Einstein and Gross-

mann, 1996; Norton, 1989; Brading, 2005) contains the key ingredient

that makes certain particle physics-style derivations of his equations

successful (Pitts and Schieve, 2001), namely, that the gravitational

field equations alone should entail conservation, without use of the

material field equations. Later works derived that key ingredient as

a lemma from gauge invariance, arguably following from positive en-

ergy, arguably following from stability. Einstein’s equations follow

rigorously from special relativistic classical field theory as the sim-

plest possible local theory of a massless field that bends light and that

looks stable by having positive energy (van Nieuwenhuizen, 1973) (or

maybe one can admit only a few closely related rivals); van Nieuwen-

huizen overstated the point only slightly in saying that “general rel-

ativity follows from special relativity by excluding ghosts” (negative-

energy degrees of freedom) (van Nieuwenhuizen, 1973). Excluding

ghosts nearly fixes the linear approximation. If one does not couple

the field to any source, it is physically irrelevant. If a source is intro-

duced, the linearized Bianchi identities lead to inconsistencies unless

the source is conserved. The only reasonable candidate is the total

stress-energy-momentum, including that of gravity. As a result the
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initial flat background geometry merges with the gravitational po-

tential, giving an effectively geometric theory, hence with Einstein’s

nonlinearities (Kraichnan, 1955; Deser, 1970; Pitts and Schieve, 2001).

More recently Boulanger and Esole commented that

it is well appreciated that general relativity is the unique

way to consistently deform the Pauli-Fierz action
∫
L2 for a

free massless spin-2 field under the assumption of locality,

Poincaré invariance, preservation of the number of gauge

symmetries and the number of derivatives (Boulanger and

Esole, 2002).

Familiarity with the particle physics tradition would have shown

historians of GR that Einstein’s physical strategy was in the vicin-

ity of a compelling argument for his ‘correct’ field equations. Hence

it would not be surprising if his physical strategy played an im-

portant role in Einstein’s process of discovery and/or justification.

Might historians of GR not thus have re-appreciated Einstein’s phys-

ical strategy decades earlier? Might the apparent tortuous reasoning

(Renn and Sauer, 2007) regarding just how Einstein’s physical strat-

egy leads to Einstein’s equations have been brought into sharper fo-

cus, with valid derivations available to compare with Einstein’s trail-

blazing efforts? Let POT be the gravitational potential, GRAV a

second-order differential operator akin to the Laplacian, and MASS

be the total stress-energy-momentum, which generalizes the Newto-

nian mass density (Renn, 2005). Whereas the schematic equation

GRAV (POT ) = MASS is supposedly innocuous, particle physics

would also expose the gratuitous exclusion of a mass term, which

would require the form GRAV (POT ) + POT = MASS.

4 Massive Gravities?

One might expect that a light massive field of spin-s would approxi-

mate a massless spin-s field as closely as desired, by making the mass

small enough. Hugo von Seeliger in the 1890s already clearly made a

similar point; he wrote (as translated by Norton) that Newton’s law

was “a purely empirical formula and assuming its exactness would be
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a new hypothesis supported by nothing.” (von Seeliger, 1895; Norton,

1999) With the intervention of Neumann, which Seeliger accepted,

the exponentially decaying point mass potential later seen as charac-

teristic of massive fields was also available in the 1890s. (No clear

physical meaning was available yet, however). It is now known that

this expectation of a smooth massless limit is true for Newtonian grav-

ity, relativistic spin-0 (Klein-Gordon), spin-1/2 (Dirac), a single spin-1

(de Broglie-Proca massive electromagnetism, classical and quantized),

and, in part, a Yang-Mills spin-1 multiplet (classically, but not when

quantized) (Boulware and Deser, 1972). Hence the idea that gravity

might have a finite range due to a non-zero ‘graviton mass’ was not

difficult to conceive. Indeed Einstein reinvented much of the idea in

the opening of his 1917 cosmological constant paper (Einstein, 1923),

intending it as an analog of his cosmological constant. Unfortunately

Einstein erred, forgetting the leading zeroth order term (Heckmann,

1942; Freund et al., 1969; Norton, 1999; Harvey and Schucking, 2000).

Plausibly, Einstein’s mistaken analogy helped to delay conception of

doing to GR what Seeliger and Neumann had done to Newton’s theory.

Particle physicists would not be much affected by Einstein’s mis-

take, however; Louis de Broglie entertained massive photons from 1922

(de Broglie, 1922), and the Klein-Gordon equation would soon put

the massive scalar field permanently on the map as a toy field the-

ory. Particle physicists got an occasion to think about gravity when a

connection between Einstein’s theory and the rapidly developing work

on relativistic wave equations appeared in the late 1930s (Fierz and

Pauli, 1939). From that time massive gravitons saw sustained, if per-

haps not intense, attention until 1970 (Tonnelat, 1941; Petiau, 1941;

de Broglie, 1943; Droz-Vincent, 1959; Ogievetsky and Polubarinov,

1965; Freund et al., 1969).

One would expect that anything that can be done with a spin-

2, can be done more easily with spin-0. Thus the Einstein-Fokker

geometric formulation of Nordström’s theory (massless spin-0) is a

simpler (conformally flat) exercise in Riemannian geometry than Ein-

stein’s own theory. There are also many massive scalar gravities (Pitts,

2011a), and by analogy (Ogievetsky and Polubarinov, 1965). The

scalar case, though obsolete, is interesting not only because it is easy
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to understand, but also because massive scalar gravities manifestly

make sense as classical field theories. While massive scalar gravity has

not been an epistemic possibility since 1919 (the bending of light),

it ever remains a metaphysical possibility. Thus the modal lessons

about multiple geometries are not hostage to the changing fortunes of

massive spin-2 gravity. Massive scalar gravity also shows that (pace

(Misner et al., 1973, p. 179) (Norton, 1992)) gravity did not have to

burst the bounds of special relativity on account of Nordström’s the-

ory having the larger 15-parameter conformal group; massive scalar

gravities have just the 10-parameter Poincaré group of symmetries.

5 Explanatory Priority of Field Equa-

tions over Geometry

In GR, the power of Riemannian geometry to determine the field equa-

tions tempts one to think that geometry generically is a good expla-

nation of the field equations. Comparing GR with its massive cousins

sheds crucial light on that expectation.

A key fact about massive gravities is the non-uniqueness of the

mass term (Ogievetsky and Polubarinov, 1965), in stark contrast to

the uniqueness of the kinetic term (the part that has derivatives of

the gravitational potentials), which matches Einstein’s theory. The

obvious symmetry group for most massive spin-2 gravities is just

the Poincaré group of special relativity (Ogievetsky and Polubarinov,

1965; Freund et al., 1969); the graviton mass term breaks general

covariance. If one wishes nonetheless to recover formal general covari-

ance, then a graviton mass term must introduce a background metric

tensor (as opposed to the numerical matrix diag(−1, 1, 1, 1) or the

like), typically (or most simply) flat.

The ability to construct many different field equations from the

same geometrical ingredients supports the dynamical or constructive

view of space-time theories (Brown, 2005; Butterfield, 2007). The

opposing space-time realist view holds that the geometry of space-

time instead does the explaining. According to the realist conception

of Minkowski spacetime,
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(2) The spatiotemporal interval s between events (x, y, z, t)

and (X, Y, Z, T ) along a straight [footnote suppressed] line

connecting them is a property of the spacetime, indepen-

dent of the matter it contains, and is given by

s2 = (t − T )2 − (x− X)2 − (y − Y )2 − (z − Z)2. (1)

When s2 > 0, the interval s corresponds to times elapsed

on an ideal clock; when s2 < 0, the interval s corresponds

to spatial distances measured by ideal rods (both employed

in the standard way). (Norton, 2008)

One might worry that the singular noun “[t]he spatiotemporal inter-

val” is worrisomely ambiguous, as is the adjective “straight.” Why

can there be only one metric? Resuming:

(3) Material clocks and rods measure these times and dis-

tances because the laws of the matter theories that gov-

ern them are adapted to the independent geometry of this

spacetime. (Norton, 2008)

But (3) is false for massive scalar gravity, in which matter u sees

gµν, not the flat metric ηµν , as is evident by inspection of the matter

action Smatter[gµν , u] (Kraichnan, 1955),which lacks
√−η, the volume

element of the flat metric. Unlike space-time realism, constructivism

makes room for Poincaré-invariant field theories in which rods and

clocks do not see the flat geometry, such as massive scalar gravities.

Even if one decides somehow that massive scalar gravities, despite

being just Poincaré-invariant, are not theories in Minkowski space-

time, thus averting the falsification of space-time realism, it still fails

on modal grounds. It simply takes for granted that the world is sim-

pler than we have any right to expect, neglecting a vast array of meta-

physical possibilities, some of them physically interesting. Space-time

realism, in short, is modally provincial. Norton himself elsewhere de-

cried such narrowness in a different context: one does not want a

philosophy of geometry to provide a spurious apparent necessity to a

merely contingent conclusion that GR is the best space-time theory

(Norton, 1993, pp. 848, 849). Constructivism, like conventionalism

(Poincaré, 1913, pp. 88, 89) (Ben-Menahem, 2001; Grünbaum, 1977;
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Weinstein, 1996), does not assume that there exists a unique geome-

try; space-time realism, like the late geometric empiricism of Schlick

and Eddington, does assume a unique geometry. It is striking that

critiques of conventionalism also have usually ignored the possibility

of multiple geometries (Putnam, 1975; Spirtes, 1981; Friedman, 1983;

Torretti, 1996; Coleman and Korté, 1990; Norton, 1994).

6 Massive Gravity as Unconceived Al-

ternative

The problem of unconceived alternatives or underconsideration (Sklar,

1985; van Fraassen, 1989; Stanford, 2006) can be a serious objection to

scientific realism. Massive scalar gravity posed such a problem during

the 1910s. Massive spin-2 gravities continued to pose such a problem

for philosophers and general relativists at least until 1972, when the

unnoticed threat went away. C. 1972 a dilemma appeared: massive

spin-2 gravity was either empirically falsified in the pure spin-2 case

because of a discontinuous limit of small vs. 0 graviton mass (van

Dam-Veltman-Zakharov discontinuity), or it was violently unstable

for the spin 2-spin 0 case because the spin-0 has negative energy,

permitting spontaneous production of spin-2 and spin-0 gravitons out

of nothing. Particle physics gives, but it can also take away. More

recently particle physics has given back, reviving the threat to realism

about GR due to unconceived alternatives. While underdetermination

by approximate but arbitrarily close empirical equivalence has long

been clear in electromagnetism (Pitts, 2011b), it is now (back) in

business for gravitation as well.

For philosophers and physicists interested in space-time prior to

1972, or since 2010, not conceiving of massive gravity means suffering

from failure to entertain a rival to GR that is a priori plausible (a

decently high prior probability P (T ) if one is not biased against such

theories, and if the smallness of the graviton mass does not seem

problematic), has good fit to data (likelihoods P (E|T ) approximating

those of GR), and, crucially, has significantly different philosophical

consequences from GR.
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The underdetermination suggested by massive gravities and mas-

sive electromagnetism is weaker in four ways than the general thesis

often discussed: it is restricted to mathematized sciences, is defeasi-

ble rather than algorithmic in generating the rivals, involves a one-

parameter family of rivals that work as a team rather than a single

rival theory, and is asymmetric: the family (typically) remains viable

as long as the massless theory is, but not vice versa.

7 Schlick’s Critique of Kant’s Syn-

thetic A Priori

The years around 1920 were crucial for a rejection of even a broadly

Kantian a priori philosophy of geometry, especially due to Moritz

Schlick’s influence (Schlick, 1920; Schlick, 1921; Coffa, 1991; Bitbol

et al., 2009; Domski et al., 2010), and saw a partial retreat from

conventionalism toward geometric empiricism (Howard, 1984; Ryck-

man, 2005; Walter, 2010). Schlick argued that GR made even a

broadly Kantian philosophy of geometry impossible because the phys-

ical truth about the actual world was incompatible with it (Schlick,

1920; Schlick, 1921; Ryckman, 2005; Coffa, 1991). Coffa agreed, stuff-

ing half a dozen success terms into two paragraphs in praise of Schlick

(Coffa, 1991, pp. 196, 197). That Schlick, brought up as a physi-

cist under Planck, could, in principle, have done to Nordström’s and

Einstein’s theories what Neumann, Seeliger and Einstein had done to

Newton’s, thus making room for synthetic a priori geometry, seems

not to have been entertained. Neither was the significance of the 1939

work of Fierz and Pauli (Fierz and Pauli, 1939).

Recognizing massive gravities as unconceived alternatives, one

views Schlick’s work in a different light. Schlick argued that Gen-

eral Relativity either falsifies or evacuates Kant’s synthetic a priori

(Schlick, 1921). He then quit thinking about space-time, and was

assassinated in 1936. But post-1939, the flat background geometry

present in the field equations of massive gravity would leave a role

for Kant’s geometrical views even in modern physics after all. (This

multi-metric possibility is not the old Lötze move of retaining flat ge-
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ometry via universal forces! Such entities cannot be independently

identified, and turn out to be even more arbitrary than one might

have expected due to a new gauge freedom (Grishchuk et al., 1984;

Norton, 1994). The observability of the flat metric, indirect though

it is, makes the difference (Freund et al., 1969). One can ascertain

the difference between the two geometries, which is the gravitational

potential.) More serious trouble for Kant would arise finally when

the van Dam-Veltman-Zakharov discontinuity was discovered. Hence

Kant was viable until 1972, not 1920!—and maybe again today.

Massive gravities also bear upon Friedman’s claim that the equiv-

alence principle (viewed as identifying gravity and inertia) in GR is

constitutively a priori, that is, required for this or similar theories

to have empirical content (Friedman, 2001). Massive gravities, if the

limit of zero graviton mass is smooth as least (true for spin-0, re-

cently arguable for spin-2), have empirical content that closely ap-

proximates Nordström’s and Einstein’s theories, respectively, while

the massive spin-0 and (maybe) massive spin-2 sharply distinguish

gravity from inertia. The empirical content resides not in principles

or in views about geometry, but in partial differential field equations

(Freund et al., 1969; Brown, 2005).

8 Recent Breakthrough in Massive

Gravity

In the wake of the seemingly fatal dilemma of 1972, massive gravity

was largely dormant until the late 1990s. Then it started to reappear

due to the “dark energy” phenomenon indicating that the cosmic ex-

pansion is accelerating, casting doubt on the long-distance behavior of

GR—the regime where a graviton mass term should be most evident.

A viable massive gravity theory must, somehow, achieve a smooth

massless limit in order to approximate GR, and be stable (or at least

not catastrophically unstable). That such an outcome is possible is

now often entertained. Massive gravity is now a “small industry”

(Hinterbichler, 2012, p. 673) and is worthy of notice by philosophers

of science.
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Since 2000, Vainshtein’s early argument that the van Dam-

Veltman-Zakharov discontinuity was an artifact of an approximate

rather than exact solution procedure was revived and generalized

(Vainshtein, 1972; Deffayet et al., 2002; Babichev et al., 2010). Thus

pure spin-2 gravity might have a continuous massless limit after all,

avoiding empirical falsification. The other problem was that an exact

rather than merely approximate treatment of massive gravity shows,

apparently, all versions of pure spin-2 gravity at the lowest level of

approximation, are actually spin 2-spin 0 theories, hence violently un-

stable, when treated exactly (Boulware and Deser, 1972). This prob-

lem was solved by a theoretical breakthrough in late 2010, where it

was found how to choose nonlinearities and carefully redefine the fields

such that very special pure spin-2 mass terms at the lowest (linear) ap-

proximation remain pure spin-2 when treated exactly (de Rham et al.,

2011; Hassan and Rosen, 2012).

The answers to deep questions of theory choice and conceptual

lessons about space-time theory depend on surprises found in sorting

out fine technical details in current physics literature. Thus philoso-

phers should not assume that all the relevant physics has already been

worked out long ago and diffused in textbooks. Lately things have

changed rather rapidly, with threats of reversals (Deser and Waldron,

2013). Getting the smooth massless limit via the Vainshtein mecha-

nism is admittedly “a delicate matter” (as a referee nicely phrased it)

(de Rham, 2014).

One needs to reexamine all the conceptual innovations of GR that,

by analogy to massive electromagnetism, one would expect to fail in

massive gravity (Freund et al., 1969). Unless they reappear in mas-

sive gravity, or massive gravity fails again, then such innovations are

optional. Surprisingly many of those innovations do reappear if one

seeks a consistent notion of causality (Pitts and Schieve, 2007), includ-

ing gauge freedom, making those the robust and secure conceptual

innovations—whether or not massive gravity survives all the intri-

cate questions that have arisen recently. If massive gravity fails, then

General Relativity’s conceptual innovations are required. If massive

gravity remains viable, then General Relativity’s conceptual innova-

tions are required only insofar as they also appear in massive gravity.
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It is striking how the apparent philosophical implications can change

with closer and closer investigation.
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Renn, J. and Sauer, T. (1999). Heuristics and mathematical repre-

sentation in Einstein’s search for a gravitational field equation.

In Goenner, H., Renn, J., Ritter, J., and Sauer, T., editors, The

Expanding Worlds of General Relativity, volume 7 of Einstein

Studies, pages 87–125. Birkhäuser, Boston.
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