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Abstract 

In this paper, I evaluate the prospects and limitations of radical enactivism as recently 

developed by Hutto and Myin (henceforth, “H&M”) (2013, 2017). According to radical 

enactivism, cognition does not essentially involve content and admits explanations on a 

semantic level only as far as cognition is scaffolded with social and linguistic practices. I 

investigate their claims, focusing on H&M’s criticism of the predictive processing account 

of cognition (dubbed the bootstrap hell argument) and their own account of the emergence 

of content (the natural origins of content). I argue that H&M fail on two fronts: unsuper-

vised learning can arrive at contentful representations and H&M’s account of the emer-

gence of content assumes an equivalent bootstrapping. My case is illustrated with Skyrms’ 

evolutionary game-theoretic account of the emergence of content and recent deep learning 

research on neural language models. These arguments cast a shadow of doubt on whether 

radical enactivism is philosophically interesting or empirically plausible. 

Keywords: hard problem of content; radical enactivism; predictive processing;  

neural language models; deep learning; bootstrap hell; semantic information. 

 

1. Introduction 

In this paper, I evaluate the prospects and limitations of radical enactivism as recently 

developed by Hutto and Myin (henceforth, “H&M”) (2013, 2017). According to radical 

enactivism, cognition does not essentially involve content and admits explanations on a 

semantic level only as far as it is scaffolded with social and linguistic practices. Basic 

minds, i.e. phylogenetically and ontogenetically early cognition, are to be explained in 
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terms of dynamics, sensorimotor couplings with environment and contentless goal-

di rectedness. This is because there are, H&M claim, serious philosophical problems with 

applying a semantic-level vocabulary of representations, models, and computations: it is 

troublesome to give a non-circular account of how content emerges in the natural world. 

This worry is known as the hard problem of content (HPC).  

Numerous authors have argued this view to be indefensible, first because the HPC argu-

ment is flawed, and secondly, because H&M fail to provide a positive research program 

for cognitive science (e.g. Alksnis, 2015; Harvey, 2015; Korbak, 2015). My focus in this 

paper will be to review these two worries and evaluate whether H&M’s most recent ac-

count (in their 2017 book Evolving Enactivism) does address these worries and can be 

defended against them.  

The HPC is most relevant for modern neuroscience as a voice against predictive pro-

cessing approaches to cognition that have recently been gaining momentum (Hohwy, 

2013; Clark, 2016). I will therefore focus my discussion on the “bootstrap hell” argument, 

a special case of HPC, putatively demonstrating the failure of predictive processing. After 

that, I will reconsider H&M’s own story of the emergence of content in mature, sociocul-

turally embedded minds: the “natural origins of content,” and how well it fares. My con-

clusion is that the natural origins of content story itself must get out of its bootstrap hell, 

and if it does, the HPC is easily solvable, and the natural origins of content will lie much 

earlier in natural history than H&M claim. Therefore, radical enactivism, the claim that 

basic minds are contentless, is either false or trivial. 

 

2. Facing Backwards on the Hard Problem of Content 

Hutto and Myin argue that minds are not essentially contentful, because content-involving 

philosophical accounts of mind fall prey to the HPC. The HPC argument can be recon-

structed as follows (Korbak, 2015, p. 90): 

(T1) Ontological commitments in cognitive science must respect explanatory nat-

uralism. 

(T2) Linguistic activity is out of the scope of basic minds. 

(T3) Having content implies having certain satisfaction conditions, which deter-

mine intension and extension (if it exists). 

(T4) Every possible theory of content that attributes content to basic minds fails 

to respect either (T1), or (T2), or (T3). 

(T5) Having content is constitutive for being a representation. 

(T1)–(T5) jointly imply that representationalism, i.e., the view that cognition essentially 

involves representation, is false, which follows directly from (T4) and (T5) being true. It 

would be of major importance for cognitive science, if that were the case.  

To carry out their argument, H&M focus on the most controversial premise, (T4), and 

review several existing theories of content—including Dretske’s indicator semantics 
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(Dretske, 1983) and Millikan’s teleosemantics (Millikan, 1984). Naturalistic accounts of 

content aim at reducing content to something ontologically simpler, for instance, natural 

laws, Shannon information, or biological proper function. H&M claim that the base 

needed for a reductive explanation of content must include language use (or, in general, a 

sociocultural scaffolding of shared conventions) that appears late in phylogeny and ontog-

eny. H&M’s dismissal of existing accounts is fairly premature (Miłkowski, 2015), but I 

will not explicitly pursue this line of criticism here. Instead, I will argue against (T2). First, 

I will do this by arguing that H&M's definition of “linguistic activity” is so broad that it 

covers any and all transmission of semantic information. Second, I will argue that the 

transmission of semantic information can be found very early in natural history.  

An important point in H&M’s criticism is that covariance does not constitute content: 

growth rings of a tree may be systematically correlated with its age, but that doesn’t mean 

they are about age. Starting from this remark, they accuse most of contemporary philoso-

phy of an equivocation fallacy: not distinguishing between Shannon information1 and se-

mantic information. This is indeed an important distinction.2 Surely, the distinction counts 

for living systems: maintaining the flow of information in the body is costly and can rea-

sonably be expected to serve some aim rather than being a by-product. If Shannon infor-

mation “did not carry information about anything, nobody would be in the business of 

communicating it.” (Miłkowski, in press). For the purpose of this paper, I assume that 

what distinguishes semantic information from Shannon information is that semantic infor-

mation gives rise to satisfaction conditions (it presents the world as being such-and-such), 

which the world can meet or fail to meet. The possibility of the latter—misinformation—

is an important desideratum for a theory of content. 

 

3. The Bootstrap Hell Argument 

Bootstrap hell is a special case of the HPC that is supposedly faced by predictive pro-

cessing accounts of cognition. Predictive processing is a family of approaches in neuro-

science, psychology, and philosophy that seek to explain cognition in terms of hierarchical 

generative models and minimization of prediction error. Wanja Wiese and Thomas Metz-

inger (2017) list seven claims that are usually shared by various flavors of predictive pro-

cessing: (1) recognizing the role of top-down information processing in cognitive systems, 

                                                        
1 H&M don’t appeal to the formal concept of Shannon information, but I believe exposition of their claims ben-

efits in clarity from employing this concept: The mathematical theory of communication (Shannon, 1948) expli-

cates H&M’s concept of information-as-covariance and also considers the entropy of information source and 

channel noise, which are absent in H&M’s treatment. 

2 Several authors have, however, argued that the distinction between Shannon information and semantic infor-

mation is either oversimplified (Rathkopf, 2017), or misleading, because Shannon information can do most of 

the work usually attributed to semantic information (Bergstrom & Rosvall, 2011; Martinez, 2019). For the pur-

pose of this paper, I accept the received view that the distinction is valid. 
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(2) maintaining that cognition involves modeling distributions of random variables de-

ployed by (3) hierarchically organized generative models, and used for (4) prediction. 

These generative models are (5) fine-tuned to reduce prediction error (6) in a Bayes-opti-

mal fashion. Finally, predictive processing also claims (7) motor control is explainable in 

terms of Bayesian inference. 

Predictive processing offers an ambitious integrating account of cognition that has received 

considerable interest in many areas of cognitive science, including computational psychia-

try (Adams, Huys, & Roiser, 2015), affective neuroscience (Barrett, 2018), consciousness 

studies (Seth, Suzuki, & Critchley, 2012) and developmental robotics (Tani, 2017). Philo-

sophically, predictive processing puts forth a radically new image of perception, learning, 

imagination, and action intricately coupled and deeply embodied in biological autonomy 

while self-organizing around prediction errors (Clark, 2016). Radical enactivists, however, 

still accuse predictive processing of not being radical enough.  

It is the commitment to predictions produced by generative models that bothers radical 

enactivists, because the notion of prediction essentially involves content: The future being 

predicted is predicted as being such-and-such, and predictions sometimes fail to come true. 

In predictive processing, content is mostly produced top-down rather than received from 

sensors and consumed by the system; prediction errors are meaningful only relative to the 

original predictions. According to Andy Clark “the prediction task is […] a kind of boot-

strap heaven” (Clark, 2016, p. 19) as the content of predictions is iteratively refined based 

on errors, without the need for direct access to the hidden causes of the sensory signals. 

Hutto worries that this heaven may actually turn out to be hell, since the brain (or the body) 

lacks resources to give rise to contentful predictions in the first place. “If minds are in 

principle forever secluded from the world how do they come by contents that refer to, or 

are about, inaccessible hidden causes and external topics that they putatively represent in 

the first place?” (Hutto, 2018, p. 13). While the content of subsequent predictions may be 

argued to be a product of Bayes-optimal integration of prediction errors with previous 

predictions, there remains the problem of the first prediction in the chain. 

This forms the objection at the heart of the bootstrap hell argument: What determined the 

content of the first prediction that a cognitive system produced? As Hutto vividly states: 

It is one thing to create a large fire from a smaller one, and in certain conditions that can be 

quite a difficult business. It is quite another thing to create a fire from scratch with only 

limited tools, of, say, flint and steel, especially when conditions are not favourable. (Hutto, 

2018, p. 10)  

The hidden premise in this objection is that it is problematic for content to emerge spon-

taneously in an adaptive system. This is why the bootstrap hell is a special case of HPC. 

One reason, however, why I find the bootstrapping formulation interesting is that H&M’s 

own account of the natural origins of content in human language seems to involve a boot-

strapping process (see section 6).  
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H&M focus their efforts on showing that existing accounts fail to account for the natural 

origins of content. Rather than defending Dretske’s or Millikan’s, I prefer to mount an 

argument against radical enactivism by assuming a minimalistic account of content devel-

oped by Brian Skyrms (2010).3 This account explains the emergence of content in terms 

of a game of message passing between a sender and a receiver (Lewis, 1969). The sender 

sees certain inputs and has certain preferences about the receiver’s behavior (generally 

relative to the input) and the receiver is free to act based on the message (but does not see 

the input). According to Skyrms, the content of a message consists in how it affects the 

probability distribution over actions the receiver may undertake (Skyrms, 2010, p. 41).4 

The strategies of both the sender (which message to send) and the receiver (a stochastic 

mapping from the message to an action) are subject to evolution and/or learning, which is 

shaped by reward for the joint performance of the sender–receiver system. This is why 

“[i]nformational content evolves as strategies evolve” (Skyrms, 2010, p. 35) and the gap 

between natural meaning (in the sense of Grice (1957) or what H&M dub “lawful covari-

ance”) and conventional meaning dissipates: conventionality enters the picture as there are 

degrees of freedom in the sender-receiver system under its fitness landscape, i.e., multiple 

possible codes for controlling the receiver. There is no need for a social scaffolding other 

than the sender–receiver system itself to get communication off the ground.  

H&M will be quick to repeat their slogan that covariance does not constitute content. But 

while informational content sensu Skyrms is founded on Shannon information, it is some-

thing more. This is because how the probabilities (over receiver’s action) change is some-

thing more than how much they do, i.e., the quantity of Shannon information. The former 

has well-defined satisfaction conditions, can fail to affect the receiver, and is subject to error 

correction and optimization (e.g., learning in a short timescale or development and evolution 

in a long one). Skyrms offers a proof-of-concept of an account of content solving the HPC.5 

The power of Skyrms’ account lies in the fact that it solves more than armchair philoso-

phers’ problems. Both formal, (evolutionary) game-theoretic analyses (Shea, Godfrey-

Smith, & Cao, 2017) as well as computational simulations (Bouchacourt & Baroni, 2018) 

show that a wide variety of natural phenomena can be modeled in terms of sender–receiver 

dynamics. Such phenomena include intra-cellular signaling, animal communication, rep-

resentation learning in neural networks and brains, and evolution of human language. In 

the next section, we will quickly illustrate how Skyrms’ account can shed light on the 

training of state-of-the-art deep neural networks. 

                                                        
3 Arguments based on Skyrms’ will work with other accounts of semantic information sharing the emphasis on 

action guidance, receiver-relativity and optimization. Numerous accounts starting from these principles have 

emerged in recent years, including those of Bickhard (2009), Dennett (2017), and Kolchinsky and Wolpert (2018). 

4 For completeness, Skyrms also distinguishes a more traditionally flavored descriptive content vector: The de-

scriptive content of a message is the change in probability distribution over the inputs of the sender given the 

message the sender has sent. The following discussions focused on the first vector, which can be associated with 

imperative content. 

5 For a recent defense of Skyrms’ account of content, see (Isaac, 2019). 
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4. Unsupervised Learning in Artificial Neural Networks, Brains, and Societies 

A language model is a generative model that assigns probabilities to sequences of words 

(Jelinek & Mercer, 1980). By the chain rule of probability calculus, this objective can be 

reformulated as predicting the next word in a sentence conditioned on a few previous 

words. Language models are widely used in natural language processing, powering tech-

nologies such as information retrieval, speech recognition or spell-checking. Language 

models are instances of unsupervised machine learning: They only require the words in 

the training set to be linearly ordered (i.e., coming from a contiguous text), not assuming 

any labels to be assigned.6 Language models are usually trained to exploit statistical pat-

terns found in text available on the Internet. It turns out, however, that a great deal of 

lexical information, as well as morphology, syntax, semantics, and pragmatic conventions 

can be learned from unlabeled data, thus laying a path towards artificial general linguistic 

intelligence (Yogatama et al., 2019). 

More importantly, language modeling is an active area of research in deep learning, because 

representations found to be useful for language modeling are surprisingly reusable for other 

tasks, including syntactic parsing, question answering, and machine translation (Peters et 

al., 2018; Radford et al., 2019). Therefore, representations learned by a neural language 

model (a deep neural network trained on language modeling) can be argued to have seman-

tic content encoded by a few first layers and exploitable by subsequent layers. This can be 

seen quite concretely when considering a phase space spanned by weights of a particular 

layer of a deep neural network. The activation of a (layer of) a neural network processing 

each word corresponds to a particular point in this space, a vector known as a word embed-

ding. Word embeddings curiously encode semantic and syntactic relations between words 

in terms of geometric relations in the phase space, e.g., synonyms will be close to each 

other (in terms of cosine similarity, or the normalized angle between a pair of points). Sim-

ple cases of lexical inference can also be replicated by word embedding arithmetic, for 

instance the word embedding for “Paris” minus “France” plus “Poland” happens to be very 

close to “Warsaw.” This is usually interpreted as evidence for rudimentary commonsense 

knowledge encoded in word embeddings (Mikolov et al., 2013). It’s no surprise word em-

beddings make useful features for a wide array of machine learning tasks; as of 2019, they 

form part of the standard toolbox of a natural language processing engineer. Yet according 

to H&M, since there is no sociocultural scaffolding allowed, deep neural networks are 

doomed to fall prey to the HPC. They are either (counter-intuitively) contentless or meta-

physically impossible. I close this section by arguing that deep neural networks actually 

acquire genuinely contentful representations in a process of unsupervised learning, analo-

gous to the unsupervised learning posited by predictive processing. If that is so, there is 

nothing preventing the brain itself to acquire contentful representations via unsupervised 

learning, which renders the HPC argument ill-posed. 

                                                        
6 Unsupervised learning is learning with a loss function that depends only on the inputs to the model (and statis-

tical patterns they exhibit) and does not depend on any extrinsic information. The distinction between supervised 

and unsupervised learning is somewhat arbitrary and there are many shades of gray in between. Both language 

modeling and time series prediction are, however, usually considered to be unsupervised learning. 
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Let me point out that, mathematically, the problem of language modeling is pretty much 

equivalent to the problem faced by the brain according to predictive processing. The goal 

of a language model is to predict the next word. The goal of the brain is to predict the next 

sensory input. In both cases, the loss function to be minimized is expected surprise, i.e., 

average negative log probability of training data given the model.7  

So how does a neural language model learn meaning ex nihilo? What determines the word 

embedding guiding the first prediction (for the first word in the training set)? Pure noise. 

It is standard practice to initialize layer weights randomly (sampling from a zero-centered 

Gaussian with relatively low variance). The network will then most likely predict an ap-

proximately uniform probability distribution over the whole vocabulary. Now let us inter-

pret the aforementioned layer as the sender and the following one a receiver. Note that 

even at this point the sender meets Skyrms’ criteria for informational content. It’s just a 

very uninteresting content, of little use for the receiver. This will, of course, change in the 

course of training: The sender’s messages will gradually drive the receiver to contribute 

to moving the probability mass over the vocabulary to the right place. 

Recall that an important (and uncontroversial) assumption behind HPC is that (T3) having 

content implies having certain satisfaction conditions, which determine intension. Inten-

sion specifies what it takes to be referred to by a content vehicle. This condition is known 

as aboutness or intensionality-with-an-s.8 My point is that representations of a trained neu-

ral language model will exhibit intensionality-with-an-s: Word embeddings have satisfac-

tion conditions by virtue of the influence they have on the predictions of the neural 

network (the meaning of a given word embedding is how it changes the probability distri-

bution over the next word to appear in text). This kind of meaning may not be fully aligned 

with the conventional meaning we ascribe to respective words as it is natural meaning 

stemming from word cooccurrence patterns in the training set exploited by the neural net-

work. However, it provides each information vehicle (a set of weights) with an intension 

(the change in probability distribution over the next word to appear in text).  

One possible objection that a radical enactivist could raise at this point is that word embed-

dings are meaningful only by virtue of the intensionality of humans. H&M make a heavy 

use of this strategy when accusing existing naturalist accounts of content of circularity 

(e.g., Hutto & Myin, 2013, p. 70). In our setting, the objection could be formulated as fol-

lows: word embeddings are not intrinsically contentful, but only appear to be contentful to 

                                                        
7 There are important differences in architecture and optimization procedure between (deep) neural networks and 

hierarchical Bayesian models in computational neuroscience. Drawing the analogy between the brain and lan-

guage models also requires a few words of caution: Language models are not properly embodied and situated 

and are not supposed to model important aspects of the brain. They can also be argued to fall short of the task of 

human language use, because they lack a feedback loop with extra-linguistic reality. Language modeling still 

seems to be on the first step of Judea Pearl’s ladder of causation (Pearl & Mackenzie, 2018), because language 

models have no means of engaging in dialogue with a text. These are valid concerns for artificial intelligence 

researchers but are not immediately relevant for the argument mounted here. 

8 This is to avoid confusing intensionality with intentionality. 
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human engineers who already know the lexical meaning of corresponding words and pro-

ject their linguistic competence to contentless neural networks. If that is so, ascribing con-

tent to word embeddings presupposes human brains to be content-involving rather than 

helping to explain how brains come to be content-involving. Therefore, the whole argument 

mounted in this paper would be circular: the emergence of content in neural language mod-

els would still require a social scaffolding constituted by machine learning engineers. 

While word embeddings are receiver-relative in the sense of being sensitive to a particular 

neural language model architecture, training set, and training procedure, they do not pre-

suppose an intensional receiver other than a mindless optimization process of a loss func-

tion. On the contrary, word embeddings are meaningful for neural language models but 

quite opaque for humans; special tools need to be developed for interpreting them (Pele-

vina, Arefiev, Biemann, & Panchenko, 2016). The meaning of word embeddings instanti-

ates natural meaning (by being based on word co-occurrence patterns in the training set) 

harnessed specifically for a given loss function (predicting the next word). Moreover, there 

is nothing inherently social in the loss function other than requiring several layers of a 

neural network to cooperate. 

As H&M like to begin each chapter with lyrics from The Beatles, I should probably have 

started this section with “No hell below us, above us only sky.” There is simply no deep 

problem with bootstrapping unsupervised learning. An unsupervised learner will obvi-

ously fail miserably at first, but all it takes to support the learning process is having degrees 

of freedom in the system and some feedback about its performance available for the sys-

tem. That’s how learning in humans (and other machines) works. 

 

5. Natural Origins of Content 

H&M “are not content-deniers; they do not embrace global eliminativism about content” 

(Hutto & Myin, 2017, p. 121). They claim that while basic minds don’t usually deal with 

contentful representations, phylogenetically and ontogenetically mature cognition—when 

immersed in language and other symbolic forms of culture—does. Radical enactivism thus 

faces a problem similar to the HPC: how to account for the emergence of content. The 

problem is supposedly manageable only because sociocultural scaffoldings, arising late in 

evolution, are the right resources to solve the problem. 

Radicalizing Enactivism (Hutto & Myin, 2013) was widely criticized for lacking a positive 

story of what precisely gives rise to content in mature minds (e.g. Alksnis, 2015; Harvey, 

2015; Korbak, 2015). Evolving Enactivism was supposed to fill this gap and tell the whole 

story of how basic minds meet content (according to the subtitle). It is thus slightly dissat-

isfying that the relevant Chapter 6 focuses mostly on finding gaps in arguments mounted 

by radical enactivism’s adversaries. H&M find most of these arguments accusing radical 

enactivism of violating the principle of evolutionary continuity by assuming a difference 

of kind, not degree, between basic (contentless) and mature (content-involving) minds. 
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But is discontinuity the only problem faced by the natural origins of content program? Let 

me use this section to comment on an argument I put forth against the story in Radicalizing 

Enactivism (Korbak, 2015). According to the scaling down objection (as H&M dub it), what-

ever it is that makes healthy human adults capable of exchanging content should also make 

the ability appear in simpler adaptive systems, including the endocrine system, intracellular 

signaling pathways and gene expression regulation mechanisms in single-cell organisms. 

This is because the repertoire of kosher explanantia is so limited: H&M claim language use 

to span the scaffolding for content to thrive on, but they are forced to assume a very minimal 

concept of language—language being a tool for shared action guidance. Only then can they 

avoid the circularity of assuming a traditional account of language as essentially contentful. 

There is nothing wrong with such an account of language (it is treated quite seriously in 

experimental semiotics, e.g., Pattee & Rączaszek-Leonardi, 2012) but from this view, every 

bacterium also counts as a language user, hence a mature mind. The class of basic (content-

less) minds is then (by our understanding of life on Earth) empty, because exchanging con-

tent is necessary for biological regulation. In other words, in H&M’s own characterization 

of language as a tool to joint action, language is to be found very early in phylogeny, thus 

building the scaffolding for the very early emergence of content as well. 

The scaling down objection is not about evolutionary continuity per se, as H&M cite it to be 

(Hutto & Myin, 2017, pp. 131–132). The qualitative change entailed by the natural origins 

of content story is not the worry here. The worry is that there can’t be a qualitative change, 

because H&M’s sociocultural scaffolding starts to apply much earlier down the tree of life. 

To avoid this objection, H&M must establish criteria for content emergence that (i) do not 

circularly assume the flow of informational content, and (ii) are indeed found only late in 

phylogeny and ontogeny. Let us see what progress H&M have made on this front: 

For the sociocultural emergence of content we need to assume that our ancestors were capa-

ble of social processes of learning from other members of the species and that they estab-

lished cultural practices and institutions that stabilized over time. […] The capacities in 

question can be understood in biological terms as mechanism through which basic minds are 

set up to be set up by other minds and to be set off by certain things. (Hutto & Myin, 2017, 

p. 139, emphasis original) 

It requires a grain of good will to interpret the social as not invoking persons with contentful 

attitudes, thus satisfying desideratum (i). But if the social means multi-agent, what prevents 

societies of cells (also known as organisms) or societies of proteins (also called cells) from 

agreeing upon the content of messages they pass to each other? We know they do: Orches-

trating the workings of a complex system requires high-throughput flow of information and 

content being used for this orchestration evolves like any other trait. Sometimes, when the 

sender misinforms the receiver, the system suffers a pathological state, as in the case of 

cancer, autoimmunity or diabetes. Luckily, understanding the mechanisms involved in the 

flow of semantic information through a complex living system, we are sometimes able to 

intervene and transmit our own message. This is how depression, Parkinson’s and endo-

crine diseases are treated, and how genetically modified organisms are obtained. Sometimes 



Tomasz Korbak 

10 

the sender and receiver have partially misaligned goals and the sender may send a dishonest 

message. Such cases are frequent in animal sexual behavior (Skyrms, 2010, ch. 6). 

I dare to go further and argue that H&M’s natural origins of content is more or less equiv-

alent to Skyrms’ account of the evolutionary dynamics of informational content. It is the 

receiver that is set up to be set up by the sender, and it is the sender’s role to be set off by 

relevant events in their niche. One crucial difference is that Skyrms’ account is more ma-

ture and formally elegant, for instance, the concept of “established cultural practices and 

institutions that stabilized over time” can be made less hand-wavy in terms of an evolu-

tionarily stable strategy. 

One could argue that I’m not being charitable enough, and H&M’s story is much richer 

than that: It involves uniquely human aspects of language, with humans enacting or bring-

ing forth designer environments of public symbols, shared attention and common goals. 

This defense could continue, pointing out that natural origins of content is a properly em-

bodied, extended and enactive account, which makes it significantly more powerful than 

disembodied evolutionary game theory. But is it? Not according to Evan Thompson: 

Beyond stating this proposal [of the Natural Origins of Content — T.K.], however, [H&M 

— T.K.] do not elaborate and support it with descriptions, analyses, or explanatory models 

of cognitive phenomena involving social learning, social cognition, and language. Instead, 

they switch to fending off critics [Hutto & Myin, 2017, p. 140 — T.K.] Although they claim 

to be doing naturalistic philosophy and deplore "the general tendency of philosophers—es-

pecially those in some wings of the analytic tradition—to assume that the essence of phe-

nomena can be investigated independently of science" [Hutto & Myin, 2017, p. 276 — 

T.K.]—they do not draw from the rich cognitive science literature on how sociocultural prac-

tices and public symbol systems configure cognition. (I have in mind work by Lev Vygotsky, 

Merlin Donald, and Edwin Hutchins.) (Thompson, 2018, citations edited for consistency) 

The latter point can be extended by pointing out that the body of important work on the 

origins of language does not eschew semantic content from the repertoire of their ex-

planantia (Rączaszek-Leonardi, Nomikou, Rohlfing, & Deacon, 2018). These approaches 

seem to be making more progress than radical enactivism that Thompson accuses of being 

“enactive mostly in name only” (Thompson, 2018). 

 

6. Conclusions 

There is a thread linking the two stories I have considered here: the bootstrap hell argument 

and natural origins of content. This thread is the idea of unsupervised learning, i.e., ex-

ploiting the statistical structure of the environment to learn a better representation for de-

scribing or harnessing the environment. H&M are afraid that unsupervised learning is 

metaphysically impossible, on pain of circularity. We are lucky this is not the case, be-

cause the possible world of bootstrap hell is an insufferable place indeed: it lacks modern 

Internet, mobile devices and other conveniences H&M must have used in writing Evolving 

Enactivism, all of which are powered (in one way or another) by unsupervised machine 



Unsupervised Learning and the Natural Origins of Content 

11 

learning. Luckily, no intelligent mind will evolve there to experience this hell, because 

adaptive behavior also requires unsupervised learning. 

It’s quite reassuring that a way out of bootstrap hell and the solution to the HPC are to be 

found in Evolving Enactivism. It is the authors’ own characterization of the natural origins 

of content as a bootstrapping process: Agents are capable of sharing content in a sociocul-

tural niche in the presence of other content users. As I argued, this happens quite early on, 

possibly coinciding with the origins of life on Earth, and certainly before the mechanisms 

for transmitting genetic information evolved. The only problem remaining is that some 

will disagree that speaking of the social and the cultural is admissible at this point in nat-

ural history. That it is may be the one truly radical idea of H&M, although they will prob-

ably not appreciate this commendation. 
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