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Abstract 

Has the rise of data-intensive science, or ‘big data’, revolutionized our ability to predict? 

Does it imply a new priority for prediction over causal understanding, and a diminished role 

for theory and human experts? I examine four important cases where prediction is desirable: 

political elections, the weather, GDP, and the results of interventions suggested by economic 

experiments. These cases suggest caution. Although big data methods are indeed very useful 

sometimes, in this paper’s cases they improve predictions either limitedly or not at all, and 

their prospects of doing so in the future are limited too.  
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1. Introduction: prediction, big data, and case studies 

Accurate prediction has long been possible in the laboratory and within engineered artefacts. 

But in unshielded field contexts it has usually been thought difficult, if not impossible, 

because it requires taking account of every relevant factor. Usually, the over-abundance of 

such factors makes accurate prediction infeasible. Moreover, many of these factors will likely 

be transient or sui generis and thus difficult to capture for theories or causal models, which by 

their nature tend to focus instead on factors common to many contexts. In reaction, most field 

sciences have therefore concentrated not on prediction but instead on the development of a 
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repertoire of theories, models and mechanisms. These, it is hoped, can provide explanation 

and understanding even in the absence of accurate prediction.  

 

This methodology is dominant in economics, and increasingly so in ecology, political 

science, sociology, and many other fields. But big data advocates challenge it. In particular, 

both the amount of data available and our ability to analyze it have increased enormously in 

recent years. As a result, accurate prediction of many field phenomena has become possible 

for the first time. Notable examples include the discovery of the CRISPR technology for 

genome editing in living eukaryotic cells (Lander 2016), how to get the cheapest airline 

tickets, Amazon’s personalized suggestions of new purchases, and prediction of which 

manhole covers will blow or which rent-controlled apartments will have fires in New York 

City (Mayer-Schoenberger and Cukier 2013) and Facebook and Google’s experiments 

regarding page design and marketing. New analytical techniques include various forms of 

machine learning and algorithmic methods. Neural nets, for example, are behind rapid recent 

advances in natural-language translation (Lewis-Kraus 2016). 

 

The stakes are high. If big data revolutionizes our ability to predict, it is claimed, then, that 

this should lead to a transformation: a new priority for prediction over explanation or causal 

understanding. Because the new predictive successes have usually come via algorithmic or 

black-box approaches that preclude theoretical interpretation, the traditional emphasis on 

theory impedes progress in prediction and, accordingly, should be abandoned. The most eye-

catching versions of this argument have heralded the ‘death of theory’ altogether (Anderson 

2008) and a new paradigm for scientific method (Hey et al. 2009). The sheer number of 

successful new predictions, it is claimed, makes the case for a huge methodological re-

orientation (Mayer-Schoenberger and Cukier 2013). Does it? 
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Two clarifications: first, ‘big data’ is a vague phrase. Some interpret it narrowly to refer only 

to particular machine learning techniques. I will interpret it more broadly, in the spirit of the 

American Association of Public Opinion Research’s definition: ‘an imprecise description of a 

range of rich and complicated set of characteristics, practices, techniques, ethical issues, and 

outcomes all associated with data’ (Japec et al. 2015, 840). A broad interpretation gives ‘big 

data’ every chance to prove its worth. My eventual conclusion, that its prospects (in one 

respect) are limited, is, then, stronger. Although a huge range of techniques fall under big 

data so understood, these techniques have sufficient core features in common that we may 

usefully assess their impact and prospects as a group. 

 

Second, big data has chalked up many impressive applications in field science already, with 

the likelihood of many more in the future (Japec et al. 2015, Foster et al. 2017). My focus, 

however, will just be on better prediction, and thus any big data method relevant to that, such 

as predictive analytics.1  

 

The heart of this paper will be four case studies of prediction of field phenomena, namely 

political elections, weather, GDP, and economic auctions. All of these cases are well 

understood by philosophers of science, having been closely studied by them for other 

purposes. Why case studies? There exist general analyses already, by philosophers of science 

and others, of what conditions are necessary for big data predictive methods to succeed 

(section 6). Case studies serve to stress-test such analyses against practical realities: when are 

the necessary conditions satisfied? When they are satisfied, are they sufficient? There is no 

 
1 I therefore will not discuss the many important political and ethical issues raised by big data methods. 
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substitute for local detail. This also enables us to assess better the role that is left for theory, 

and whether there really is no hope for causal understanding. 

 

General analyses implicitly promise that they will shed light on big data’s prospects in 

pressing actual cases. This paper proceeds the other way around, so to speak, by starting with 

pressing actual cases and then examining in those cases how effective big data methods 

actually are. Informed by this dive into particularity, we may generalize out again to get a 

better sense of big data’s prospects more widely. 

 

Big data advocates have naturally cited various success stories, but are those stories 

representative? In this paper’s cases, there is no presumption as to the potential efficacy or 

otherwise of big data methods. They are therefore neutral tests in this regard. The first three 

of them – elections, weather and GDP – are of interest because of their independent 

importance. The fourth – economic auctions – is of interest because it is an example from 

social science of successful field prediction based on the extrapolation of results from the 

laboratory. This is an influential method that may become much more widespread. 

 

Overall, the paper’s thesis is ‘generalist’ in that, as the case studies show, the same factors are 

positives and negatives for big data’s prospects across contexts. It is also generalist in that 

these factors tend to be positives and negatives for all big data methods alike. Which of these 

factors are actually pertinent in any given case, though, varies case by case. Accordingly, the 

prospects for big data also vary case by case. After going through each case study in turn 

(sections 2 to 5), the paper summarizes big data’s prospects in each (section 6), before 

assessing more generally big data’s promise for prediction and causal understanding (sections 

6 to 8). 
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2. First example: Political elections 

There are several approaches to predicting the results of political elections.2 By far the most 

successful is opinion polling.3 Polls use the voting intentions of an interviewed sample to 

serve as a proxy for those of a population. How might things go wrong? The most familiar 

way is sampling error: small samples can be unrepresentative flukes. But sampling error is 

not the only, nor even the most important, source of inaccurate predictions.4 A far bigger 

issue for pollsters is to ensure that their samples are appropriately balanced. Results will be 

biased if a sample is unrepresentative of the voting population with respect to, for instance, 

age, gender, race, or income, since these factors correlate with voting preference. This is 

quite different from sampling error: if a sampling procedure over-selects for men, say, then 

that cannot be alleviated just by making the sample bigger. Pollsters must decide exactly 

which factors to allow for. Should they rebalance, for instance, for declared political 

affiliation or for degree of interest in politics? Mistaken treatment of these latter factors has 

been the source of errors in recent US and UK election polling. Further decisions are 

necessary too: how hard and in what way to push initially undecided respondents for their 

opinions; how hard and in what way to pursue respondents who decline to participate; 

whether to sample face-to-face or by phone or online, and (in the latter cases) whether to 

 
2 See (Northcott 2015) for more details and references regarding this case. 

3 This is true even though polls are not perfectly reliable. The main alternative is to predict on the basis of 

‘fundamental’ variables that recur from election to election, most commonly macroeconomic ones such as 

growth in GDP, employment or real wages. It is uncontroversial that polls predict better. The alleged 

compensating advantage of models based on fundamentals is that at least they can explain, or provide 

understanding of, election results whereas polling cannot. I think, in fact, that neither approach explains or 

provides understanding (Northcott 2015, 2017), but I will be concerned only with prediction here. 

4 Almost 25% even of late polls of US presidential elections miss the final result by more than their official 95% 

confidence interval, yet the expected miss rate given sampling error alone should be only 5%. 
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interview or to let respondents fill out answers alone; how to assess how firmly held a 

respondent’s preference is; and how to assess the likelihood that a respondent will actually 

vote.5 Exactly how pollsters tackle such issues has been shown to significantly influence the 

accuracy of their predictions (Sturgis et al. 2016, Wells 2018).  

 

Separately from such ‘internal’ issues, the systematic aggregation of polls improves 

predictive accuracy significantly. One obvious reason is that aggregation increases effective 

sample size and therefore reduces sampling error. But mere aggregation is no cure for 

incorrect sample balancing because the optimal balancing procedure may not be the industry 

average. To assess the chance that all polls are systematically skewed in the same way 

requires sophisticated aggregation rather than taking the results of individual polls at face 

value. Overall, aggregation requires a second layer of method, quite distinct from that 

required to conduct a single poll. 

 

What role for big data in polling? Clearly, more data has helped: polling predicts better today 

in part simply because there is more polling data (Arguably, there were no reliable political 

polls at all until after World War Two). As with weather forecasting (section 3), improved 

analytical methods have also helped – polling aggregation is one example. 

 

In all of our case studies, a crucial question is: how much could prediction be improved by 

the application of big data methods in the future? What is big data’s upper limit? In the case 

of elections, the answer, alas, is that predictive paradise will remain elusive. Let us see why. 

 

 
5 So far, it is doubtful that new-technology methods such as automated ‘robo-calling’ or online surveys are any 

better predictively than more traditional live-interviewer methods (https://fivethirtyeight.com/features/which-

pollsters-to-trust-in-2018/). 

https://fivethirtyeight.com/features/which-pollsters-to-trust-in-2018/
https://fivethirtyeight.com/features/which-pollsters-to-trust-in-2018/
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Political campaigns increasingly use sophisticated big data methods. These have mainly taken 

the form of ‘microtargeting’ voters. Extensive data can now be collected about individual 

voters’ consumption patterns, media preferences, demographic characteristics and so on, and 

algorithms track how these factors correlate with political preference and likeliness to vote. 

Obama’s 2008 campaign, for instance, was tracking over 800 different voter variables as 

early as the Iowa caucuses in January. Campaigning material and tactics are tailored 

accordingly, at the level of individual voters, in order both to change voter preferences and 

(especially) to increase supporter turnout. Such microtargeting, which first became prominent 

in the Bush 2004 campaign, is an example of a ‘theory-free’ big data approach displacing a 

more traditional model-based one. Might it enable campaigns, or anyone, to predict election 

results better than they can with opinion polls? 

 

The key would be to identify correlations between the effect variable, i.e. actual votes, and 

the putative cause variables, i.e. consumption patterns, media preferences and so on. But 

there is a major epistemological roadblock: the limited sample of past elections means that 

public results are insufficient for training predictive algorithms, yet no other voting data are 

available because the secret ballot means that individuals’ votes are unknown.6 This data 

limitation threatens all big data techniques. 

 

An obvious response might seem just to ask individual voters how they voted. Some may 

answer falsely but, the reasoning goes, so long as most do not then we may establish 

correlations sufficiently well to generate accurate predictions. However, the salient 

comparison is whether we can predict better with big data methods than we already do with 

opinion polls. It now seems that in order to predict at all with big data methods, we must rely 

 
6 It is acknowledged by practitioners that machine learning requires a lot more data than are available in most 

cases (Foster et al. 2017, 172-3). Elections seem to be an example of this. 
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on asking voters for whom they voted. But pollsters do that already, so where is the 

comparative advantage?7 It could only come from new factors that add predictive value over 

and above existing sample balancing by pollsters.8 But this seems a dubious hope (see 

below). 

 

Moreover, the value of this kind of augmented polling of voters seems inevitably limited 

because it does not address the biggest difficulties that polling methods actually face. It is one 

thing to know what a voter’s political preference is; it is quite another to know whether they 

will actually vote. For example, polls in the 2015 UK general election were unusually 

inaccurate. Subsequent investigation revealed the main cause: pollsters assessed likeliness to 

vote by, roughly speaking, just asking voters themselves. However, errors in voters’ self-

assessment correlated with political preference, which led to biased samples. It would have 

been better to rely on historical rates of turnout for particular demographic groups (Sturgis et 

al. 2016). For the 2017 UK general election, therefore, most polling firms switched to this 

latter method. However, their predictions were again unusually inaccurate. Investigation 

revealed, roughly speaking, that the solution would have been to switch back to the 2015 

methodology (Wells 2018). In other words, there was a reversal regarding which method was 

optimal.  

 

 
7 True enough, pollsters more often ask how a voter will vote rather than retrospectively how they have voted. 

But it is not clear that the reliability is less in the former case; indeed, it might even be greater because in the 

latter case respondents’ answers can be sensitive to post hoc perceptions of the result, perhaps via a desire to be 

seen to have voted for the winning side or simply to have voted at all (Issenberg 2016, 193). 

8 It is not enough that, say, media preferences in isolation correlate with voting preference. Rather, the issue is 

whether balancing samples for media preferences adds predictive value over and above existing balancing for, 

e.g., gender and race. That is, the new variables must impact on voting independently (at least in part) of how 

the pollsters’ existing ones do. 
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This example illustrates a fundamental problem – namely non-stationarity in the underlying 

causal processes (section 6). In general, such non-stationarity is a threat to all big data 

techniques. In this case, the causal processes that relate various demographic variables to 

turnout were not stable between 2015 and 2017. The problem is that non-stationarity cannot 

be overcome by knowledge of past correlations. The same issue arises with other electoral 

variables. Do, say, the percentages of blacks, women, the rich, sports fans, and so on, that 

vote for a particular party stay constant across elections? Historically, they often have not.9 

 

One response to such non-stationarity is to stick to short-term forecasting within a single 

campaign, on the assumption that correlations are more likely to remain stable within this 

shorter timeframe. However, even within a single campaign there are many relevant non-

stationarities, especially during primaries when voter preferences – and thus the correlation 

between them and the various predictor variables – are especially volatile. Problems can arise 

during general elections too, as with temporary surges of opinion after notable events. 

Moreover, the effectiveness of a particular campaigning tactic can fade quickly with repeated 

use (Issenberg 2016). 

 

 Campaigns adopt two approaches, in part to identify, and thus to counter, such non-

stationarity. First, they often run daily polls to help calibrate their inferences from data 

regarding consumer preferences and so on. This is a sensible tactic. But the relevant point for 

our purposes is that the accuracy of any election predictions inferred from such daily polls 

still has an upper limit given by those polls’ accuracy. So, again, there is no reason to expect 

a dramatic outperformance of regular public polls.  

 

 
9 For this reason, the non-stationarity problem also applies to countries with mandatory voting, even though the 

specific problem of predicting differential turnout does not. 
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The second approach to counter non-stationarity is to utilize a campaign’s extensive non-

polling information, namely voters’ responses to doorstep, phone and other interactions. Such 

responses play a huge role, in conjunction with polling, in calibrating a campaign’s 

microtargeting algorithms and sometimes in altering them mid-campaign. These voter 

responses are predictive of voting behavior, of course, but again what matters here is whether 

they are better predictors than regular polling. As yet, there is little convincing evidence that 

they are better (see below). The fundamental problem remains the same, namely that 

campaigns cannot observe individuals’ actual votes.10 

 

Perhaps, it might be objected, non-stationarity itself can be addressed by big data methods, at 

least in principle. Presumably, any non-stationarity is a result of other causal processes, and 

these other processes might themselves generate trackable correlations. However, this 

observation is not terribly helpful because it does not provide any actionable advice beyond 

the truistic ‘look for variables that are not subject to non-stationarity’. What matters is 

whether there is non-stationarity with respect to variables actually tracked. Moreover, there is 

no guarantee that it offers a solution, even in principle. For it is quite conceivable in any 

particular domain, especially in hugely complex social domains, such as elections, that the 

underlying causal processes are so fragile and fast-changing that they never do generate 

correlations that are trackable. 

 

 
10 Similar remarks apply to the increasingly frequent use of randomized experiments and trials, which is the 

other major innovation of recent campaigns (Issenberg 2016). Such experiments usually test particular 

campaigning tactics, with efficacy measured either by changes in turnout (which can be observed) or by changes 

in proxies for actual votes such as opinions expressed on the doorstep or in focus groups. Again, there is no 

reason to think that such experiments enable us to predict overall election outcomes better than polls do (Note 

also that, as with the auctions case in section 5, the relevant data in these experiments is created in a theory-

informed way). 
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Returning to actual practice, political campaigns certainly have ways of identifying likely 

supporters and also of estimating how likely those are to vote. But then, so do opinion 

pollsters. Can campaigns predict overall election outcomes better than pollsters do? So far, 

there is only fragmented, anecdotal evidence for that (e.g. Issenberg 2016, 324-5, 348). 

Against that is evidence (admittedly also anecdotal) of precisely the opposite: for example, all 

sides in the 2018 US presidential election, 2017 and 2015 UK general elections and 2016 UK 

Brexit referendum were privately surprised by the results. Neither is there any indirect 

evidence of insider special knowledge, such as telltale activity on political betting markets. 

 

Finally, there are two other alternatives, in some ways more in keeping with big data methods 

generally. First, might one just adopt the ‘n equals all’ approach of asking every voter how 

they will vote? But such an interviewing marathon is not a realistic prescription. Moreover, 

even if it were realistic, it would still address only one of polling’s lesser problems, namely 

sampling error. So, ‘n equals all’ is no panacea. 

 

Second, might one be able to predict elections, not by asking voters anything, but instead by 

tracking indirect indicators such as the number of Google searches of candidates? Alas, this 

method’s record is not encouraging, either for predicting elections or for predicting other 

phenomena such as flu outbreaks. Social media users are often unrepresentative of the target 

groups. Moreover, there is a new source of non-stationarity, namely that Google’s search 

algorithms themselves change frequently (Lazer et al. 2014). 

 

In conclusion, the prediction of elections has improved although predictive accuracy is still 

limited. More data has helped. But there are important limitations on how much useful data 

can ever be available, given the problems of infrequent elections and widespread non-
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stationarity. These limitations hamper all big data techniques alike, and can be expected to 

continue to in the future.  

 

 

3. Second example: Weather 

Earth’s weather system is widely believed to be chaotic, so that weather outcomes are 

indefinitely sensitive to initial conditions (Lorenz 1969). Moreover, it has also been argued 

that weather predictions are indefinitely sensitive to model errors too – that is, even tiny 

inaccuracies in a model can lead to very large errors in the predictions made by that model 

(Frigg et al. 2014). These difficulties are ominous. Yet, despite them, weather forecasting has 

improved significantly.11 Hurricane paths, for instance, are predicted more accurately and 

more in advance, and temperature and rainfall predictions are more accurate too. Overall, a 

few years ago the reliability of seven-day forecasts had become equal to that of three-day 

forecasts 20 years earlier (Bechtold et al. 2012), and progress has continued since. 

 

Several factors together explain this achievement.12 The first is a huge increase in the quality 

and quantity of available data since the launch of the first weather satellites in the 1960s. 

Temperature, humidity and other reports are of ever greater refinement both horizontally 

(currently increments of 20km squares) and vertically (currently 91 separate altitude layers). 

Over 10 million observations per day are inputted into the models of leading forecasters. 

 
11 I will use the terms ‘prediction’ and ‘forecast’ interchangeably. There is no uniform usage of these two terms 

across different sciences. ‘Prediction’, for instance, may denote any of: in-sample consequences of a model; 

extrapolation to new subjects; deterministic future earthquake claims; probabilistic future climate claims. 

Conversely, ‘forecast’ may denote respectively: forecasts strictly of future, out-of-sample data; forecasts, based 

on past data, only for known subjects; probabilistic future earthquake claims; deterministic future weather 

claims. 

12 See (Northcott 2017) for more details and references regarding this case. 
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The second factor is the forecasting models. At the heart of these models are differential 

equations of fluid dynamics that have been known for hundreds of years. They are assumed 

to govern the fiendishly complex movements of air in the atmosphere, and how those are 

impacted by temperature, pressure, the Earth’s rotation, the cycle of night and day, and so on. 

However, in practice these equations are insufficient to generate accurate weather forecasts. 

Moreover, refining the equations from first principles is not an effective remedy for that. 

Instead, a whole series of ad hoc additions have been made in order to accommodate the 

impacts of various specific factors, such as mountains, clouds, or the coupling of air 

movements and ocean currents. The exact form that these additions take has been determined 

by a trial-and-error process (Jung et al. 2010, Bechtold et al. 2012). They are under-

determined by fundamental theory and indeed they sometimes contradict it.13 

 

Third, new analytical methods have been developed. The most notable innovation dates from 

the late 1990s when models began to feature stochastic terms. This enabled the running of 

multiple simulations to generate probabilistic forecasts. In turn, this ‘ensemble method’ 

overcame the problem of chaos: although any one simulation may go seriously askew, it has 

been found from experience that, as in many chaotic systems, errors tend to cancel out over 

many iterations. As a result, the probabilistic forecasts are unbiased. 

 

Fourth, available computing power has hugely increased, while interacting with other 

advances to enable the new data to be exploited fully. Thus, the ensemble method of 

forecasting was infeasible until sufficient computing power became available, because not 

 
13 The finding that duly refined models can still predict accurately has been the brute empirical solution to the 

problem of sensitivity to model error mentioned earlier. Simply put, it turns out that, after testing, the models do 

predict well despite being literally false in many details. 
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enough simulations could be run in timely fashion. The increase in data and computing power 

have also together enabled the development and exploitation of more sophisticated models. 

And additional data is not just collected blindly; rather, experience of what kind of data most 

improves the accuracy of models’ predictions has informed the choice of instruments on new 

satellites. 

 

With this background in place, let us return to our main concern: what role has big data 

played? First, weather forecasting’s improvement has not been the result of any change in the 

underlying theory of fluid dynamics. Instead, the forecasting model has been repeatedly 

tweaked – and in such a way that it has lost easy theoretical interpretation. Different features 

of the model interact in complex ways so that adjustments are tested holistically in brute 

instrumentalist fashion. The case thus instantiates the stereotypical big data priority for 

predictive success over causal transparency. 

 

The improvements in forecasting accuracy are certainly due in part to exploitation of more 

and better data. They are also due to improvement in data analysis techniques, especially the 

use of ensemble forecasting.14 On the other hand, they are not due to these factors alone. 

Moreover, the improvements are limited: even now, forecasts more than seven or eight days 

ahead cannot beat the baselines of long-run climate averages or simple extrapolation from 

current conditions.  

 

As in the case of elections, a crucial question is: how much could weather forecasting be 

improved by the application of big data methods in the future? What is big data’s upper limit? 

 
14 Knüsel et al. (2019) show how big data techniques can also be combined with theory as part of hybrid 

methods, which are then useful for various subsidiary tasks in the process of prediction, such as finding proxies 

for missing data or modeling clouds or vegetation. 
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First, the availability of even more data will indeed likely help. But any new data must be 

collected by new physical instruments, which requires choices about which instruments to 

deploy and where. While, as noted, these choices are in part informed by the forecasting 

model, they also require theory external to it. Thus, background theory is necessary for new 

data to improve prediction. Moreover, if the weather system is indeed chaotic, only 

probabilistic forecasts will ever be possible. How accurate such forecasts could eventually 

become, how far in advance, is unknown.  

 

Second, big data might also improve weather forecasting via the development or application 

of new methods rather than simply via more data. One possibility is that weather could be 

‘blindly’ predicted by machine learning techniques instead of by, as currently, a model 

adapted from physical theory.15 At first sight, the case does seem to satisfy the conditions 

necessary for such techniques to succeed (sections 6 and 7). To my knowledge, this approach 

has never been tried. It is hard to assess its potential in advance. There is one thing in its 

favor, comparatively speaking: since there is little capacity for causal inference from current 

weather models anyway (section 8), the opportunity cost of a black-box alternative is 

reduced. 

 

4. Third example: Gross Domestic Product 

Predicting GDP has proved very difficult.16 One benchmark is to assume that the growth rate 

of real GDP will stay the same as now. Currently, 12-month forecasts barely outperform this 

benchmark. 18-month forecasts don’t outperform it at all. Forecasts also persistently fail to 

predict turning points, i.e. when GDP growth changes sign. In one study, in 60 cases of 

 
15 I thank Eric Martin for this suggestion. 

16 See (Betz 2006) for more details and references regarding this case. 
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negative growth the consensus forecast was for negative growth on only three of those 

occasions (Loungani 2001). 

 

The record shows little or no sustained difference in the success of different forecasters, 

despite widely varying methods. These methods include: purely numerical extrapolations, 

both informal (chartists) and formal (usually univariate time series models improved by trial 

and error); non-theory-based economic correlations, both informal (indicators and surveys) 

and formal (multivariate time series); and theory-based econometric models, which 

sometimes feature hundreds or even thousands of equations. There is no improved return 

from sophistication, and in particular no superiority of econometric over other methods (Betz 

2006, 30-38). Moreover, unlike in the weather case, the forecasting record has not improved 

in 50 years despite vast increases in available data and computing power in addition to theory 

development. 

 

The induction is, therefore, that more data and computing power will not improve matters. 

Given the complexity of what determines a country’s GDP, no existing forecasting method 

likely captures all of the generating processes. Moreover, it seems likely that, as in the 

elections case, the generating processes are non-stationary. If so, unless it changes over time 

in the right way, no single predictive method will work for long, including any generated by 

machine learning techniques. The difficulty applies to any big data approach. 

 

Besides non-stationarity, GDP forecasting also faces other potential difficulties (Betz 2006, 

101-108):  

1) The economy is an open system. In other words, it is continuously impacted by non-

economic variables, such as election results, that inevitably do not appear in economic 
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forecasting models. (As long ago as 1928, Oskar Morgenstern pointed out that economic 

prediction requires prediction also of non-economic variables.) 

2) The economy is a reflexive system, in other words forecasts may themselves affect the 

economy in such a way as to impede the task of forecasting it.17 

3) Measurement errors are large.18 GDP can only be estimated by aggregating meso-level 

inputs and the details of that process require many statistical estimates and subjective 

judgments. Methods for seasonal adjustment introduce further imprecision. One symptom of 

these difficulties is significant discrepancies between different measuring methods. Another 

symptom is the large size of revisions, which are typically greater than 1% – comparable to 

the average forecast error.  

4) The economy might be a chaotic system, in which case at best only probabilistic forecasts 

are possible. 

 

In addition, one recent argument holds that confirmation of causal hypotheses in 

macroeconomics requires knowledge of unobservable variables, in particular of agent 

expectations, and is therefore necessarily infeasible (Henschen 2018). If so, and if accurate 

forecasting requires a verified causal model (which admittedly it might not), then 

macroeconomic forecasting too is necessarily infeasible. 

 

It may well be that several or even all of these difficulties are significant. No big data method 

is a plausible solution for any of them. Accordingly, even if non-stationarity is somehow 

overcome, big data is not a plausible savior of GDP forecasting.  

 
17 This is why many rational expectations models deem it impossible to forecast systematically better than a 

random baseline. Similar pessimism is applied – perhaps more convincingly – to other economic variables 

besides GDP, such as exchange rates and stock prices. Forecasts of these latter two are, like those of GDP, both 

unimpressive and not improving. 

18 Data quality is a major difficulty for big data analyses generally (section 7). 
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5. Fourth example: Economic auctions 

Laboratory experiments are increasingly common in social science (Kagel and Roth 2016). In 

turn, extrapolation from these experiments is an increasingly common guide to field 

interventions. Such interventions are implicitly predictions of the interventions’ own effects, 

by those who make the interventions. Can big data methods help? I will consider here one 

well-studied case, namely the US government spectrum auctions from the mid-1990s.19  

 

The radio spectrum is the portion of electromagnetic spectrum between 9 kilohertz and 300 

gigahertz. In the USA, parts of the radio spectrum that are not needed for governmental 

purposes are distributed via licenses by the Federal Communications Commission (FCC). In 

the early 1990s, the FCC acquired the right to do this using competitive market mechanisms 

such as auctions. That left it the formidable task of designing such auctions. The importance 

of doing this well is best illustrated by the embarrassments that occur when it is done badly. 

Examples of that include: an Otago university student winning the license for a small-town 

TV station by bidding just $5 (New Zealand 1990); an unknown outbidding everyone but 

then turning out to have no money, thus delaying paid television for nearly a year as do-over 

auctions had to be run (Australia 1993); and collusion and a subsequent legal fight resulting 

in four big companies buying the four available licenses for prices only one-fifteenth of what 

the government had expected (Switzerland 2000). In contrast, the FCC’s series of seven 

auctions from 1994 to 1996 were a remarkable success. They attracted many bidders, 

allocated nearly two thousand licenses, and raised $20 billion, an amount that surpassed all 

 
19 For more details and references regarding this case, see Guala (2005), Alexandrova (2008), and Alexandrova 

and Northcott (2009). 
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government and industry expectations. Even the first auctions passed off without a glitch, and 

there was reason to believe that licenses were allocated efficiently. 

 

How was this success achieved? A wide range of goals was set by the government besides 

revenue maximization, such as efficient and intensive use of the spectrum, promotion of new 

technologies, and ensuring that some licenses go to favored bidders such as minority- and 

women-owned companies. Exactly what design would achieve these goals was a formidable 

puzzle for teams of economic theorists, experimentalists, lawyers, and software engineers. 

The country was eventually subdivided into 492 basic trading areas, each of which had four 

spectrum blocks up for license. The eventual auction mechanism put all of these licenses up 

for sale simultaneously as opposed to sequentially, in an open rather than sealed-bid 

arrangement. Bidders placed bids on individual licenses as opposed to packages of licenses. 

When a round was over, they saw what other bids had been placed and were free to change 

their own combinations of bids. Bidders were also constrained by a number of further rules, 

such as upfront payments, maintaining a certain level of activity, increasing the values of 

their bids from round to round by prescribed amounts, and caps on the amount of spectrum 

that could be owned in a single geographical area. The full statement of the auction rules was 

over 130 pages. 

 

Game-theoretical models revolutionized the auction literature in the 1980s. However, the 

final spectrum auction design was not derived (or derivable) from game theory alone. Indeed, 

no single model covered anywhere near all of the theoretical issues mentioned above. And in 

addition to instructions covering entry, bidding, and payment, much work also had to be put 

into perfecting other features such as the software, the venue and timing of the auction, and 

whatever aspects of the legal and economic environment the designers could control. Many 
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experiments and consequent ad hoc adjustments and fine-tuning were essential. These took 

the form of extensive testing in laboratory settings with human subjects. The results often 

took designers by surprise. For example, in some circumstances – and against theoretical 

predictions – ‘bubbles’ emerged in the values of the bids. These in turn were unexpectedly 

sensitive to the availability of information about rival bidders’ behavior. Chief experimental 

investigator Charles Plott commented: 

 

Even if the information is not officially available as part of the organized auction, the 

procedures may be such that it can be inferred. For example, if all bidders are in the same 

room, and if exit from the auction is accompanied by a click of a key or a blink of a screen, or 

any number of other subtle sources of information, such bubbles might exist even when 

efforts are made to prevent them. The discovery of such phenomena underscores the need to 

study the operational details of auctions. (Plott 1997, 620) 

 

Experiments showed that the impact of any particular auction rule tended to be dependent 

both on which other rules were included and also on the details of its implementation. Theory 

alone was typically unable to predict the impact of any given rule individually. Because 

individual rules did not have stable effects across different environments the performance of 

any particular set of rules had to be tested holistically, and moreover, tested anew with every 

significant change in environment. This resembles the holistic testing of weather forecasting 

models. The eventual result of a complex testing process was the perfection of one auction 

design as a whole, i.e. of a set of formal rules and practical procedures together.20 

 

In this way, extensive laboratory investigation was the basis for field predictions, namely of 

the outcomes of the eventual auctions. 

 
20 A very similar analysis applies to the even more successful 2000/1 spectrum auctions in the UK. 
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What was the role of big data methods? It was the work in the experimental testbeds, mired in 

messy practical details, that was crucial. The key was not new data about bidders or other 

data that could be collected from existing sources, nor was the key better analysis of such 

data. Rather, the relevant new data had to be created by running experiments and trials. A lot 

of the benefit from these experiments, as Plott makes clear, came in the form of practical 

know-how. This was what made the difference. 

 

What about future prospects for big data methods? We have asked this question for each of 

our examples. The auctions case reveals an implicit assumption. Unlike in many big data 

success stories, there was no prospect here of simply applying big data techniques to a stock 

of pre-existing data. Instead, because the relevant data were actively and purposefully 

created, it was necessary to decide what data to create. Prospects for prediction depended on 

these decisions, and therefore they depended too on the background theory essential to 

making those decisions. 

 

The type of predictive progress in the auctions case is different too. Much of the ‘data’ 

relevant to predictive success were practical know-how, which by its nature tends to be 

context- and task-specific. Accordingly, progress takes the form of predictive success in one 

task and then another task and then another, and so on. There is no trend of a greater degree 

of predictive success, rather only a greater scope. 

 

The details of the auction case do not bode well for big data advocates. Success required 

intricate knowledge of the context of application and active creation of relevant data. Both of 

these require background theory and are not a matter of better machine learning or data 
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mining. Thus, if the auction case is indicative, big data methods will not improve the 

derivation of field predictions from laboratory experiments.  

 

 

6. Conditions for big data predictive success 

Summarizing the upshots of the four cases: prediction of weather and elections has improved 

somewhat. In both cases, more data are part of the reason, as are improved analytical 

techniques, although sophisticated machine learning methods are not. GDP prediction has not 

improved; neither more data nor more sophisticated techniques to analyze that data have 

helped, and they do not seem likely to in the future. With economic auctions, accurate 

prediction about the impact of interventions requires fresh data to be created with each 

application, and progress is with regard to scope rather than accuracy; big data techniques of 

data analysis are irrelevant. Overall, the picture is therefore mixed: more data does help 

sometimes (not surprisingly), but it is not a panacea anywhere because lack of data is one of, 

but not the only, constraint on predictive success. New data analysis techniques have been 

valuable in some cases, but machine learning methods have not played a role. 

 

What determines if big data methods succeed? There has been much work on this question, 

by both philosophers of science and practitioners. The surveys by the philosopher Wolfgang 

Pietsch are a useful starting point (2015, 2016).21 Pietsch discusses several predictive 

methods that are widespread in data science. One is classificatory trees, which use a number 

of parameters to determine whether a certain instance belongs to a particular group. Examples 

include: predicting on the basis of demographic variables which candidate a voter will prefer; 

predicting on the basis of surf history, cookies and past purchases which product a consumer 

 
21 For references and more detailed discussion, see these Pietsch papers. 
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will prefer; and using genetic and environmental factors to predict whether a patient will 

suffer a certain disease. A second method is nonparametric regression, which, roughly 

speaking, seeks to account for data using minimal modeling assumptions, thereby allowing 

great flexibility as to the eventual predictive model’s functional form. This method has 

become feasible only recently because it is so computationally and data intensive. (The 

contrast between nonparametric and parametric regression is similar to that between data and 

algorithmic models.) 

 

Pietsch identifies four conditions necessary for such investigations to predict successfully 

(2015, 910-11):  

1) Vocabulary is well chosen, i.e. parameters are stable causal categories 

2) All potentially relevant parameters are known 

3) Background conditions are sufficiently stable 

4) There are sufficient instances to cover all potentially relevant configurations 

Label these the Pietsch conditions. These conditions apply to big data methods generally, i.e. 

to techniques of machine learning and data mining. 

 

To see the need for Condition 1: suppose variable X perfectly correlates with Z but Y does 

not. So, we may predict Z by tracking X. But suppose instead we track only a composite 

variable X + Y. Then we will fail to predict Z accurately, missing the chance to exploit X. In 

our four case studies though, satisfying this condition was not the relevant constraint. 

 

The importance of Condition 2 is obvious. Arguably, whenever full predictive success is 

absent, we cannot be sure this condition is satisfied. GDP and elections are especially clear 

examples. 
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Condition 3 refers to non-stationarity, which we have come across already. Any correlation 

that might be exploited for prediction is presumably generated by some underlying causal 

process. If that process is unstable then its exploitation may become impossible. Exactly this 

problem severely limits the efficacy of big data methods for predicting GDP and, to some 

extent, elections. By contrast, the relative stability of the causal processes underlying the 

Earth’s weather enable big data methods to be much more effective there. 

 

Condition 4 is that the available dataset must be sufficiently rich. Ideally, it should include all 

relevant configurations of cause and effect variables, else some predictive patterns may be 

missed. (In practice, even less than this ideal might still enable accurate prediction in a 

limited range.) Satisfying this condition was the biggest problem in the elections case: the 

relatively small number of elections is insufficient for selecting between all of the many 

possible causal hypotheses. Again, weather is a contrast case, because we have ample records 

of every relevant combination of weather causes and outcomes. 

 

7. Augmenting the Pietsch conditions 

In the well-known big data success stories, the Pietsch conditions are satisfied: the underlying 

generating process is stable enough, the training set of combinations is rich enough, and the 

variables are well-chosen enough, that we can infer reliably predictive patterns. For example, 

the process that causes some rather than other New York City manholes to blow seems to be 

relatively stable, and it was possible to collect a large enough dataset to identify the relevant 

correlations (Mayer-Schoenberger and Cukier 2013). Thus, the Pietsch conditions do 

illuminate actual cases. Nevertheless, the case studies enable us to address several further 

issues.  
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First, most simply, are the Pietsch conditions actually satisfied in important cases? It seems 

that they were in the weather example but not in our other ones. 

 

Second, why might the Pietsch conditions sometimes not be satisfied? One reason is a system 

being open, thus threatening the stability condition because an effect may be unpredictably 

influenced by unmodeled factors. A system being open also threatens the condition that all 

relevant parameters are known (elections, GDP). Another reason concerns the sufficient data 

condition, which may be threatened either because too few iterations exist of the relevant 

event (elections) or because the relevant data are too contextual (auctions).22 

 

Third, are the Pietsch conditions sufficient for accurate prediction? One lesson of the case 

studies is that they are not. The GDP case illustrates well further possible barriers, such as 

measurement error or a system being chaotic.23 The weather and election cases highlight the 

necessity sometimes of other factors too, such as the availability of the new techniques of 

ensemble forecasts and polling aggregation. 

 

Perhaps these various difficulties can all be recast simply as failures to satisfy Pietsch’s 

conditions: an open system implies either non-stationarity or incorrect vocabulary; reflexivity 

implies non-stationarity; and measurement errors, unobservable variables, and too few events 

 
22 A further potential difficulty is a system being reflexive (section 4), as many social systems may be, leading 

again to a failure of stationarity. It has been suggested that this may apply to elections and GDP, although if it 

does it is not clear how significantly. 

23 The examples also illustrate remedies for some of these difficulties. In the weather case, for instance, the 

ensemble method makes possible the (probabilistic) prediction even of a chaotic system. 
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each implies the unavailability of sufficient (accurate) data.24 But the point is that most of the 

real work now consists in assessing when and why the conditions will actually apply, so there 

is no substitute for supplementary local investigation. 

 

This contextualist moral also leads to the recognition that prediction may often be an 

amalgam of various methods, some of which rely on large datasets and make use of big data 

methods such as machine learning, while others do not. Even if big data does not improve 

overall predictions, it might still be helpful for certain local modeling tasks where theory is 

scarce but data are not. Thus, often the impact of big data on prediction in any given domain 

is not all-or-nothing. Knüsel et al. (2019) illustrate this in the context of climate science. 

There are examples in our case studies too. For instance, as noted, political campaigns 

successfully use big data methods to predict and influence many aspects of voter behavior.25 

 

Fourth, the importance of background theoretical knowledge is underlined. Such knowledge 

is often an essential guide to choosing the Pietschian correct vocabulary, as in both the 

election and weather cases. It is often crucial too for correcting non-stationarity, and for 

offering guidance regarding extrapolation (section 8; see also Knüsel et al. 2019, 199). That 

 
24 The distinctions between Pietsch’s different conditions are themselves fuzzy, as sometimes the same issue can 

be assigned to more than one of the categories. For example, suppose that in the 1980s in the UK buying a Ford 

Fiesta car predicts support for Conservatives but that by 1997 it predicts support for Labour. This is a case of 

non-stationarity. But suppose we re-describe the situation in terms of a more fundamental causal relation, 

perhaps that ‘middlebrow voters vote for middlebrow politicians’. This new relation is plausibly stable across 

the different elections. If so, rather than non-stationarity, the initial problem would become a case of incorrect 

vocabulary, or perhaps that not all relevant parameters are known. Generally, any open system is vulnerable to 

disruption by unmodelled variables, and thus a problem of non-stationarity is always vulnerable to being re-

classified in this way. 

25 See also https://www.facebook.com/business/success/rick-scott-for-florida#u_0_0 and 

https://www.facebook.com/business/success/snp for controversial (claimed) examples. I thank an anonymous 

referee for raising the issues in this paragraph. 

https://owa.bbk.ac.uk/owa/redir.aspx?C=vxa1RIHf9HbjiQcDGsPpNMZTGFhgVMCvNQeZJVmIjNBf_UXsPR_XCA..&URL=https%3a%2f%2fwww.facebook.com%2fbusiness%2fsuccess%2frick-scott-for-florida%23u_0_0
https://www.facebook.com/business/success/snp
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is, theoretical knowledge is beneficial even just for the narrow goal of better prediction.26 

Election predictions, for example, can be improved by incorporating systematic turnout 

differences between US midterm and presidential years, or by understanding why turnout 

patterns changed between the 2015 and 2017 UK elections. And theory informed the 

experiments that gathered the relevant data in the auctions case. It is also a commonplace that 

background theory and knowledge of the data-generating mechanism are often essential to 

handling likely data errors effectively (Foster et al. 2017, 180). 

 

A note of caution though: although background theory is thus indispensable, at the same time 

theory alone does not predict successfully in the field. All of the case studies confirm that. 

The weather forecasting models require many ad hoc adjustments that go beyond, or even 

contradict, basic theory; models of elections based on fundamentals are out-predicted by 

opinion polling; theory-based forecasts of GDP fare no better than those based on other 

methods; and the spectrum auction design was not derived, or derivable, from game-

theoretical models but rather used those models only as heuristic starting points to be 

repeatedly refined by sui generis experiments. As a result of this need for extra-theoretical 

input, predictive success when it is achieved is local and hard to extrapolate to new contexts. 

Evidence suggests that this pattern is typical of field cases generally (Tetlock and Gardner 

2015). Recent work suggests that machine learning methods likewise predict best by avoiding 

theory-driven models (Mullainathan and Spiess 2017). In our case studies, more data do not 

counter this anti-theory trend; if anything, they exacerbate it. 

 

There have also been analyses from big data practitioners themselves. There is some overlap 

between these and Pietsch’s conditions. Correct choice of variables is recognized as key for 

 
26 Sabina Leonelli (2016) compellingly emphasizes the same point for the field of systems biology. 
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making machine learning methods work, for instance. However, it is notable that 

practitioners have markedly different emphases. Perhaps the biggest issue for them is 

ensuring data quality, which is a catch-all for a range of more specific issues, such as whether 

data are representative, whether there are measurement errors, and whether the data capture 

what we want them to – often data are repurposed, being the products of instruments and 

methods not designed with data scientists in mind (Foster et al. 2017, 276-285; Japec et al. 

2015, 848-850). Such concerns are captured by the Pietsch conditions at best only implicitly. 

 

In our case studies, however, while data quality issues such as the reliability of polling 

evidence and weather measurements are concerns, they are not the biggest constraints on 

predictive accuracy. Conversely, what is in practice the biggest such constraint, namely non-

stationarity, is comparatively neglected by practitioner analyses.27 In this way, the case 

studies augment them too. 

 

 

8. Theory and causal understanding 

The case studies also shed light on causal understanding. Advocacy for big data methods has 

often celebrated those methods’ lack of connection to causal inference: the ‘death of theory’ 

heralds an emphasis instead exclusively on correlation and prediction (Mayer-Schoenberger 

and Cukier 2013, Hey et al. 2009). But this is not quite right, as theoretical analysis and case 

studies together reveal. 

 

 
27 This despite the fact that non-stationarity is a classic concern in statistics, with many associated diagnostic 

tests. Knüsel et al. (2019) is one exception to the pattern, as they do take what they call ‘constancy’ in the data 

to be in practice the most important condition to satisfy. 
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Pietsch (2016) shows how some big data methods can offer causal inference – up to a point. 

In particular, examining patterns of covariation enables these methods to identify INUS 

causes in the sense of (Mackie 1980), even though the available evidence is only 

observational.28 If we assume a stable causal background then INUS causes in turn license 

interventions because actual variations can stand as proxies for the relevant counterfactual 

ones. Thus, one benefit of theory can be achieved even by ‘theory-free’ big data methods. On 

the other hand, these same methods are vulnerable to spurious correlations in the same way as 

Mackie himself noted for INUS causes, and as practitioners recognize too (Foster et al. 2017, 

277-279). The best defense against such spurious correlations is to import background 

knowledge – and so theory reappears. Moreover, INUS causes merely mark patterns of 

covariation. They do not provide mechanistic or other underlying explanations of those 

patterns, nor therefore any understanding of why they hold, nor therefore any guidance as to 

when they will extrapolate to new contexts. To plug these gaps, again background theory is 

required. 

 

The case studies demonstrate that, in practice, causal understanding is hard to deliver. Even 

given relative predictive success (weather, elections, auctions), our ability to explain has 

increased very little. Testing of the weather model and the auction design was holistic, 

militating against assigning causal responsibility to particular factors and thus against causal 

explanations.29 Generally, the theoretical demonstration of the possibility of causal inference 

by big data methods turns out to be mostly inapplicable to our cases, because an algorithmic 

search for correlations from which INUS causes can be inferred is too simple a method to be 

 
28 ‘INUS’ stands for an Insufficient but Necessary part of an Unnecessary but Sufficient condition. 

29 Lenhard (2018) argues that holistic testing tells against causal inference in complex simulation models 

generally. 
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useful. Rather, there are breakdowns of stationarity (elections, GDP, auctions), or insufficient 

data (elections), or the data need to be created (auctions).  

 

The picture is not quite wholly bleak though. Causal understanding is occasionally achievable 

in the weather case (Northcott 2017). At root, this is because of the exceptional quantity of 

data available. For example, recently, there have been extensive changes to the model’s 

treatment of convection schemes in the tropics and to its treatment of the radiative properties 

of ice clouds. These changes have, of course, been thoroughly tested for their impact on 

predictive success and refined accordingly. But in addition, the data allowed modelers to test 

whether the two changes composed non-linearly or not. In this case, it was found that the 

non-linear – i.e. interactive – effects were relatively small. Accordingly, empirically verified 

changes in model outputs (i.e. successful predictions) could now be attributed to particular 

changes in model inputs; that is, some causal transparency was returned. 

 

Some limited extrapolation was possible in the auction and election examples too, as work 

from earlier cases helped with later cases such as the UK spectrum auction of 2000/1 and 

later US presidential elections. Still, even then this extrapolatory help was far from infallible, 

as witnessed by the failure of the 2000 spectrum auction in Switzerland and (relative) failure 

of forecasting of UK parliamentary elections. Usually, new models are needed each time 

(Northcott 2017). 

 

 

9. Conclusion 

In the right circumstances, the Pietsch conditions are satisfied, and big data methods do 

significantly advance field prediction. They enable the best possible use to be made of a 
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given body of data, and they promise still more predictive success as new techniques and 

more data become available. But often the binding constraint is neither lack of data nor our 

inefficient use of them. Instead, prediction may be hindered by a system being non-stationary 

(elections, GDP, auctions), or chaotic, open, or reflexive (weather, GDP, perhaps others). 

These hinder all big data methods alike. Or a lack of relevant data cannot feasibly be 

remedied (elections), or new data can, in whole or in part, only be collected with non-big-data 

methods (auctions, elections, weather, GDP). Such problems may be frequent and 

unfortunately may affect those cases that we most want to predict.30 

 

There is still a need for theory and thus for human experts – in part because it is this that 

enables some predictive progress even in the face of the difficulties above. Theory and 

experts ubiquitously inform both the correct choice of variables to analyze and the collection 

of data in the first place. They are essential to the ‘internal’ operation of prediction too. 

Nevertheless, despite this continued role for theory, the possibilities for causal inference are 

often very limited. 

 

Our case studies illuminate all of these issues. Overall, they suggest caution about whether 

prediction, and thus scientific method generally, will really be revolutionized by big data. 

 

 

 

 

 
30 Are social sciences more prone than natural sciences to these problems? I do not yet see convincing evidence 

of that. Natural language translation and internet company experiments are success cases from social science. 

The only problem specific to social science is reflexivity, and it is not clear how often reflexivity is predictively 

significant. 
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