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Abstract

Probabilistic dependence and independence are among the key concepts of Bayesian epis-
temology. This paper focuses on the study of one specific quantitative notion of probabilistic
dependence. More specifically, section 1 introduces Keynes’s coefficient of dependence and
shows how it is related to pivotal aspects of scientific reasoning such as confirmation, coher-
ence, the explanatory and unificatory power of theories, and the diversity of evidence. The
intimate connection between Keynes’s coefficient of dependence and scientific reasoning raises
the question of how Keynes’s coefficient of dependence is related to truth, and how it can
be made fruitful for epistemological considerations. This question is answered in section 2
of the paper. Section 3 outlines the consequences the results have for epistemology and the
philosophy of science from a Bayesian point of view.

1 Keynes’s Coefficient of Dependence and its Relation to
Key Concepts in Bayesian Epistemology

1.1 Introduction

Two propositions A and B are probabilistically dependent relative to a probability function Pr if
and only if Pr(ANB) # Pr(A)xPr(B); alternatively if and only if Pr(B) > 0 and Pr(A|B) # Pr(A).
Two propositions A and B are probabilistically independent relative to a probability function Pr
if and only if Pr(AN B) = Pr(4) x Pr(B).

These qualitative concepts of probabilistic dependence and probabilistic independence are among
the key concepts of Bayesian philosophy of science and epistemology. This can be seen most
clearly in the following example. One central research question of Bayesian philosophy is: How
should we update our degrees of belief conceived of as probabilities? The standard Bayesian
rule for updating degree of belief is Strict Conditionalization. According to Strict Conditional-
ization, if an agent learns with certainty that B is true (and Pryq(B) > 0), the new degree of
belief in A (Prpew(A)) is the old degree of belief in A given B (Pryq(A|B)). Hence, whether
Pryew(A) # Prya(A) depends on whether Pr,q(A|B) # Prya(A) and thus on whether A and B
are probabilistic dependent or independent with respect to Pryq. If A and B are positively prob-
abilistic dependent (i.e. if Pryjq(A N B) > Pryq(A4) X Prya(B)), learning B results in an increase
in degree of belief in proposition A. If A and B are negatively probabilistic dependent (i.e. if
Proja(AN B) < Pryg(A) X Pryg(B)) learning B results in a decrease in degree of belief in propo-
sition A. If A and B are probabilistic independent (i.e. if Pryq(A N B) = Prya(A) X Pryga(B)),
learning B does not change one’s degree of belief in proposition A.

This paper focuses on the study of probabilistic dependence and independence. More specifically,
it focuses on one particularly simple measure of probabilistic dependence, i.e. a quantitative con-
cept of deviation from independence, which was introduced by John Maynard Keynes (1921) and
is highly significant for the philosophy of science and epistemology. It is highly significant because
one can show that Keynes’s coefficient of dependence is a key element for furthering our under-
standing of almost any Bayesian attempt to capture or explicate any interesting aspect of scientific
reasoning in terms of probabilities. Subsections 1.2-1.5 show how Keynes’s coefficient of depen-
dence is related to many aspects of scientific reasoning: confirmation, coherence, explanatory and
unificatory power, and diversity of evidence. The intimate connection between Keynes’s coefficient
of dependence and scientific reasoning raises the question of how this coefficient of dependence is
related to truth, and how it can be made fruitful for epistemology. This question is answered in
section 2. Section 3 outlines the consequences the results have for the philosophy of science and
epistemology from a Bayesian point of view.



1.2 Measuring Probabilistic Dependence: Keynes’s Coefficient of De-
pendence

In contrast to concepts such as confirmation, coherence, explanatory and unificatory power, the
concept of probabilistic dependence, i.e. deviation from independence, is not a key concept within
traditional approaches to scientific and/or rational reasoning in philosophy of science and epis-
temology. However, the aim of Bayesian philosophy of science and epistemology is to explicate
the former notions in terms of probabilities, and very often the key idea is to explicate these con-
cepts in terms of probabilistic dependence. For example, according to the standard conceptions of
confirmation and coherence, two propositions confirm each other or cohere with each other if and
only if they are positively probabilistically dependent. Two propositions disconfirm each other or
are incoherent with each other if and only if they are negatively probabilistic dependent (Fitel-
son 1999, 2001, Shogenji 1999). A second example would be theories of explanatory power. A
minimum requirement on the relation between explanandum and explanans is that they are pos-
itively probabilistically dependent (Crupi & Tentori 2012, Popper 1959, Schubpach & Sprenger
2011). A third example would be conceptions of unification, according to which a theory unifies
two pieces of evidence if it renders them positively probabilistically relevant to each other, i.e.
they are probabilistically independent a priori but positively probabilistically dependent in the
light of the hypothesis (Myrvold 2003, Schupbach 2005). In a next step Bayesian philosophers of
science and epistemologists seek to provide comparative and quantitative notions of confirmation,
coherence, explanatory and unificatory power, etc. For this purpose it might be equally useful to
study comparative or quantitative notions of probabilistic dependence (i.e. quantitative notions
of association, or deviation from independence) as it is useful to study different interpretations of
probability.

Measures of probabilistic dependence or deviation from independence have been studied since the
early days of the probabilistic approach to understanding rational reasoning. One of the first
authors to discuss measures of probabilistic dependence between propositions (instead the depen-
dence of random variables) was John Maynard Keynes. In his 1921 A Treatise on Probability
Keynes introduces one particular measure of probabilistic dependence that is highly significant for
the philosophy of science and epistemology: Keynes’s coefficient of dependence.! It is highly sig-
nificant because one can show that Keyne’s coefficient of dependence is relevant for understanding
almost any Bayesian attempt to capture or explicate interesting aspects of scientific reasoning in
terms of probabilities.

Definition 1 (Probabilistic Dependence: Keynes’s Coefficient of Dependence). 2

1Keynes (1921) attributes this measure to William Ernest Johnson’s manuscript Cumulative Formula which was
unpublished at that time. The author could not verify whether the latter manuscript has been published since.

2Wheeler (2009) calls this the Wayne-Shogenji correlation measure, not because Wayne or Shogenji invented it,
but because of the conflicting interpretations that have recently been attached to it by these authors. Wayne (1995)
tentatively suggests pd as a similarity measure. Shogenji (1999) interprets it as a coherence measure. In the following
no such interpretation is presupposed. Since many philosophers before Shogenji and Wheeler used this measure
— such as Keynes (1921), Mackie (1969) and Horwich (1982) — I refrain from following Wheeler (2009) in calling
it the Wayne-Shogenji correlation measure. In contrast to Wheeler (2009) and Bréssel (2013c) I also cautiously
refrain from calling it a measure of correlation (I am grateful to an anonymous referee for comments which have
made me cautious on this score.). Finally, it is worth mentioning that one can also find alternative measures in the
literature. In information theory the most common way to measure the distance between probability distributions
is the Kullback-Leibler Divergence. Applied as a measure of deviation from independence, it measures the distance
between the actual probability of the conjunction and the independent distribution. In particular, as a measure of
deviation from independence the Kullback-Leibler Divergence looks like this:

Definition (Probabilistic Dependence: Kullback-Leibler Divergence).
P (AL, .., An) = [Pr(A1N... N Ay) X logpd g (A1, ..., An)]].

As one can see, this measure of probabilistic dependence depends crucially on Keynes’s coefficient of dependence
PO . Thus, studying Keynes’s coefficient of dependence is more fundamental. A third measure of deviation from
independence is the following:



_ Pr(Ain...NnA,)
~ Pr(A;) x...x Pr(4,)

if Pr(4;) > 0 for all 1 < i <n, and 0 otherwise.

pDK(Al, .. ,An)

According to Keynes (1921), the coefficient of dependence between propositions Ay, ..., A, gauges
the degree of probabilistic dependence of propositions A1, ..., A,, or the degree of deviation from
probabilistic independence. One also can define a conditional variant of po.

Definition 2 (Probabilistic Dependence: Conditional Coefficient of Dependence). 3

Pr(A;N...NA,|B)
Ay,... A =
POk (A, ..., An|B) Pr(A;|B) x ... x Pr(A,|B)

if Pr(A;|B) > 0 for all 1 <1i <n, and 0 otherwise.

The following sections demonstrate that Keynes’s coeflicient of dependence pdy is intimately
related to many central notions within Bayesian epistemology and that it has properties that
make it an important tool in the Bayesian epistemologists’ tool box for showing that scientific
reasoning is best explicated in terms of probability theory.

1.3 Keynes’s Coefficient of Dependence and Confirmation

Confirmation theory is one of the central fields of application of the Bayesian machinery and it
is intimately related to probabilistic dependence. Bayesian confirmation theory holds that some
evidence F confirms a theory T relative to probability function Pr if and only if Pr(T|E) > Pr(T).
Hence, F confirms T just in case E and T are positively probabilistically dependent relative to
probability measure Pr.

According to some proponents of confirmation theory, the relation between probabilistic depen-
dence and confirmation is even stronger: how strongly the theory is confirmed by the evidence
depends on how strongly both are probabilistically dependent. This section briefly hints at some
confirmation measures that have been suggested in the literature to support this statement. How-
ever, none of these measures are defended or rejected (for an overview about this aspect of the
discussion see Brossel 2012, 2013a, Crupi 2014, and Fitelson 1999, 2001). For present purposes
it is sufficient to make plausible that confirmation and probabilistic dependence in the sense of
Keynes’s coefficient of dependence are closely related. Proposed confirmation measures that link
confirmation very intimately to Keynes’s coefficient of dependence are the following;:

Definition 3 (Confirmation).

Definition (Deviation From Independence: Difference Measures).
POg(A1, ..., An) =Pr(A1N...NA,) —Pr(A1) x ... x Pr(Ay)

The difference measure is usually applied when one is interested in the deviation from independence of two
propositions. Its generalization for measuring the dependence of two random variables is known as the measure of
covariance between the random variables. Unfortunately, discussing and comparing these measures of probabilistic
dependence goes beyond the scope of the present paper. This topic will be the content of subsequent research.

3Keynes (1921) actually introduces only the conditional variant of po .



Carnap 1962) d(T,E)=Pr(T|E) — Pr(T) if Pr(E) >0
Mortimer 1988) M(T,E) =Pr(E|T) — Pr(E) if Pr(T) >0
Christensen 1999, Joyce 1999) S(T, E) = Pr(T|E) — Pr(T|E) if 1 > Pr(E) > 0
Nozick 1981) N(T, E) = Pr(E|T) — Pr(E|T) if 1 > Pr(T) > 0
[Pr(T|E)
Pr(T)
—00 if Pr(T|E)=0
A5 if Pr(T|E) > Pr(T) >0
(Crupi et. al. 2007) Z(T,E) = ldjgf% if Pr(T|E) < Pr(T)
1 if Pr(T) =0
log [E:EE}%] if Pr(E|T) > 0 and Pr(E[T) > 0
(Fitelson 2001, Good 1960) (T,E) =14 if Pr(E) > 0 and Pr(ET)=0

—00 if Pr(E)=0or Pr(E|T)=0

e e

if Pr(T|E) >0
(Milne 1996) r(T,E) = ] i Pr(T1E)

For all these measures it is trivial to substantially link Keynes’s coefficient of dependence with
confirmation.*

4The following corollary and all other corollaries and theorems are proved in the appendix.



Corollary 1 (Confirmation).

(Carnap 1962) d(T,E) = [pog(T,E) —1|Pr(T) ifPr(E)>0
(Mortimer 1988) M(T,E) = [pog(T,E) —1]Pr(E) if Pr(T) >0
(Christensen 1999, Joyce 1999) S(T, E) = [%] Pr(T) if1>Pr(E)>0
(Nozick 1981) N(T,E) = [%] Pr(E) if1>Pr(T)>0
1 T,E)] if Px(T|E
(Milne 1996) r(T, E) = { P8Pk (T D] f Pr(T|E) >0
—00 if Pr(T|E) =0
[P0 (T, E) — 1] x gg; if Pr(T|E) > Pr(T) >0
(Crupi et. al. 2007) Z(T,E) = { [po (T, E) — 1] if Pr(T|E) < Pr(T)
1 if Pr(T)=0
log [%] if Pr(E|T) > 0 and Pr(E[T) >0
(Fitelson 2001, Good 1960) (T, E) =1 if Pr(E) > 0and Pr(E|T)=0
—00 if Pr(E)=0or Pr(E|T)=0

It is not only easy to demonstrate that the above confirmation measures depend on Keynes’s coef-
ficient of dependence between the theory and the evidence. The same holds for all (conceptually)
possible confirmation measures. They all depend on Keynes’s coefficient of dependence between
the theory and the evidence. This is because confirmation depends on the disparity between either
the a priori probability of the theory and its a posteriori probability in the light of the evidence
or the a posteriori probability of the theory given the evidence and given the negation of the
evidence. From these considerations alone it should be clear that it might be very illuminating to
study Keynes’s coefficient of dependence to reach a better understanding of confirmation. For this
to hold true, it is not necessary that confirmation needs to be explicated explicitly by referring
to Keynes’s coefficient of dependence. Consider the analogous case of coherence and confirmation
and suppose that each of these notions can be explicated without explicit reference to the other
notion. Nevertheless, studying the relation between coherence and confirmation can provide a
better understanding of confirmation and of coherence. The same holds true for measures of con-
firmation and probabilistic dependence. Even if the quantitative notion of confirmation can be
explicated without explicit reference to Keynes’s coefficient of dependence, one can nevertheless
study the relation between degrees of confirmation and Keynes’s coefficient of dependence, and
studying this relationship provides a better understanding of confirmation and of Keynes’s coeffi-
cient of dependence. If this is correct then by studying this relationship (and first, for this purpose,
Keynes’s coefficient of dependence itself) one can further our understanding of confirmation even
if one is not interested in studying Keynes’s coeflicient of dependence per se. For example, the
results mentioned in Corollary 1 help us to understand what confirmation functionally depends on,
besides probabilistic dependence in the sense of Keynes’s coefficient of dependence. As a simple
instance, consider Carnap’s measure of confirmation d. According to this measure, if we compare
two theories T and T5 that are to the same degree positively probabilistically dependent with the
evidence (P (T, E) = p0g (T, E) > 1), then, ceteris paribus, the more plausible theory is the
better confirmed one. This verdict is very plausible. For Mortimer’s measure one cannot find such
a dependence and on this basis one might argue that it is inadequate as a measure of confirmation.

1.4 Keynes’s Coefficient of Dependence and Coherence

The study of Keynes’s coeflicient of dependence is also of importance to Bayesian coherence theory.
According to many Bayesian coherentists, two propositions cohere with each other if and only if
they are positively probabilistically relevant for each other (Douven & Meijs 2007, Fitelson 2003,
Schupbach 2011b, Shogenji 1999).

Shogenji (1999) goes furthest by arguing that coherence is nothing else but Keynes’s coefficient for
dependence. In particular, Shogenji’s (1999) definitions of coherence and of a coherence measure



are the following:

Definition 4 (Shogenji Coherence 1).
Ay, ..., Ay, are coherent if and only if pd,(Ay,...,A,) > 1

if Pr(A;) > 0, and 0 otherwise.

Definition 5 (Shogenji Coherence 2).
COhS(Al, ey An) = pak(Al, e ,An)
if Pr(A;) > 0, and 0 otherwise.

Other philosophers follow Douven & Meijs (2007) and Fitelson (2003) in defining coherence via
confirmation. They hold that the more two propositions mutually confirm each other, the more
they cohere. This shows that understanding Keynes’s coefficient of dependence is relevant for
coherence, since the study of the latter is relevant for the understanding of confirmation. Philoso-
phers like Bovens & Hartmann (2003: 53) and Olsson (2002: 262), who do not define coherence
via Keynes’s (or any other) coefficient of dependence or confirmation, still admit that the positive
probabilistic dependence of two propositions has a positive impact on their coherence. According
to them, positive probabilistic relevance in the sense of Keynes’s coefficient of dependence increases
the coherence of the evidence at least ceteris paribus.

1.5 Keynes’s Coefficient of Dependence, Explanatory and Unificatory
Power, and Diversity of Evidence

Further interesting aspects of scientific reasoning depend on whether and how strongly two propo-
sitions are probabilistically dependent in the sense of Keynes’s coefficient of dependence. The
following paragraphs discuss explanatory and unificatory power, and the diversity of evidence.

Explanatory Power Popper (1959) was one of the first philosophers to suggest a measure for
the explanatory power provided by a theory with respect to some evidence. Such a measure should
quantify how well a theory explains the evidence. Popper proposes a measure of explanatory power
that is ordinally equivalent to the following one by Good (1960):°

Definition 6 (Explanatory Power 1).

EP\(T,E) = w

if Pr(T) > 0 and Pr(E) > 0.

In support of Popper (1959), Good (1960) and McGrew (2003) defend measures of explanatory
power that are ordinally equivalent to EP;. Schupach & Sprenger (2011) propose an alternative
measure. They suggest the following measure of the explanatory power of a theory regarding some
evidence:

Definition 7 (Explanatory Power 2).

2T B) — | PHIE) — P(T|E)
2T | Pr(T|E) + Pr(TE)

if Pr(T) > 0 and 1 > Pr(E) > 0.

Pr(E|T)—Pr(T)

5The original formulation of Popper’s (1959) measure of explanatory power is this: EPp(T, E) = e (BT TPe(T) "



According to Schupbach, measures of explanatory power are closely related to confirmation mea-
sures.® In particular, “these measures are structurally equivalent to the confirmation measures”
Schupbach (2011a, 814). Measures of confirmation quantify how much the evidence increases the
probability of the hypothesis, measures of explanatory power quantify how much the explanans
(the hypothesis) increases the probability of the explanandum (the evidence). The measure of ex-
planatory power endorsed by Schupbach & Sprenger (2011), for example, is structurally equivalent
to [, the measure of factual support proposed by Kemeny & Oppenheim (1952). Some philosophers
argue that [ cannot be an adequate measure of confirmation (Milne 1996), while others argue that
there is more than one adequate confirmation measure (Joyce 1999). This provokes the question
of whether this has implications for theories of explanatory power. Is it possible that some other
confirmation measure is the adequate choice for quantifying explanatory power? Is there more
than one adequate measure of explanatory power? Popper (1959), Good (1960), McGrew (2003),
Schupbach & Sprenger (2011), Schupbach (2011a), and Crupi & Tentori (2012) deal with these
questions from various perspectives and provide detailed arguments. For the present purpose it
suffices to recognize that the study of probabilistic dependence is often used by philosophers of
science to measure explanatory power. For the presented measures of explanatory power EP; and
E Py, the exact relation to probabilistic relevance in the sense of Keynes’s coefficient of dependence
is given by the following corollary:

Corollary 2.
EP(T,E) =p0,(T, E)

if Pr(T) > 0 and Pr(E) > 0.
PO (E,T) — po(

EPy(T,E) = 51)

if Pr(T) > 0 and 1 > Pr(E) > 0.

Unificatory Power The unificatory power of a theory regarding pieces of evidence is another
important concept that has been proposed to be understood in close relation to probabilistic
dependence. On Myrvold’s (2003: 399) account”, “the ability of a theory to unify phenomena
consists in its ability to render what, on prior grounds, appear to be independent phenomena
informationally relevant to each other.” Suppose the evidence F consists of two pieces of evidence
e1 and ey. Myrvold (2003) proposes to measure the unificatory power of a theory T with respect
to these pieces of evidence as follows:

Definition 8 (Unificatory Power).

Pr(e;Nez|T)
Pr(e1|T)xPr(e2|T)
Pr(eiNes)
Pr(e1)xPr(e2)

UP(e1,e2;T) = log

if Pr(T) > 0,Pr(e1|T) > 0, and Pr(es|T) > 0.

Since this measure of unificatory power is complicated, let us set out its relation to Keynes’s
coefficient of dependence before analyzing it. The relation between UP and po,, is this:

Corollary 3.

UP(e1,e2T) = log {W}

po(e1,€2)
if Pr(T) > 0,Pr(e1|T) > 0, and Pr(e2|T) > 0.

6 According to Hajek & Joyce (2008), a measure ordinally equivalent to FP» can itself be considered a confir-
mation measure. However, apart from this paper, I am not aware of any other philosophical text which suggests
this.

"Independently of Myrvold, McGrew (2003) discusses an account of unification (or, as McGrew puts it, of theo-
retical consilience) that is effectively equivalent to Myrvold’s account. For a detailed discussion of both approaches
and their connection see Schupbach (2005).



This shows that U P is the ratio of the probabilistic dependence of e; and e; under the condition T’
(p,(e1,e2|T)) and the probabilistic dependence of e; and ez unconditionally (pd(ey, ez)). Thus,
according to Myrvold (2003), the unificatory power of some theory consists in its ability to increase
the probabilistic dependence of the pieces of evidence. Increasing the probabilistic dependence of
the pieces of evidence in the sense of Keynes’s coefficient of dependence is what Myrvold (2003)
calls rendering phenomena informationally relevant to each other.

Diversity of Evidence Confirmation theorists often consider it to be uncontroversial that
hypotheses are confirmed more by diverse evidence than by uniform evidence. For example,
the hypothesis that all ravens are black is much more confirmed if one considers black ravens
which were drawn randomly from all over the world than if one considers ravens that were drawn
randomly from some small valley in the Black Forest. The reasoning behind this judgement is that
it might be the case that only the ravens in that particular valley are all black and the ravens in
other valleys are not black. Thus, confirmation theorists need a criterion to distinguish between
diverse evidence and uniform or similar evidence. Suppose again that the evidence E consists of
two pieces of evidence e; and es. Since Carnap (1962), philosophers have taken it for granted that
if e; and ey are similar pieces of evidence then they are probabilistically dependent. In the wake of
Howson & Urbach (1989), philosophers try to explicate similarity of pieces of evidence according
to this property. Along the lines of Howson & Urbach (1989) and Earman (1992), Wayne (1995)
tentatively proposes (but does not endorse) the following measure of uniformity or similarity of
two pieces of evidence:

Definition 9 (Similarity of Evidence).

B Pr(€1 N 62)
SE(e1,e2) = Pr(ey) x Pr(es)

if Pr(e1) > 0 and Pr(ez) > 0.

The relation to Keynes’s coefficient of dependence is again trivial and is given by the following
corollary:

Corollary 4.
SE(el, 62) = pDK(el, 62)

if Pr(e1) > 0 and Pr(ez) > 0.

This shows how the measure SF of the similarity of pieces of evidence can be related to Myrvold’s
(2003) measure of unificatory power. According to Wayne (1995), the higher the probabilistic
dependence of the pieces of evidence in the sense of Keynes’s coefficient of dependence, the more
similar they are. Hence, an alternative understanding of Myrvold’s (2003) measure of the unifica-
tory power of a theory is that it quantifies the degree to which a theory increases the similarity of
the pieces of evidence. If the pieces of evidence are more similar given the theory than uncondi-
tionally the theory is considered to be unifying the pieces of evidence.

This section set out the relevance of studying Keynes’s coefficient of dependence. The hope is that
the study of the coefficient of dependence will help us to gain a better understanding of various
aspects of scientific reasoning that are central to the philosophy of science and epistemology.
Note, it is not presupposed that these notions must be explicitly defined or explicated in terms
of Keynes’s coefficient of dependence. It also does not imply that whether a given explication
is adequate (for example, whether d is an adequate confirmation measure) depends on whether
Keynes’s coefficient of dependence satisfies certain necessary and sufficient desiderata for measures
of probabilistic dependence. All it requires is that these concepts have the following property:
if A confirms, coheres with, explains, or is similar to, etc. B, then A and B are positively
probabilistically dependent in the sense of Keynes’s coefficient of dependence and that, all other
things being equal, the more they are positively probabilistically dependent the higher is the degree



of confirmation, coherence or explanatory power, etc. If this correct, then studying Keynes’s
coefficient of dependence is useful. On the one hand Keynes’s coefficient of dependence is relevant
for confirmation, coherence, explanatory power, etc. and on the other hand it is simpler and clearer
than, for example, the conception of confirmation. The reason for this is that the former is only
meant to capture the degree of probabilistic dependence. However, in the context of confirmation,
coherence, explanatory and unificatory power, etc., other aspects play an important role too.
In the context of confirmation, for example, typical assumptions are that confirmed hypotheses
are belief-worthy, that old evidence can confirm a hypothesis, that irrelevant conjunctions are
less confirmed than the relevant conjunct, etc. Similar points can be made considering concepts
such as coherence and explanatory power. For these reasons studying probabilistic dependence in
general and Keynes’s coefficient of dependence first, is fruitful for Bayesian epistemology.

2 Keynes’s Coefficient of Dependence and its Role in Bayesian
Epistemology

As a first step, the following Subsection 2.1 investigates whether there is a relation between
Keynes’s coefficient of dependence and the primary aim of scientific inquiry: finding the truth.
In particular, Subsection 2.1 investigates whether the probabilistic dependence of a theory T" and
the evidence E in the sense of Keynes’s coefficient of dependence is an indicator of the truth of 7.
However, in scientific contexts theories are usually compounds of different hypotheses. Similarly,
the evidence is a collection of different pieces of evidence. Hence, a theory T is the conjunction of
hypotheses Ay, ..., h,, and the evidence F is the conjunction of the pieces of evidence e, ..., en,.
This distinction between the theory and its hypotheses and between the evidence and the pieces
of evidence makes the probabilistic dependence in the sense of Keynes’s coefficient of dependence
especially worth investigating. How does the probabilistic dependence of the pieces of evidence
e1,...,em in the sense of Keynes’s coefficient of dependence affect the probabilistic dependence
of T and E? How does the probabilistic dependence of the hypotheses hq,..., h, affect the
probabilistic dependence of T" and E? In the second and third step, Subsections 2.2 and 2.3 focus
on these questions.

2.1 Keynes’s Coefficient of Dependence and Truth

One epistemologically interesting feature of Keynes’s coefficient of dependence pdj is that the
probability of the conjunction of the propositions Ay, ... A, is a monotone function of their prior
probabilities and their coefficient of dependence. In addition, the probability of the conjunction of
the propositions Ay, ... A, given some proposition B is a monotone function of these propositions’
individual conditional probability given B and their conditional coefficient of dependence.

Theorem 1.
Pr(A;N...NA,) =pog(Ar,... A) x J] Pr(4)

1<i<n

Pr(A;N...NAy|B) = pog(A1,... An|B) x ] Pr(4iB)

1<i<n

It this feature of the coefficient of dependence and its conditional variant that interests Keynes,
because “[t]hese coefficients thus belong by definition to a general class of operators, which we
may call separative factors” (Keynes 1921: 170, emphasis in the original). On the one hand,
this property renders the coefficients of dependence useful if one already knows the (conditional)
probability of each of the hypotheses hq,...,h, and one wants to determine the (conditional)
probability of the theory consisting of these hypotheses. On the other hand, and this is more im-
portant in the present context, this property renders the coefficient of dependence truth-conducive
in the following weak sense: given equal prior or posterior probabilities the truth of all elements

10



of a set with a higher coefficient of dependence is also more likely.

However, if the two true propositions A and B are positively probabilistically dependent, then the
two false propositions A and B are also positively probabilistically dependent.® Thus, Keynes’s
coeflicient of dependence per se is not an indicator of the truth of propositions. The question is
whether there is a stronger relation between truth and Keynes’s coefficient of dependence.

In the light of this observation, Shogenji suggests that a high coefficient of dependence (respectively
coherence) with true propositions is truth-conducive.

To put it in a more familiar setting, if a belief is pairwise coherent with a body of
beliefs [i.e., if it is positive probabilistic dependent on it] — say, about a fairy — then
they have a tendency of being false together, and therefore the belief in question is
more likely to be true provided the fairy tale is true; but they also have the tendency
of being false together, and therefore the belief in question is more likely to be false if
the fairy tale is false. Thus, coherence [positive probabilistic dependence] with truth is
truth conducive on the level of individual beliefs, but coherence per se is not. (Shogenji
1999: 345)

Still, one could argue that the connection between probabilistic dependence and truth is too weak.
In particular, one could point out that Shogenji only argues that probabilistic dependence is
probability-conducive, not that it is truth-conducive. After all, a high coefficient of dependence
with a true proposition does not guarantee the truth of the proposition in question, only that it
has a high probability or a tendency of being true.® The question remains: is there a stronger rela-
tion between truth and probabilistic dependence in the sense of Keynes’s coefficient of dependence?

It is easy to establish a closer link between the truth of a theory and Keynes’s coeflicient of
dependence between that theory and the evidence by referring to convergence theorems of, for
example, Gaifman & Snir (1982) or Schervish & Seidenfeld (1990).1° According to these theorems,
the probability of some theory converges to its truth value if the evidence is informative enough
to separate the possibilities.!! By employing these convergence theorems in the study of Keynes’s
coefficient of dependence between some theory and the evidence the following lemma is provable.'2

Lemma 1 (Convergence of Keynes’s Coefficient of Dependence). Let W be a set of possibilities
and let A be some algebra over W. The elements of A are interpreted as propositions expressible
in some suitable language L as specified in more detail in the appendix on p. 23. The possibilities
in W can be interpreted as models for £. Let eg,...,e,,... be a sequence of propositions of A
that separates W, and let el = e; if w F ¢; and & otherwise. Let Pr be a regular (or strict)
probability function on A. Let Pr* be the unique probability function on the smallest o-field A*
containing the field A satisfying Pr*(A) = Pr(A) for all A € A.

Then there is a W/ C W with Pr*(IW') = 1 so that the following holds for every w € W’ and all
theories T' € A.

1
nh_}rrgo PO (T,EY) = Br(T) if wE T and 0 otherwise.

8This has been noted already by Shogenji (1999). Of course, Shogenji is discussing this property in the context
of Bayesian coherentism and he takes pd; to be a measure of coherence.
9Branden Fitelson argued to this effect in a private e-mail exchange.

0Unfortunately, in such a short paper it is not possible to provide a detailed exposition of the mathematically
intricate convergence theorems. Accordingly, this paper will presuppose previous acquaintance with these conver-
gence theorems. I refer the interested reader to Hawthorne’s (2014) very intelligible exposition of an approach to
arrive at one of these convergence results.

11 A sequence of pieces of evidence separates the set of possibilities W if and only if for every pair of worlds w; and
wj € W (with w; # wj;) there is one piece of evidence in the sequence such that it is true in one of the possibilities
and false in the other.

12This lemma and the following theorem have been anticipated and Huber (2005, 2008). See also Bréssel (2008,
2013b).
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where Ej = Nocicm €5

This result shows that Keynes’s coefficient of dependence between a true theory and the evidence
increases the more pieces of evidence one collects. In the long run, Keynes’s coefficient of de-
pendence between a true theory T and the evidence E increases to the maximum coefficient of
dependence between theory T and evidence E that T' can display with respect to some evidence,
namely %. Thus, the less plausible a true theory is a priori, the higher is the coefficient of
dependence between that theory and the evidence in the long run. False theories display the

minimal coefficient of dependence in the long run.

This formal result about Keynes’s coefficient of dependence in the long run has important ramifi-
cations for its application in the philosophy of science and epistemology. In particular, Keynes’s
coefficient of dependence pd - satisfies requirements on good measures of confirmation that have
been suggested by Hempel (1960), Levi (1967), and Huber (2008): (i) pdy favors true theories
over false theories and (i7) pdy favors logically stronger, (i.e. more informative) true theories
over logically weaker, (i.e. less informative) true theories after receiving finitely many pieces of
evidence and for every additional piece of evidence thereafter.!?

Theorem 2. Let W be a set of possibilities and let A be some algebra over W. The elements
of A are interpreted as propositions expressible in some suitable language £ as specified in more
detail in the appendix on p. 23. The possibilities in W can be interpreted as models for £. Let
€0 ..., €n,... be a sequence of propositions of A that separates W, and let e}’ = e; if w F e; and
€; otherwise. Let Pr be a regular (or strict) probability function on A. Let Pr* be the unique
probability function on the smallest o-field A* containing the field A satisfying Pr*(A) = Pr(A)
for all A € A.

Then there is a W/ C W with Pr*(IW') = 1 so that the following holds for every w € W’ and all
theories T} and Ty of A.

1. If w E T, and w E Ty, then:
InvVm > n: [pog(Th, EL) > pd i (T, EY))

2. fwk Tl N T2 and T1 E T2 but T2 ¥ T17 then:
Invm >n: [paK(ThE#}z) > paK(TQa E}qum)]

w
-

w
where B = Ny<icpm €

Theorem 2 shows that if one compares two theories, one of which is true and the other false, then
the coefficient of dependence between the true theory and the evidence is higher than the coeffi-
cient of dependence between the false theory and the evidence (after receiving finitely many pieces
of evidence and for every piece of evidence thereafter). Thus, Keynes’s coefficient of dependence
POy is in a strong sense truth-conducive: it leads us to true theories after receiving finitely many
pieces of evidence. It also shows that if one compares two theories, both of which are true but
where one of them is logically stronger, then the coefficient of dependence between the logically
stronger theory and the evidence is higher than the coefficient of dependence between the logically
weaker theory and the evidence (after receiving finitely many pieces of evidence and for every
piece of evidence thereafter). This answers the question with respect to the connection between
Keynes’s coefficient of dependence between a theory and the evidence and the truth of that theory.
It also shows that Keynes’s coefficient of dependence between a theory and the evidence is more
than an indicator of the truth of the theory. It also indicates how informative the true theory is.

However, it is important to note that the above strong results on the truth-conduciveness of
Keynes’s coefficient of dependence are based on strong assumptions about the availability of ev-
idence, respectively about our information gathering processes. First, in the present context it

13Note that Theorem 2 restricts these claims: p0y satisfies both conditions only almost surely: it only holds for
every w € W' for some W’ such that W/ C W and Pr*(W’) = 1. It does not necessarily hold for all w € W.
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is assumed that our information gathering processes are fully reliable and that we can rely fully
on the observational data that we arrive at via these information gathering processes. Although
this assumption is fairly standard in the context of theories of confirmation (Brossel 2012, 2013a,
Carnap 1962, Fitelson 2001), one must nevertheless emphasize that this assumption is extremely
unrealistic. The second and even stronger assumption is that the sequence of possible observa-
tional data is informative enough to separate the set W of possibilities, e.g. possible worlds. As
already indicated, a sequence of pieces of evidence separates the set of possibilities W if and only
if for every pair of possibilities w; and w; € W (with w; # w;) there is one piece of evidence in
the sequence such that it is true in one of the possibilities and false in the other. Accordingly, this
second assumption requires that for every possibility (in the set of possibilities W) that is not the
actual possibility, at least one observation in the sequence of possible observational data reveals
to us that it is not the actual possibility.'* Clearly both assumptions are unrealistic. However, it
is also important to note that the unrealistic assumptions make it all the more plausible that a
given form of scientific reasoning is rational only if it leads us to true theories, at least if our infor-
mation gathering processes are as reliable and informative as described in the above assumptions.
The good news is that Keynes’s coefficient of dependence po satisfies this minimal requirement.

2.2 Keynes’s Coefficient of Dependence Between Pieces of Evidence

Typically the evidence is the conjunction of different pieces of evidence. The question is what
impact, if any, combining probabilistically dependent pieces of evidence has on the probabilistic
dependence of some theory and the evidence. In outline, the challenge is this: suppose we receive
pieces of evidence eq, . . ., e, and we want to know what impact the probabilistic dependence of the
pieces of evidence has upon the probabilistic dependence of a theory T and the evidence conceived
of as the conjunction of the pieces of evidence. Based on the property that Keynes’s coefficient of
dependence allows us to separate the impact the (conditional) probabilities of some propositions
have on the (conditional) probability of conjunct of these propositions (Theorem 1) this challenge
can be answered.

Wayne (1995) presents the following result that displays the relation between the probabilistic
dependence of a theory and the evidence in the sense of Keynes’s coefficient of dependence on
the one hand and the coefficient of dependence of the pieces of evidence and the coefficient of
dependence of the theory with each individual piece of evidence on the other.

Theorem 3.

p (T‘ ) p (T| ) Pr(eiN...Ne,|T)

. u T €m Pr(e1|T)X...xPr(em|T)

pDK(Tvel ﬂ...ﬂem) - PI‘(T) XX PI“(T) x _ Pr(ein...Nem)
Pr(e1)X...xPr(em)

pOg(er, ..., em|T)
paK(el,...7€m)

:pDK(Tvel) X... X pDK(Taem) X

if Pr(eg N...Nep) > 0.

Myrvold (1996, 2003) and Wheeler (2009) concentrate on the last multiplicand in the theorem.
Myrvold (2003) defines his measure U P based on it (see Definition 8). Wheeler (2009), who does
not want to make any strong commitment about whether the last multiplicand explicates some
important concept of science, dubs this measure ‘focused correlation’. Since Wheeler (2009) also
assumes that r (i.e. log[pdk]) is an adequate confirmation measure, he concludes that “[t]he fo-
cused correlation of e; and ey relative to a hypothesis T' [...] tells us what impact there is on the
confirmation of T, if any at all, from combining e; and e3” (Wheeler 2009: 90, notation adapted).
However, this is not all the last multiplicand tells us. It also tells us how much a theory increases
the coefficient of dependence between the pieces of evidence. This is the reason why Myrvold

MFor a more detailed discussion of convergence theorems and their philosophical implications especially for
scientific realism and anti-realism see Brossel (2013b).
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(2003) suggests UP as a measure of the unificatory power of a theory.

Theorem 3 fits our intuitions. First, the coefficient of dependence between a theory and the ev-
idence (i.e. the conjunction of the pieces of evidence) depends on the coeflicient of dependence
between each individual piece of evidence and the theory. Second, the coefficient of dependence
between a theory and the evidence is higher when the theory makes pieces of evidence fit together
that did not fit together before — that is, if the coefficient of dependence between pieces of evidence
is higher conditional on the theory than on prior grounds.'® It also shows that there is a ceteris
paribus connection between the coefficient of dependence between the pieces of evidence and the
coeflicient of dependence between the theory and the evidence. That means that if one holds all
other factors in Theorem 3 fixed and only changes the coefficient of dependence between the pieces
of evidence, one also changes the coefficient of dependence between the theory and the evidence.
The first result is that ceteris paribus the coefficient of dependence between the pieces of evidence
has a negative effect on the coefficient of dependence between the theory and the evidence.'®
Further, it shows that ceteris paribus the coefficient of dependence between the pieces of evidence
in light of the theory has a positive effect on the coefficient of dependence between the theory
and the evidence. Finally, it shows that ceteris paribus the coefficient of dependence between the
pieces of evidence has a positive impact on the coefficient of dependence between the theory with
each individual piece of evidence.

The preceding paragraphs demonstrate how the coefficient of dependence between the pieces of
evidence and the coefficient of dependence between the pieces of evidence given a theory affect
the coefficient of dependence between that theory and the evidence and how these considerations
might be made fruitful for epistemology and philosophy of science. Now another question is: What
is the relation between the coefficient of dependence pd (7, eq,...,e,,) between some theory T
and the pieces of evidence eq, ..., e,, and the coefficient of dependence between that theory T and
the conjunction of the pieces of evidence e; N...Ne,,7 To my knowledge this question has never
been addressed in the literature. Note the following corollary which is a variation of a theorem by
Shogenji (2007):17

15Not all readers think that this result fits our intuitions. Accordingly, I at least want to show that it is supported
by other intuitions shared by many Bayesian epistemologists. It is supported by our intuitions about unification.
More specifically, many Bayesian epistemologists share the intuition that ceteris paribus a hypothesis is the more
confirmed by the evidence the more it unifies the single pieces of evidence (see section 1.5) and they assume the
following: (i) the unificatory power of a theory consists in its ability to increase the coefficient of dependence between
the pieces of evidence (McGrew 2003, Myrvold 2003), (ii) the theory is the more confirmed by the evidence the
higher the coefficient of dependence between them. Hence, the more the theory in question increases the coefficient
of dependence between the pieces of evidence, the higher is the coefficient of dependence between the theory and
the conjunction of the pieces of evidence in question.

16 Again, not all readers will think this result fits our intuitions. Accordingly, I at least want to show that it is
supported by other intuitions shared by many Bayesian epistemologists. It is supported by our intuitions about the
diversity of evidence. More specifically, many epistemologists share the intuition that ceteris paribus hypotheses are
confirmed more by diverse pieces of evidence than by uniform pieces of evidence (see section 1.5) and they assume
the following: (i) the evidence is the more uniform or similar the more the pieces of evidence are probabilistically
dependent (e.g. Myrvold 1995) and (ii) the hypothesis is the more confirmed by the evidence the stronger the
probabilistic dependence. Hence, ceteris paribus a higher coefficient of dependence between the pieces of evidence
has a negative effect on the coefficient of dependence between the theory and the evidence.

7In his paper Shogenji (2007) wants to demonstrate why the coherence (in the sense of his coherence measure
Cohg) of mutually independent pieces of evidence seems to be truth-conducive for some hypothesis H, even if
various impossibility results demonstrated that this cannot be the case (Bovens and Hartmann 2003, Olsson 2002).
For this he considers in how far the “degree of coherence between the focal piece (usually the new piece) of evidence
and the rest of the evidence is a significant factor in the confirmation of the hypothesis” Shogenji (2007: 367).
Accordingly, Shogenji considers the interaction between the coherence/coeflicient of dependence of the independent

pieces of evidence eq,...,em and the coherence/coefficient of dependence of the independent pieces of evidence
e1,...,em—1 where ey, represents the focal or new piece of evidence and proves that
PDK(el,- : -7em)

PrlernN...Nem—1,m) = ——"—"—"—
" " pDK(elau-vemfl)-

if Pr(e1N...Nem) > 0.
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Corollary 5.

paK(T7ela"'7em)
0 (Tie1N...Ney) =
P K( ' ) paK(€1,...,€m)

if Pr(e; N...Nep) > 0.

It follows immediately that if the coefficient of dependence between one theory and the pieces of
evidence is higher than the coefficient of dependence between another theory and the pieces of
evidence then the coefficient of dependence between the first theory and the conjunction of the
pieces of evidence is higher than the coefficient of dependence between the latter theory and the
conjunction of the pieces of evidence.

Corollary 6.
pDK(T1,61 n... Oem) > pDK(T2,61 n... Oem) <~

pDK(T1,€17...,€m) > pDK(T27617...,€m)

Corollary 5 and Theorem 2 imply a further interesting result regarding Keynes’s coefficient of
dependence. It is truth-conducive even if one considers the coefficient of dependence between a
theory and the pieces of evidence and not just the coefficient of dependence between a theory
with their conjunction. Since the coefficient of dependence between a theory with the conjunction
of the pieces of evidence is truth-conducive (Theorem 2), Corollary 5 shows that the coefficient
of dependence between the theory and the pieces of evidence itself is truth-conducive in the
strong sense: the coefficient of dependence between a true theory and the pieces of evidence is
higher than the coefficient of dependence between a false theory and the pieces of evidence (after
receiving finitely many pieces of evidence and for every piece of evidence thereafter). In addition,
if two theories are true but one is logically stronger then the coefficient of dependence between
the logically stronger one and the pieces of evidence is higher than the coefficient of dependence
between the logically weaker one and the pieces of evidence (after receiving finitely many pieces
of evidence and for every piece of evidence thereafter).

Theorem 4. Let W be a set of possibilities and let A be some algebra over W. The elements
of A are interpreted as propositions expressible in some suitable language £ as specified in more
detail in the appendix on p. 23. The possibilities in W can be interpreted as models for £. Let
€0 ..., €n,... be a sequence of propositions of A that separates W, and let e}’ = e; if w F e; and
€; otherwise. Let Pr be a regular (or strict) probability function on A. Let Pr* be the unique
probability function on the smallest o-field A* containing the field A satisfying Pr*(A) = Pr(A)
for all A € A.

Then there is a W/ C W with Pr*(IW') = 1 so that the following holds for every w € W’ and all
theories T} and Ty of A.

1. If w E T4 and w E T5, then:
InVm > n o [pog(T1, e, ..., el) > pog (T, e, ..., el)]

2. fwk T1 ﬂTQ and T1 = T2 but TQ}ﬁ Tl7 then:
InVm > n: [pOg(Th, et ... e%) > pOg(Ta, el ... e")].

The conclusion Shogenji finally reaches is this:

We have uncovered that when the pieces of evidence are independent with regard to the hypothesis
and the rest of the evidence supports the hypothesis, the more coherent the focal piece of evidence
is with the rest of the evidence, the more strongly the focal evidence supports the hypothesis. This
leaves us with the impression that coherence is truth conducive. (Shogenji 2007: 371)

In the light of Corollary 6 (which does not presuppose that the pieces of evidence are mutually independent) one
can see that actually something stronger is true. Ceteris paribus the coefficient of dependence between the pieces
of evidence has a negative effect on the coefficient of dependence between the theory and the conjunction of the
evidence. However, ceteris paribus the coefficient of dependence between the pieces of evidence and the theory has
a positive effect on the coefficient of dependence between the theory and the conjunction of the evidence.
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The proceeding considerations show that the investigation of the Keynes’s coefficient of depen-
dence between pieces of evidence and the coefficient of dependence between pieces of evidence
and theories is fruitful for the philosophy of science and epistemology. After receiving finitely
many pieces of evidence one can identify which theories are true and which false by employing the
Keynes’s coefficient of dependence p0 . Furthermore, Keynes’s coefficient of dependence can help
to understand what properties diverse or independent pieces of evidence should have and which
affect combining such pieces of evidence has on the confirmation of theories. This might help to de-
cide which (series of) experiments a scientist should carry out in order to support or reject theories.

These relations between the coefficient of dependence between the pieces of evidence and the
coeflicient of dependence between a theory and the evidence are relevant for discussions of the cor-
rect explications of confirmation, explanatory and unificatory power, and the diversity of evidence.
However, this is not the place to discuss these issues in detail. In this paper the focus is on Keynes’s
coefficient of dependence and therefore an example may suffice. Consider the confirmation measure

[. Corollary 1 shows that the confirmation measure | (I(T,E) = :Eg:g) can be rewritten solely

in terms of Keynes’s coefficient of dependence (I(T, E) = %). In the context of Bayesian
K )

updating this quantity is also known as the Bayes factor. Suppose now that the evidence E is the

conjunction of the pieces of evidence ey, ..., e,,. For the Bayes factor one can show how the Bayes

PO (The1N...Nem)

factor of each piece of evidence e; influences the Bayes factor I(T, E) = o (Toen o)
K €1l le.e m

Corollary 7.

pog(er,...,em|T)
pOg(er, ... em)

pog(er,...,em|T)
POg(er, ... em)

PO (T,er) X ... X pog (T, em) X
(Tye1N...Nepw) = P (T B) _
o (T, E)

paK(T7el) XX paK(T7 €m) x

POk (e, .. em|T)
pDK(el, . ,em|T)

This corollary is an example of how Keynes’s coefficient of dependence might help us to gain
a better understanding of confirmation. In addition, this might be fruitful for the discussion
of possible measures of unification. In particular, Bayesians who think that r is an inadequate
measure of confirmation and that [ is a better measure of confirmation (Bréossel 2012, Fitelson
2001, Hawthorne 2014) might argue on the basis of Corollary 7 that unification should better be
explicated as follows:

(T,e1N...New) =0T, e1) x ... xUT,em) x

Definition 10 (Unificatory Power).

_ pgc(ers - em|T)

UPy(e1,...,em;T) —
" PO (ety. s em|T)

2.3 Keynes’s Coefficient of Dependence Between Hypotheses

As already noted, theories often consist of different hypotheses that stand in various inter-theoretic
relations to each other. Given that a theory is a conjunction of hypotheses hy, ..., h,, similar
questions arise regarding the effect the coefficient of dependence between these hypotheses has
upon the coefficient of dependence between their conjunction (i.e. the theory) and the evidence.
A theorem similar to Theorem 3 is provable for hypotheses:

Theorem 5.

Pr(hiN...0h, |E)
Pr(h|E) Pr(ha|E)  Brinlm)x xPr(na]E)

X ... X x
cee Pr(hiN...Nhy,)
Pr(h) Prib) st

P (hinN...Nhy, E) =
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PO (h1, ..., holE)

=p0x(h1,E) X ... xpO0g(hy, E) X

if Pr(hyN...Nhy,) > 0.

This result is in accordance with our intuitions. In order to achieve a high coefficient of dependence
between the conjunction of the hypotheses and the evidence, the conjunction of the hypotheses
should be initially improbable, but probable given the evidence. Consequently, the coefficient of
dependence between the hypotheses should be initially low so that their conjunction is a priori
improbable. However, the coefficient of dependence between the hypotheses given the evidence
should be high so that the conjunction is probable given the evidence. Furthermore, the coefficient
of dependence between each individual hypothesis and the evidence should be high as well.

Another question is: How does the coefficient of dependence between the hypotheses and the
evidence affect the coefficient of dependence between the conjunction of the hypotheses and the
evidence? More formally, what is the relation between pd - (hy, ..., hn, E) and pd g (h1N. . .NA,, E)?
The following theorem answers this question:

Corollary 8.

paK(h17...,hn,E)
dp(hiN...Nhy, E) =
PO (M )= o)

if Pr(hyN... N hy) > 0.

This theorem depicts a strong connection between the coefficient of dependence between the
hypotheses and the evidence and the coefficient of dependence between the conjunction of the
hypotheses and the evidence. The coefficient of dependence between the conjunction of hypothe-
ses and the evidence is nothing else than the ratio of the coefficient of dependence between the
hypotheses and the evidence and the coefficient of dependence between the hypotheses.

A theorem that generalizes and summarizes the findings of Corollary 5 and Corollary 8 is the
following:
Theorem 6.

pDK(hl,...,hn,el,...,em)
pDK(h1,7hn> X pDK(el,...,em)

if Pr(hyN...Nhy) >0and Pr(e; N...Ney) > 0.

pDK(hlﬁ...ﬂhn,elﬂ...ﬁem):

This theorem shows that the coefficient of dependence between the theory and the evidence de-
pends positively on the coefficient of dependence between the hypotheses and the pieces of evidence.
It depends negatively on the coefficient of dependence between the hypotheses and the coefficient
of dependence between the pieces of evidence.

From Theorem 2 and Corollary 8 one can derive another important result. The ratio of the
coefficient of dependence between the hypotheses and the evidence and the coefficient of depen-
dence between the hypotheses is truth-conducive in the strong sense. In particular, after receiving
finitely many pieces of evidence the following holds for Keynes’s coefficient of dependence po:
the disparity between the coefficient of dependence between the hypotheses and evidence and the
coeflicient of dependence between the hypotheses is an indicator of the truth of the hypotheses.
The ratio of the coefficient of dependence between hypotheses and the evidence and the coeffi-
cient of dependence between the hypotheses is higher for compounds of true hypotheses than for
compounds of hypotheses that contain at least one false hypothesis (after finitely many pieces of
evidence and for every piece of evidence thereafter). Furthermore, the ratio of the coefficient of
dependence between the hypotheses and the evidence and the coefficient of dependence between
the hypotheses is higher for logically stronger compounds of true hypotheses than for logically
weaker compounds of true hypotheses (after finitely many pieces of evidence and for every piece
of evidence thereafter). The following theorem states this conjecture more precisely:
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Theorem 7. Let W be a set of possibilities and let A be some algebra over W. The elements
of A are interpreted as propositions expressible in some suitable language L as specified in more
detail in the appendix on p. 23. The possibilities in W can be interpreted as models for £. Let
€0 ..., €n,... be a sequence of propositions of A that separates W, and let e}’ = e; if w F e; and
€; otherwise. Let Pr be a regular (or strict) probability function on A. Let Pr* be the unique
probability function on the smallest o-field A* containing the field A satisfying Pr*(A) = Pr(A)
for all A € A.

Then there is a W/ C W with Pr*(W’) = 1 so that the following holds for every w € W’ and all
hypotheses hy, ...h, and hf, ... h] of A.

1. IfwERMN...Nh, and wE (K, N...NA,,), then:

_ . ! L
IV > k- Py (.o s B PDK(h1,~/-~,hm7/El )
pDK(hlaahn) paK< 17’hn)
2. IfwE hiN...Nh,NRIN...NR,, and h1N...NAy, E RIN...NAL, but KiN...NAL, E hiN...Nhy,
then:
_ N ) S
IkVI 2 k- pDK(hla .. 'ahnvEl ) > PDK(hl, ./. .,hm7lEl )
pogc(ha, .o o) pogc (R, ... )

w w
where B = (<< €}’

These considerations show that studying the coefficient of dependence between the hypotheses of
a theory and the evidence is extremely useful for the philosophy of science and epistemology. By
studying the coefficient of dependence between the hypotheses and the evidence one can identify
which (compounds of) hypotheses are true and which false after receiving finitely many pieces
of evidence. In addition, the coefficient of dependence is essential for understanding the inter-
theoretic relations which can help a theory to gain support from the evidence. According to some
Bayesians the importance of Keynes’s coefficient of dependence is even higher. If one follows
Popper (1959) and others in relating explanatory power to Keynes’s coefficient of dependence,
these results are of greatest importance for understanding how theories explain the evidence. If
one follows Myrvold (2003) in tying unificatory power to Keynes’s coefficient of dependence these
results are of greatest importance for understanding how theories unify the evidence.

3 Conclusions

Section 1 displays various connections between Keynes’s coefficient of dependence po, and vari-
ous essential concepts of the philosophy of science and epistemology. In particular it shows that
Keynes’s coefficient of dependence is closely related to various proposed Bayesian measures of
confirmation, coherence, explanatory and unificatory power, and the diversity of evidence. This
renders Keynes’s coefficient of dependence one of the most interesting and central factors in the
philosophy of science and epistemology. It is imperative that it be investigated further.

The investigation of the formal properties of Keynes’s coefficient of dependence pd, in section 2
vindicates the claim that it is itself a useful tool within the philosophy of science and epistemology.

First, Theorem 1 shows that, ceteris paribus, Keynes’s coefficient of dependence is truth-conducive
in the following weak sense: if one holds the prior (respectively the posterior) probabilities of some
set of propositions fixed, the prior (respectively the posterior) probability of the truth of all propo-
sitions increases with their (conditional) coefficient of dependence.

Second, Theorem 2 demonstrates that the coefficient of dependence between true theories and the

evidence is higher than the coefficient of dependence between false theories and the evidence (after
the receipt of finitely many pieces of evidence and for every piece of evidence thereafter). This
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establishes that the coefficient of dependence pd is truth-conducive in a strong sense. Addition-
ally, it holds that the coefficient of dependence between logically stronger true theories and the
evidence is higher than the coefficient of dependence between logically weaker true theories and the
evidence (after receiving finitely many pieces of evidence and for every piece of evidence thereafter).

Third, relying on the distinction between the coeflicient of dependence and the conditional coef-
ficient of dependence, Theorem 3 shows that the coefficient of dependence between the pieces of
evidence has a negative impact on the coefficient of dependence between a theory and the evi-
dence. However, the conditional coefficient of dependence between the pieces of evidence given the
theory contributes positively to the coefficient of dependence between the theory and the evidence.

Fourth, Theorem 5 demonstrates that the coefficient of dependence between the hypotheses of a
theory does not have a positive impact on the coefficient of dependence between the theory and
the evidence; it has a negative impact. The conditional coefficient of dependence between the
hypotheses given the evidence contributes positively to the coefficient of dependence between the
theory and the evidence.

Fifth, the coefficient of dependence between the hypotheses and the pieces of evidence contributes
to the coefficient of dependence between the theory and the evidence. However, the coefficient
of dependence between the hypotheses and the coefficient of dependence between the pieces of
evidence does not.

Keynes’s coeflicient of dependence pd - is indeed a key concept of the philosophy of science and
epistemology. It is intimately related to essential aspects of scientific reasoning such as confir-
mation, coherence, explanatory and unificatory power, and the diversity of evidence. Thus, it
is imperative to investigate the consequences these results have for the inter-theoretic relations
between hypotheses and pieces of evidence. Which exact epistemological consequences these find-
ings might have depends on the exact theories of confirmation, coherence, etc., that one adopts.
However, the above theorems demonstrate how important it is to study how Keynes’s coefficient
of dependence is related to different forms of scientific reasoning. This holds in particular because
the coefficient of dependence p0j can be used to discern true from false theories.

We can conclude that Keynes’s coefficient of dependence is an important tool in the Bayesian
epistemologists’ tool box for showing that scientific reasoning can be explicated in terms of prob-
ability theory and that one can formulate and justify epistemic norms and evaluations by relying
on these explications.

A Proofs of Corollaries

Proof of Corollary 1

1. According to Definition 3:

(T, E) = Pr(T|E) — Pr(T)
_ [Px(T|E)
a [ Pr(T)
= [po4 (T, E) — 1] x Px(T)

- 1} x Pr(T)
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2. According to Definition 3:

M(T,E) = Pr(E|T) — Px(E)
_ [Pr(E|T)

Pr(E)
= [po (T, E) — 1] x Pr(E)

- 1} x Pr(E)

3. According to Definition 3:

S(T,E) =Pr(T|E) — Pr(T|(F))
Pr(T|E) — Pr(T)
Pr(E)
Pr(T|E) 1
Pr(T)

W x Pr(T)

PO (T, E)—1
= [f_ br(E) } x Pr(T)

4. According to Definition 3:

M(T, E) = Pr(E|T) — Pr(E|(T))
Pr(E|T) — Pr(FE)
Pr(T)
Pr(EIT) _ 4
Pr(E)

= W x Pr(E)

PO (T,E)—1
- {f B2(T) } x Pr(E)

5. According to Definition 3:

Pr(T|E)
T,F)=log | —7~
r(T, B) =log [ Pr(T) |’
if Pr(T) > 0 and Pr(E) > 0. Since Plggle“? = Prf);;()j;rll]f()E) it follows with Definition 1 that:

r(T,E) =log[pox (T, E)],
if 1 > Pr(T) > 0 and Pr(E) > 0.
6. According to Definition 3:

A5t if Pr(T|E) > Pr(T) > 0

(
Z(T,E) = { “4LE it pr(T|E) < Pr(T)
(

1-Pr(T)
1 if Pr(T) =0

pox LB if Pr(T|E) > Pr(T) > 0
= PR it Pu(TIE) < Pa(T)
1 if Pr(T) =0
[POx (T, B) = 1] x iy if Pr(T|E) =
= Wox(TE) =1 x gy if Pr(T|E) <
0

— =

Pr(T)
1 if Pr(T) =
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7. According to Definition 3:
Pr(E|T)}

I(T,E) =log [Pr(E|T)

if 1 > Pr(T) > 0 and Pr(F) > 0. It holds however that:

Pr(E|T)
o [Pr(E|T)] ~ log Pr(E)
Pr(E|T) Pr(E\T)
Pr(E)
This implies
T F
if 1 > Pr(T) > 0 and Pr(E) > 0.
Proof of Corollary 2
1. According to Definition 6:
Pr(E|T)
EP(T,E) = ———=
(T, B) Pr(E)
Pr(ENT)

~ Pr(E) x Pr(T)
= pOg (T, FE) (with to Definition 1)

2. According to Definition 7:

Pr(T|E) — Pr(T|E)
Pr(T|E) —|—Pr( B)
Pr(T|E) Pr(T|

EPy(T,E) =

T|E)+Pr(T|E
Pr(T)

[ Px(T|E) _ Px(T[E)
Pr(T) Pr(T)

Pr(T|E) Pr(T|E
L Pr(T) Pr(T)

_ PO (B,T) —pog(E,T)
PO (B,T) +pog(E,T)

Proof of Corollary 3 According to Definition 8:
Pr(e;nes|T)
UP(e1,e2;T) = log ‘Pr(elper()elx:;s)ez‘T)
Pr(e1)xPr(e2)

PDK(€1,€2|T)]
:1 _—
Og[ POk (e1,ez)

Proof of Corollary 4 According to Definition 9:
Pr(e; Nesg)
Pr(e;) x Pr(es)
= pDK(el? 62)

SE(el, 62)
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Proof of Corollary 5

_ Pr(Tnein...Ney)
- Pr(T) xPr(esN...Nep)
Pr(TNeiN...Newm)

_ Pr(T)xPr(e1)x...xPr(em)

- _Prlan.nem)
Pr(e1)X...xPr(em)

_ PO (Ter, ... em)

pDK(el,...,em)

PO (Toer N Nem)

Proof of Corollary 6

PO (T, e1N..Ney) > po(Trer N Ney) <

PO (Th ety vem) - PO (To,er,. .. em)
pog(er, ..., em) pog(er, ..., em)

PO (Th,e1,. .. em) > pOg(Ta,e1,... em).

=

Proof of Corollary 7 Corollary 7 follows trivially from Corollary 1 for the [ confirmation
measure and Theorem 3.

Proof of Corollary 8

Pr(hiN...Nh,NE)
Pr(hyN...NhAy) x Pr(E)

Pr(hiN...Nh,NE)
_ Pr(h1)X...xPr(h,)xPr(E)
- Pr(hiN...0h,)
Pr(h1)X...xPr(hy)

~ pog(hy, ..o g, E)

pPO(hiN...Nh,, E)=

pDK(hl, ceey hn)
B Proofs of Theorems
Proof of Theorem 1.
1.
Pr(AlﬁﬂAn): Pr(Alﬂ...ﬁAn)
PI'(Al Nn...N An)
Pr(A1N...NA,) = X Pr(A;)
' [Ti<i<n Pr(4i) 19]‘1n
Pr(A;N...NA,) = POg(Ar,... An) x ] Pr(4i)
1<i<n
2.
Pr(Ain...NA,|B) = Pr(Ain...NA,|B)

Pr(A;N...NA,|B)
X Pr Az B
ngign Pr(AL|B) 1§z]?£n ( ‘ )

Pr(A;N...NA,|B) = PO (Ar,... An|B) x ] Pr(4ilB)

1<i<n

Pr(A;N...N An|B) =
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Proof of Theorem 2 The proof proceeds as follows: First, the Gaifman-Snir Theorem is pre-
sented (for a proof see Gaifman-Snir 1982). Second, Lemma 1 is proven. Third, Theorem 2 is
completed.

1.) The Gaifman-Snir Theorem: Let W be a set of possibilities and let A be some algebra over
W. The elements of A are interpreted as propositions expressible in some language £ suitable for
arithmetic. In particular, let £ be some first order language containing the numerals ‘1°, ‘2°, ‘3’
... as names, respectively, individual constants, and symbols for addition, multiplication, identity
etc. In addition, let £ contain finitely many relations and functional symbols. Gaifman and Snir
(1982) call them the ‘empirical symbols’. Accordingly one can think of the possibilities in W as
models for that language £ (which agree on the interpretation of the mathematical symbols but
can disagree on the interpretation of the empirical symbols).

Now let eq,. .., ey, ...be a sequence of propositions of A that separates W, and for all w € W let
el =e;, if wk e; and € otherwise. Let Pr be a regular (or strict) probability function on A. Let
Pr* be the unique probability function on the smallest o-field A* containing the field A satisfying
Pr*(A) = Pr(A) for all A € A.

Then there is a W’ C W with Pr*(W’) = 1 so that the following holds for every w € W’ and all
theories T of A:

limp 0o Pr(T|EY) = Z(T, w)
where Z(T,w) = 1, if w F T and 0 otherwise.

2.) Lemma 1: Let W be a set of possibilities and let .4 be some algebra over W. The elements
of A are interpreted as propositions expressible in some suitable language L as specified in more
detail above. The possibilities in W can be interpreted as models for £. Let eg,...,e,,... be a
sequence of propositions of A that separates W, and let e’ = ¢, if w F e; and €; otherwise. Let
Pr be a regular (or strict) probability function on A. Let Pr* be the unique probability function
on the smallest o-field A* containing the field A satisfying Pr*(A4) = Pr(A) for all A € A.

Then according to the Gaifman-Snir Theorem there is a W/ C W with Pr*(W’) = 1 so that the
following holds for every w € W’ and all theories T of A:

limnoe Pr(T|EY) = Z(T, w)
where Z(T,w) = 1, if w F T and 0 otherwise.

Now it holds that

’ o . Pr(T|EY)
i o () = N O

1
_ . o
- 33 PrTIED) > i

. . 1
= nl;rr;o Pr(T|EY) x )

if lim, 00 Pr(T|EY) = 1

= Pr(T)’
0, if lim,,—,o Pr(T|EY)

1
= Pr(T)’
0, otherwise.

Il
=

3.) Proof of Theorem 2: Let W be a set of possibilities and let A be some algebra over W. The
elements of A are interpreted as propositions expressible in some suitable language £ as specified
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in more detail above. The possibilities in W can be interpreted as models for £. Let eq,...,e,,...
be a sequence of propositions of A that separates W, and let e}’ = e, if w F e; and &; otherwise. Let
Pr be a regular (or strict) probability function on A. Let Pr* be the unique probability function
on the smallest o-field A* containing the field A satisfying Pr*(A4) = Pr(A) for all A € A.

Then according to Lemma 1 there is a W/ C W with Pr*(W’) = 1 so that the following holds for
every w € W’ and all theories T of A:

. wy L .
nl;ngo PR (T, EY) = Pe(T) if wE T and 0 otherwise.

1.) Let Ty and T» be two theories of A and suppose additionally that w F T and w F T.

We know that lim,, oo pO g (11, EY) =

0 since w E Tb.

ﬁ since w E T1. We also know that lim,,—,c pO g (T2, EY) =

1 ’
Let e = 7. By the definition of lim it holds that: 3n € NVm > n : |7pr(1T1) —pog (T, EY)| <e
and 3/ € N¥m > 1/|0 — poge (Tn, B2 )| < e.

Now let ny =max.{n,n’}. Then it holds for all m > n; :

PO (T1, B3 ) > P (T, By )
2.) Now assume that w E Ty and w E Ty and T1 E T but T ¥ T;.

Because of Lemma 1 we know that lim,, . p0g (71, EY) = Pr(lTl) since w F T7. We also know

that lim,, o pO g (Ts, BY) = ﬁ since w E Ty.

The assumption is that Pr is a strict probability function and 717 E T but T ¥ T7. It follows that
1 1

PI‘(T]) < PI'(TQ)I and IP(T) > m

Now let € = @ Then it holds that: In € NVm > n : |ﬁT1) — PO (T1, E®)| < € and

In' € NVm > n’\ﬁ — PO (To, EX)| <e.
Now let ny =max.{n,n’}. Then it holds for all m > n; :

PO (Th, Eyy) > poge(To, Eyy)
Proof of Theorem 3

Pr(ezn...Ne, NT)
0, (T n...N =
Pox(Tser em) Pr(eyN...Nem) x Pr(T)

Pr(einN...Nen|T)

_ PI’(T|€1) Pr(T|em) Pr(eiN...Neym)

X ... X X
Pr(7) PH(T) Bl . Bl

Pr(einN...Nen|T)
_ Pr(T|ey) Pr(T|em) Prlein..Nem)

PI(T) XX PI‘(T) x Pr(e1|T)X...xPr(emn|T)
Pr(e1)X...xPr(em)

Pr(ein...Nem|T)
_ Pr(Tey) Pr(T|em) pr(el\;)x,..xfpr(emm

Pr(T) XX Pr(7T) X Prleininen)
Pr(e1)x...xPr(em)

PO (e ... em|T)
pDK(e1, .. .,em)

PO (Tyer) X ... X PO (T, em) X
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Proof of Theorem 4 Let W be a set of possibilities and let A be some algebra over W. The
elements of A are interpreted as propositions expressible in some suitable language £ as specified
in more detail in the appendix in connection with Theorem 2. The possibilities in W can be
interpreted as models for £. Let eg,...,e,,... be a sequence of propositions of A that separates
W, and let e’ = e; if w F e; and & otherwise. Let Pr be a regular (or strict) probability function
on A. Let Pr* be the unique probability function on the smallest o-field A* containing the field
A satisfying Pr*(A) = Pr(A) for all A € A.

Then according to Theorem 2 there is a W/ C W with Pr*(W’) = 1 so that the following holds
for every w € W' and all theories T} and T of A.

1. If w E T, and w E Ty, then:
InVm = n oz [P (T1, No<icm €57 > PR (T2, No<icom €1°)]
2. fwkET;NTy, and Ty E Ty but T ¥ T, then:
InVm = n: [P (T1, No<icm €57 > PR (125 No<icom €1°)]-
According to Corollary 6 it holds that
Pg(Ty, () ) >pg(Ty, () e) &

0<i<m 0<i<m

pDK(TlveiU» .- .,6%) > paK(T%elan .- '76%)'

Hence, there is a W' C W with Pr*(IW') = 1 so that the following holds for every w € W' and all
theories T} and Ty of A.
1. If w E Ty and w E Ty, then:
InvVm > n: [pog(Th, eV, ..., el) > pog(Th, ey, ... e%)]

2. fwk Tl ﬂTQ and T1 = T2 but TQ% 7717 then:
InVm > n o [pog (1, et ... el) > pog (To, el ..., e2)].

»Em

Proof of Theorem 5

Pr(hiN...Nhy N E)

WO O, E) =
Poxc(ha N )= B, A < Pr(E)

Pr(hiN...Nh,|E)

_ Pr(m|E) vy Pr(h,|E) " Pr(hin...Nhy)
- T Pr(hy|E Pr(h,|E
Pr(hy) Pr(hn) = ElB) o Drhall)

Pr(h1N...0h, |E)
_ Pr(h1|E) Pr(h,|E) P(r(flllﬁ...ﬁhlb)

Pr(hy) XX Pr(hn) X B IE) x...xPr(hn | E)
Pr(h1)X...xPr(hy,)

PO (P, ha|E)
pDK(hl, .. ,hn)

=pog(h1, E) X ... X pOg(hn, E) X

Proof of Theorem 6

_ Pr(mn...nhy,Nein...Nep)
- Pr(hin...Nh,) xPr(erN...Nep)
Pr(hiN...NhyNeiN...New)
Pr(h1)X...xPr(hy)xPr(e1)X...XPr(emn)
Pr(hiN...Nhy) Pr(eiN...Neyw)
Pr(hi)x...xPr(hy) Pr(ey)X...XPr(em)
pDK(hla ey hn, €1y, em)

T 00l h) X PO (€1s- s Em)

paK(hlﬂ...ﬂhn,e1ﬂ...ﬂem)
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Proof of Theorem 7 Let W be a set of possibilities and let A be some algebra over W. The
elements of A are interpreted as propositions expressible in some suitable language £ as specified
in more detail in the appendix in connection with Theorem 2. The possibilities in W can be
interpreted as models for £. Let eg,...,e,,... be a sequence of propositions of A that separates
W, and let e’ = e; if w F e; and & otherwise. Let Pr be a regular (or strict) probability function
on A. Let Pr* be the unique probability function on the smallest o-field A* containing the field
A satisfying Pr*(A) = Pr(A) for all A € A.

According to Theorem 2 there is a W/ C W with Pr*(W’) = 1 so that the following holds for
every w € W’ and all hypotheses hy, ...h, and hf, ...hl of A.

1. IfwERMN...Nhy, and wE (K, N...NA,,), then:
VL >k [pOg(ha N Nhn, EPY) > pog(hiN...N R, E)]

2. IfwE hiN...0h,NR,N...NR,, and hiN...NA, E B\ O...0OR,, but By N...NRL, # hiN...0h,,
then:
VL >k [pOg(ha N N, EY) > pog(hiN...N R, E)]

where BV = nogigl er.
Corollary 8 implies that:

PO (hiN...Nhp, EY) > pog (R N...0h,, E")
PO (P, hn, E)  pog(Ry,... 0, E)
paK(hla"'vhn) paK(h/lavh;n)

Hence, there is a W/ C W with Pr*(W’) =1 so that the following holds for every w € W’ and all
hypotheses hy, ...h, and hf, ... h] of A.

1. IfwERMN...Nhy,and wE (K, N...NA,,), then:

w ! 2 w
vl > k - [paK(hl’-~-7hn’Ez ) Pl s B )}
pDK(hlvahn) POK(hl,,h’n)
2. Ifw E haN...Nh,NRIN...NR,, and h1N...NR, E RIN...NRL, but KiN...NAL, E hiN...Nhy,
then:
w / ’ w
EI ["DK(hla-~-’hmEz ) Pkl 1,./..,h,,m/El )}
POg(has- s hn) pOg(hh,..., hly)

(T — w
where B}’ = (<< €;’-
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