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Abstract. Newtonian and Scrödinger dynamics can be formulated in a physically meaningful
way within the same Hilbert space framework. This fact was recently used to discover an
unexpected relation between classical and quantum motions that goes beyond the results
provided by the Ehrenfest theorem. The Newtonian dynamics was shown to be the Schrödinger
dynamics of states constrained to a submanifold of the space of states, identified with the
classical phase space of the system. Quantum observables are identified with vector fields
on the space of states. The commutators of observables are expressed through the curvature
of the space. The resulting embedding of the Newtonian and Shrödinger dynamics into a
unified geometric framework is rigid in the sense that the Schrödinger dynamics is a unique
extension of the Newtonian one. Furthermore, under the embedding, the normal distribution
of measurement results associated with a classical measurement implies the Born rule for the
probability of transition of quantum states. In this paper, the implications of the obtained
theory to the process of measurement in quantum theory are analyzed. The double-slit, EPR
and Schrödinger cat type experiments are reviewed anew. It is shown that, despite reproducing
the usual results of quantum theory, the framework is not simply a reformulation of the theory.
New experiments to discover the predicted effects are proposed.

1. Questions to be addressed
The current situation in quantum theory is extremely awkward. On one hand, during more than
one hundred years of its existence, the theory proved itself to be very successful and accurate
in describing the observed microscopic phenomena. On the other, it represents a constellation
of paradoxes and unanswered questions that kept several generations of researchers confused
and led to exotic interpretations and numerous attempts to revise or complete the theory. The
general issue was and still is to understand how the quantum gives rise to the classical world that
we live in. Most notable question is how exactly under an observation a typical superposition of
states of a particle or a system of particles produces a single observed outcome. This seemingly
simple question generates a multitude of the follow-up questions that indicate the level of the
current confusion about the subject:

Is quantum state a part of reality, or only the state of our knowledge of the latter? An
observation takes a superposition of states to a single outcome, which is the actual value of a
physical quantity, say, the position or momentum of a particle. This outcome was not present
before observation. Does it mean that we create reality by making an observation? Also, if the
state is real and the observed outcome is also real, then how these two realities are related? Why
do macroscopic bodies in the universe have a well defined position at all times, independently
of whether we observe them or not? When is the body macroscopic and where exactly is the
boundary between the quantum and the classical worlds? What happens during an observation?



What process should we call an observation? Does our brain activity have anything to do with
generating the outcomes? The Schrödinger dynamics is deterministic. How does the observed
probability make its way into the deterministic quantum theory? Does it mean that measuring
devices do not satisfy quantum dynamics and must be described differently? How can we derive
the rule that determines the probabilities? How is the basis used to find the components of state
determined during an observation? If several measuring devices are turned on at the same time,
what determines how a particular basis is selected? What should we make of the delayed choice
experiments that demonstrate that a photon is neither a particle nor a wave until observed?
Is it also an act of creation by observation? Alternatively, is it a process of going back in
time and fixing the nature of the photon before observation? Going beyond the non-relativistic
framework, to what extent is the seemingly instantaneous transition of states compatible with
the special and general relativity?

In a recent series of papers [1]-[6], an important new connection between the classical and
quantum dynamics was derived. The starting point was a realization of classical and quantum
mechanics on an equal footing within the same Hilbert space framework and identification of
observables with vector fields on the sphere of normalized states. This resulted in a physically
meaningful interpretation of components of the velocity of state. Newtonian dynamics was
shown to be the Schrödinger dynamics of a system whose state is constrained to the classical
phase space submanifold in the Hilbert space of states. This also resulted in a formula relating
the normal probability distribution and the Born rule and interpretation of quantum collapse in
terms of diffusion of state on the projective space of states.

In simple words, the classical space and classical phase space of a system of particles can
be identified with a submanifold of the space of states of the corresponding quantum system.
When the system is constrained to the submanifold, it behaves classically. Otherwise, it behaves
quantum-mechanically. The velocity of state at any point of the classical space submanifold can
be decomposed into classical (velocity, acceleration) and non-classical (phase velocity, spreading)
components. The curvature of the sphere of states is determined from the canonical commutation
relations. An observation creates a diffusion on the sphere of states. During the diffusion the
state can reach the classical space submanifold and trigger a detector in it. The probability of
reaching a particular point of the classical space submanifold is given by the Born rule.

These results suggest that there is an alternative approach to quantum mechanics that is
much more appropriate for understanding and visualizing the theory and for addressing its
fundamental problems and paradoxes. In this paper, such an approach will be presented. It will
be shown that by accepting the space of states as a new arena for physical events and identifying
the classical space and classical phase space with submanifolds of thereof we can fruitfully explore
the relationship of classical and quantum dynamics and address the above-listed questions in a
coherent and fundamentally simple way.

2. The measurement problem
Classical mechanics is based on the notion of a material point. Position of a material point in the
classical space is given by its coordinates x = {xi}, i = 1, 2, 3. The motion of a material point is
described then by the functions of time xi(t). Velocity v of the point is given by the derivative
v = dx/dt. Acceleration w is given by the second derivative w = d2x/dt2. More complicated
systems, for example, rigid bodies, are certain systems of material points. Position of a system of
n material points requires in general 3n coordinates x1, ... ,xn. The space of possible positions
of a system is called the configuration space of the system. A constrained system requires fewer
coordinates and the configuration space may be a non-trivial submanifold of R3n, described by
generalized coordinates. Dynamics of a system can be derived from the principle of stationary
action, where the action functional S is the integral of the Lagrangian function L(x, v, t) of
generalized positions and velocities x, v of all the particles in the system with respect to time.



The Lagrangian of a single free material point of mass m in an inertial coordinate system can

be derived from the Galileo principle of relativity and is equal to the kinetic energy mv2

2 of the
particle. The Lagrangian is additive so the Lagrangian of a system of free material points is
the sum of Lagrangians of each point. The interaction is introduced by adding a function of
coordinates (a potential). Equations of motion (the Euler-Lagrange equations) are obtained from
the condition δS = 0 on variation of the action and form a system of second order differential
equations for the functions x(t). In particular, the Newton’s equations of motion of a system
of particles with interaction described by a potential V (x1,x2, ... ) are the Euler-Lagrange

equations for the Lagrangian L(x, v, t) =
∑

k
mkv

2
k

2 −V (x1,x2, ... ), where mk are masses of the
particles. Alternatively, the Euler-Lagrange equations can be replaced with a system of the first
order equations ∂h

∂x = −dp
dt ,

∂h
∂p = dx

dt (Hamilton equations) for the generalized coordinates and

momenta p = mv of the particles. Here h = pdxdt − L is the Hamiltonian function or energy of
the system. The generalized variables x, p provide coordinates for the phase space and used to
define the cotangent bundle and a symplectic structure. A point in the phase space represents the
state of the mechanical system. Another dynamical equation that follows from differentiation
of the action functional S and the Euler-Lagrange equations is the Hamilton-Jacobi equation
∂S
∂t + h(x,∇S, t) = 0. This equation is a point of contact of classical and quantum dynamics.

A microscopic system in quantum mechanics is maximally described by its wave or state
function ϕ. In the coordinate representation the state function at time t is a function ϕ(x, s) of
coordinates x of the system and, possibly, additional quantum-mechanical degrees of freedom
s such as spin. The state function is an element of a Hilbert space of states. The Hilbert
space H is a vector space with an inner product (ϕ,ψ)H that is complete with respect to
the norm ||ϕ||H =

√
(ϕ,ϕ)H . Physical quantities, or observables are described by linear self-

adjoint operators on H. The system obtains familiar physical characteristics as a result of
measurement. A measurement (in the narrow sense) on the system results in an eigenvalue of the
corresponding observable. The state of the system after the measurement is the corresponding
eigenvector. The initial state of the measured system can be written as a superposition (linear
combination) of eigenvectors. The probability to find the system in a specific eigenstate of the
measured observable is given by the Born rule (i.e., by the modulus squared of the coefficient of

the corresponding normalized eigenvector in the superposition). Two observables â, b̂ may not

commute: the commutator [â, b̂] = âb̂ − b̂â is not 0, in general. This results in the uncertainty
principle, which puts a fundamental limit on the possible precision of measurement of two non-
commuting observables. The canonical commutation relations between conjugate observables,
such as position and momentum yield the algebraic structure of quantum mechanics. Symmetries
of the system are represented by unitary transformations on the space of states H. Accordingly,
the theory of representations of groups becomes a foundational part of quantum mechanics.
The motion of the system is described by a time-dependent state function that satisfies the
Schrödinger equation, which is a linear differential equation i~∂ϕdt = ĥϕ. The operator ĥ is
the Hamiltonian, which is an operator version of the Hamiltonian function. For a system of

n interacting particles the Hamiltonian is given by ĥ = −~2
2

∑
k

∆k
mk

+ V (x1, ... ,xn), where
∆k is the Laplace operator for the k-th particle and V is the operator of multiplication by the
potential of the interaction. The linear nature of the Schrödinger equation signifies that the
superposition principle holds true. Namely, a linear combination of physically possible states of
a system represents another physically possible state of the system.

The linear nature of quantum mechanics poses a persistent problem when trying to reconcile
the classical and quantum mechanics. The superposition principle is totally foreign to classical
physics, which governs the motion of macroscopic bodies. Physical consequences of the principle
feed all controversies of the theory and represent the major paradox of modern science. All
questions raised in the previous section are rooted in the superposition principle. For instance,



let the wave packets ϕa, ϕb be solutions to the Schrödinger equation, describing a particle near
points a and b in R3. According to the superposition principle, the sum ϕa +ϕb must represent
a physically meaningful state of the particle, which is somehow “spread over” both points. The
superposition principle is confirmed by the countless experiments with microscopic particles.
But how could an electron (let alone a large molecule or a microbe) go through two different
holes in a plate, and yet arrive as a single particle to the screen behind the plate? This is at
odds with our everyday experience as we never observe a macroscopic body in two places at
once. This paradox taken in its full scope and the resulting issue of reconciliation of the classical
and the quantum constitutes the measurement problem.

The problem can be split into several related smaller parts, of which the following three
are essential. First, what is the meaning of the wave function? What does it really describe?
The experiment shows its relationship to probability to find the particle in a certain state,
which is one of the postulates of quantum theory. Does it go deeper than that? Does it have a
physical meaning beyond the probability and information? This is the problem of reality of state.
Second, when a certain state is obtained as a result of a measurement, what is the process that
transforms the original state into the observed state? How do the observed outcomes come into
being? This is the problem of definite outcomes. Third, there are many physical quantities that
can be measured. Under each measurement the initial state transforms to a different observed
state (an eigenstate of the measured observable). How could the initial state “know” what set
of the final states it needs to transform to? What is the role of the measuring device in this
selection? This is the preferred basis problem.

3. Newtonian mechanics in the Hilbert space of states
Everyday experience shows that macroscopic bodies possess a well-defined position in space at
any moment of time. In quantum mechanics, the state of a spinless particle with a known
position a is given by the Dirac delta function δ3

a(x) = δ3(x−a). The map ω : a −→ δ3
a provides

a one-to-one correspondence between points a ∈ R3 and state “functions” δ3
a. This allows us to

describe points in R3 in functional terms and identify the set R3 with the set M3 of all delta
functions in the space of state functions of the particle.

Dirac delta states are considered an idealization. But so is the notion of a material point
in Newtonian mechanics. Both idealizations are the building blocks in their respective theories.
As we will see, they are also important for understanding the relationship between Newtonian
physics and quantum mechanics. We will see that Newtonian physics in the Euclidean space R3

is the Schrödinger quantum mechanics of systems whose state is constrained to the submanifold
in the Hilbert space of states, formed by the delta-like states of particles.

The space L2(R3) does not contain delta functions. For instance, if fn is a delta-convergent
sequence [7] of continuous, square-integrable functions on R3, then the sequence

∫
f2
n(x)d3x

diverges. There are essentially two ways out of this difficulty. One method is to approximate
delta functions with the more physical Gaussian functions, which are in L2(R3). Another one is
to complete the Hilbert space L2(R3) to obtain a wider space that includes delta functions. The
methods are essentially equivalent and will be used interchangeably. To explain, let us write the
inner product of functions ϕ,ψ ∈ L2(R3) as

(ϕ,ψ)L2 =

∫
δ3(x− y)ϕ(x)ψ(y)d3xd3y, (1)

where δ3(x − y) is the kernel of the identity operator. By approximating δ3(x − y) with a
Gaussian function, one obtains a new inner product in L2(R3)

(ϕ,ψ)H =

∫
e−

(x−y)2

8σ2 ϕ(x)ψ(y)d3xd3y. (2)



Here σ is a parameter. The Hilbert space H obtained by completing L2(R3) with respect to this
inner product contains delta functions and their derivatives. In particular,∫

e−
(x−y)2

8σ2 δ3(x− a)δ3(y − a)d3xd3y = 1. (3)

Furthermore, the injective map ω is continuous and is, in fact, a homeomorphism onto the image
ω(R3) with the topology induced by the metric on H: two delta functions δ3

a, δ
3
b are close in H

if and only if a and b are close in R3. Furthermore, ω and its inverse are smooth. It follows
that the set M3 of all delta functions δ3

a(x) with a ∈ R3 form a submanifold of the unit sphere
in the Hilbert space H, diffeomorphic to R3. The map ω : a −→ δ3

a becomes an embedding of
R3 into H.

The map ρσ : H −→ L2(R3) that relates L2 and H-representations and identifies the two
methods of dealing with delta-states is given by the Gaussian kernel

ρσ(x,y) =

(
1

2πσ2

)3/4

e−
(x−y)2

4σ2 . (4)

In fact, it is easy to see that ρσ is one-to-one. Indeed, taking various derivatives of (ρσf)(x)
one can see that all Fourier coefficients of f in the basis of (multivariable) Hermite functions in
L2(R3) vanish. Since these functions form a basis in L2(R3), we conclude that f = 0, hence, ρσ
is one-to-one. Multiplying the operators (integrating the product of kernels) one can see that

k(x,y) = (ρ∗σρσ)(x,y) = e−
(x−y)2

8σ2 , (5)

which is consistent with (2) and proves that ρσ is an isomorphism of the Hilbert spaces L2(R3)
and H.

The isomorphism ρσ transforms delta functions δ3
a to Gaussian functions δ̃3

a = ρσ(δ3
a), centered

at a. The image Mσ
3 of M3 under ρσ is an embedded submanifold of the unit sphere in L2(R3)

made of the functions δ̃3
a. The map ωσ = ρσ ◦ ω : R3 −→ Mσ

3 is a diffeomorphism. Here ω is
the same as before. Note that the kernel δ3(x− y) of the metric on L2(R3) is analogous to the
Kronecker delta δik, representing Euclidean metric in orthogonal coordinates. The “skewed”

kernel e−
(x−y)2

8σ2 of the metric on H is then analogous to the Euclidean metric represented in
linear coordinates with skewed axes by a constant non-diagonal matrix gik.

Let r = a(t) be a path with values in R3 and let ϕ = δ3
a(t) be the corresponding path in M3.

It is easy to see that the norm
∥∥∥dϕdt ∥∥∥2

H
of the velocity in the space H is given by

∥∥∥∥dϕdt
∥∥∥∥2

H

=
∂2k(x,y)

∂xi∂yk

∣∣∣∣
x=y=a

dai

dt

dak

dt
. (6)

Here k(x,y) = e−
(x−y)2

8σ2 as in (5), so that

∂2k(x,y)

∂xi∂yk

∣∣∣∣
x=y=a

=
1

4σ2
δik, (7)

where δik is the Kronecker delta symbol. Assuming now that the distance in R3 is measured in
the units of 2σ, we obtain ∥∥∥∥dϕdt

∥∥∥∥
H

=

∥∥∥∥dadt
∥∥∥∥
R3

. (8)



It follows that the map ω : R3 −→ H is an isometric embedding. Furthermore, the set M3 is
complete in H so that there is no vector in H orthogonal to all of M3. In fact, if (f, δ3

a)H = 0,
then ρσ(f) = 0 and so f = 0, because ρσ is an isomorphism.

By defining the operations of addition ⊕ and multiplication by a scalar λ� via ω(a)⊕ω(b) =
ω(a + b) and λ � ω(a) = ω(λa) with ω as before, we obtain M3 as a vector space isomorphic
to the Euclidean space R3. Since ω is an embedding, these operations are continuous in the
topology of H. Of course, the obtained vector structure on M3 is not the same as the one on
the Hilbert space H and M3 is not a subspace of H.

With the classical space in place, we can now proceed with a reformulation of Newtonian
mechanics in functional terms. The projection of velocity and acceleration of the state δ3

a(t)

onto the Euclidean space M3 yields correct Newtonian velocity and acceleration of the classical
particle: (

d

dt
δ3
a(x),− ∂

∂xi
δ3
a(x)

)
H

=
dai

dt
(9)

and (
d2

dt2
δ3
a(x),− ∂

∂xi
δ3
a(x)

)
H

=
d2ai

dt2
. (10)

The Newtonian dynamics of the classical particle can be derived from the principle of least
action for the action functional S on paths in H, defined by

S =

∫
k(x,y)

[
m

2

dϕt(x)

dt

dϕt(y)

dt
− V (x)ϕt(x)ϕt(y)

]
d3xd3ydt. (11)

Here m is the mass of the particle, V is the potential and k(x,y) = e−
1
2

(x−y)2 , as in (5) with
2σ = 1, to ensure (8). In fact, under the constraint ϕt(x) = δ3(x−a(t)) the action (11) becomes

S =

∫ [
m

2

(
da

dt

)2

− V (a)

]
dt, (12)

which is the classical action functional for the particle. An action functional for the time-
dependent Schrödinger equation that reduces to the classical action (12) on the properly
constrained states will be introduced in section 6.

It follows that a classical particle can be considered a constrained dynamical system with
the state ϕ of the particle and the velocity of the state dϕ

dt as dynamical variables. A similar
realization exists for classical mechanical systems consisting of any number of particles. For
example, the map ω⊗ω : R3×R3 −→ H⊗H, ω⊗ω(a,b) = δ3

a⊗ δ3
b identifies the configuration

space R3 × R3 of a two particle system with the embedded submanifold M6 = ω ⊗ ω(R3 × R3)
of the Hilbert space H ⊗ H. Consider a path (a(t),b(t)) in R3 × R3 and the corresponding
path δ3

a(t) ⊗ δ
3
b(t) with values in M6. For any t, the vectors d

dtδ
3
a(t) ⊗ δ

3
b(t) and δ3

a(t) ⊗
d
dtδ

3
b(t)

are tangent to M6 at the point δ3
a(t) ⊗ δ

3
b(t) and orthogonal in H ⊗H. The space M6 with the

induced metric is isometric to the direct product R3 × R3 with the natural Euclidean metric.
Projection of velocity and acceleration of the state ϕ(t) = δ3

a(t) ⊗ δ
3
b(t) onto the basis vectors(

− ∂
∂xi
δ3
a(t)

)
⊗ δ3

b(t) and δ3
a(t) ⊗

(
− ∂
∂xk

δ3
b(t)

)
yields the velocity and acceleration of the particles

by means of the formulas similar to (9) and (10).

4. Observables as vector fields
Quantum observables can be identified with vector fields on the space of states. Given a self-
adjoint operator Â on a Hilbert space L2 of square-integrable functions (it could in particular



be the tensor product space of a many body problem) one can introduce the associated linear
vector field Aϕ on L2 by

Aϕ = −iÂϕ. (13)

If D is the domain of the operator Â, then Aϕ maps D into the vector space L2. Because

Â is self-adjoint, the field Aϕ, being restricted to the sphere SL2 of unit normalized states, is
tangent to the sphere. The commutator of observables and the commutator (Lie bracket) of the
corresponding vector fields are related in a simple way:

[Aϕ, Bϕ] = [Â, B̂]ϕ. (14)

Furthermore, a Hilbert metric on the space of states yields a Riemannian metric on the
sphere. For this, consider the realization L2R of the Hilbert space L2, i.e., the real vector space
of pairs X = (Reψ, Imψ) with ψ in L2. If ξ, η are vector fields on SL2 , define a Riemannian
metric Gϕ : TRϕS

L2 × TRϕSL2 −→ R on the sphere by

Gϕ(X,Y ) = Re(ξ, η). (15)

Here X = (Reξ, Imξ), Y = (Reη, Imη) and (ξ, η) denotes the L2-inner product of ξ, η.
The Riemannian metric on SL2 yields a Riemannian (Fubini-Study) metric on the projective

space CPL2 , which is the base of the fibration π : SL2 −→ CPL2 . For this, an arbitrary tangent
vector X ∈ TRϕSL2 is decomposed into two components: tangent and orthogonal to the fibre
{ϕ} through ϕ (i.e., to the plane C1 containing the circle S1 = {ϕ}). The differential dπ maps
the tangential component to the zero-vector. The orthogonal component of X can be then
identified with dπ(X). If two vectors X,Y are orthogonal to the fibre {ϕ}, the inner product of
dπ(X) and dπ(Y ) in the Fubini-Study metric is equal to the inner product of X and Y in the
metric Gϕ:

(dπ(X), dπ(Y ))FS = Gϕ(X,Y ). (16)

The resulting metrics can be used to find physically meaningful components of vector fields Aϕ
associated with observables. Since Aϕ is tangent to SL2 , it can be decomposed into components
tangent and orthogonal to the fibre {ϕ} of the fibre bundle π : SL2 −→ CPL2 . These components
have a simple physical meaning, justifying the use of the projective space CPL2 . From

A ≡ (ϕ, Âϕ) = (−iϕ,−iÂϕ), (17)

one can see that the expected value of an observable Â in state ϕ is the projection of the vector
−iÂϕ ∈ TϕSL2 onto the fibre {ϕ}. Because

(ϕ, Â2ϕ) = (Âϕ, Âϕ) = (−iÂϕ,−iÂϕ), (18)

the term (ϕ, Â2ϕ) is the norm of the vector −iÂϕ squared. The vector −iÂ⊥ϕ = −iÂϕ−(−iAϕ)

associated with the operator Â−AI is orthogonal to the fibre {ϕ}. Accordingly, the variance

∆A2 = (ϕ, (Â−AI)2ϕ) = (ϕ, Â2
⊥ϕ) = (−iÂ⊥ϕ,−iÂ⊥ϕ) (19)

is the norm squared of the component −iÂ⊥ϕ. Recall that the image of this vector under dπ
can be identified with the vector itself. It follows that the norm of −iÂ⊥ϕ in the Fubini-Study
metric coincides with its norm in the Riemannian metric on SL2 and in the original L2-metric.

The Schrödinger equation
dϕ

dt
= −iĥϕ (20)



is an equation for the integral curves of the vector field −iĥϕ on the sphere SL2 . Let’s decompose
−iĥϕ onto the components parallel and orthogonal to the fibre. The parallel component of dϕ

dt
is numerically

Re(−iϕ,−iĥϕ) = E, (21)

i.e., the expected value of the energy. The decomposition of the velocity vector dϕ
dt into the

parallel and orthogonal components is then given by

dϕ

dt
= −iEϕ+−i(ĥ− E)ϕ = −iEϕ− iĥ⊥ϕ. (22)

The orthogonal component of the velocity dϕ
dt is equal to −iĥ⊥ϕ. From this and equation (19) we

conclude that: The speed of evolution of state in the projective space is equal to the uncertainty
of energy. Equation (22) also demonstrates that the physical state is driven by the operator ĥ⊥,
associated with the uncertainty in energy rather than the energy itself.

The realization of operators by vector fields yields other interesting results. For instance, the
uncertainty relation

∆A∆B ≥ 1

2

∣∣∣(ϕ, [Â, B̂]ϕ
)∣∣∣ (23)

follows geometrically from the comparison of areas of rectangle A|XY | and parallelogram AXY

formed by vectors X = −iÂ⊥ϕ and Y = −iB̂⊥ϕ:

A|XY | ≥ AXY . (24)

There is also an uncertainty identity, [2]:

∆A2∆B2 = A2
XY +G2

ϕ(X,Y ). (25)

The sum on the right hand side of (25) can be written as ||X||2||Y ||2 sin2 θ + ||X||2||Y ||2 cos2 θ,
where θ is the angle between X and Y . In particular, when θ = 0, the uncertainty comes from
the inner product term Gϕ(X,Y ) in (25) and when θ = π/2, the uncertainty is due to the area

term. By replacing B̂ with a real linear combination of the operators Â, B̂ (i.e., by rotating
Bϕ in the plane through X and Y ), we can change θ in any desirable way while preserving the
product ∆A2∆B2.

5. Commutator of observables and curvature of the sphere of states
The identification of observables with vector fields allows one to relate the commutators of
observables with the curvature of the sphere of states. To see this, consider first the space C2

of electron’s spin states. The sphere S3 of unit-normalized states in C2 can be identified with

the group manifold SU(2). For this, one identifies the space C2 of complex vectors ϕ =

[
z1

z2

]
with the space M of 2× 2 matrices

ϕ̂ =

[
z1 z2

−z2 z1

]
. (26)

The map ω̂ : ϕ −→ ϕ̂ is an isomorphism of (real) vector spaces C2 and M . The sphere S3 of
unit states in C2 is identified via ω̂ with the subset of matrices with unit determinant. The
latter subset is the group SU(2) under matrix multiplication.



The differential dω̂ of the map ω̂ identifies the tangent space Te1S
3 to the sphere S3 at the

point e1 =

[
1
0

]
(that is, the hyperplane Rez1 = 1) with the Lie algebra su(2) of traceless

anti-Hermitian matrices

Â =

[
ia2 a3 + ia4

−a3 + ia4 −ia2

]
, (27)

a2, a3, a4 ∈ R. Under dω̂ the basis e2 =

[
i
0

]
, e3 =

[
0
1

]
, e4 =

[
0
i

]
in the tangent space

Te1S
3 = R3 becomes the basis {iσ̂3, iσ̂2, iσ̂1} in the Lie algebra su(2). In particular, the real

numbers a2, a3, a4 acquire the meaning of coordinates of points on the tangent space Rez1 = 1
in the basis {e2, e3, e4}.

The embedding of S3 into C2 induces the usual Riemannian metric on the sphere. A direct
verification demonstrates that this metric coincides with the Killing metric on SU(2). The latter
metric can be defined on the tangent space TeSU(2) at the identity e (i.e., on the Lie algebra

su(2)) by (X̂, Ŷ )K = 1
2TrX̂Ŷ

+ and then extended to the entire SU(2) by the group action.

Here (X̂, Ŷ )K denotes the Killing inner product of tangent vectors and Ŷ + on the right is the

Hermitian conjugate of Ŷ . The constant 1/2 in the Killing metric together with a proper choice
of the unit of measurement ensure the equality of the Riemannian and the Killing metrics. The
tangent space su(2) is spanned by the spin operators having the dimension of angular momentum
and measured in the units of ~. Therefore, the Planck system of units will be used. The spin
generators ŝ1 = i

2 σ̂1, ŝ2 = i
2 σ̂2, ŝ3 = i

2 σ̂3 are orthogonal in the defined metric and have a norm
equal to 1/2 in Planck units.

The integral curves of the left-invariant vector fields L
X̂

(ϕ̂) = ϕ̂X̂ are geodesics on SU(2).

They are given by ϕ̂t = ϕ̂0e
−iX̂t. In the usual coordinates on C2, the equation of these geodesics

takes the form ϕt = e−iX̂tϕ0, where ω(ϕ0) = ϕ̂0. The carriers of geodesics are the great
circles on the sphere S3. The commutators of the spin observables are directly related to the
sectional curvature of the sphere S3. This is not surprising as the non-trivial Lie bracket of
vector fields whose integral curves are geodesics can only be due to curvature of the underlying
space. If X̂, Ŷ ∈ su(2) are linearly independent generators and L

X̂
(ϕ̂), L

Ŷ
(ϕ̂) are the associated

left-invariant vector fields, then the sectional curvature Rϕ(p) of S3 in the plane p through
L
X̂

(ϕ̂), L
Ŷ

(ϕ̂) is given at any point ϕ̂ by

Rϕ(p) =
1

4

∥∥∥[X̂, Ŷ ]
∥∥∥2

K∥∥∥X̂∥∥∥2

K

∥∥∥Ŷ ∥∥∥2

K
−
(
X̂, Ŷ

)2

K

. (28)

In particular, if the generators X̂, Ŷ are orthonormal in the Killing metric, (28) simplifies to

Rϕ(p) =
1

4

∥∥∥[X̂, Ŷ ]
∥∥∥2

K
. (29)

Using the formula (28), we obtain the following expression for the sectional curvature Rϕ(p)
in the plane p through orthogonal vectors Lŝ1(ϕ̂), Lŝ2(ϕ̂):

Rϕ(p) =
1

4

([ŝ1, ŝ2], [ŝ1, ŝ2])K
(ŝ1, ŝ1)K (ŝ2, ŝ2)K

= 4 (ŝ3, ŝ3)K = 1. (30)

This means that the radius of S3 in Planck units is equal to 1, confirming the isometric nature
of the isomorphism ω̂ considered as a map from the unit sphere S3 in C2 onto SU(2) with the



Killing metric. Note that in an arbitrary system of units the sectional curvature would be equal
to 1/~2 (i.e., radius=~). The dimension of sectional curvature is consistent with the fact that
the tangent space su(2) is spanned by the spin operators.

The obtained relationship between commutators of spin observables and radius of the sphere
of states can be extended to other observables. In particular, the commutator [p̂, x̂] of position
and momentum observables of an arbitrary non-relativistic particle with states in the space
L2(R) yields similarly the sectional curvature of the unit sphere SL2 in L2(R). In fact, let’s
compute the sectional curvature of the sphere SL2 in the plane through the tangent vectors
−ip̂ϕ, −ix̂ϕ at a point ϕ ∈ SL2 . It is convenient to represent the action of operators p̂, x̂ in the

basis ϕn(x) = 1
4√π2nn!

Hn(x)e−
x2

2 , n = 0, 1, 2, ... of the quantum harmonic oscillator. Here Hn(x)

are the Hermite polynomials. Note that the vectors ϕn are in the domain of the operators p̂, x̂,
p̂x̂ and x̂p̂. The matrices of the operators p̂, x̂ in the basis are given by

x̂ =
1√
2


0 1 0 0 · · ·
1 0

√
2 0 · · ·

0
√

2 0
√

3 · · ·
0 0

√
3 0 · · ·

· · · · · · ·

 (31)

and

p̂ =
1√
2


0 −i 0 0 · · ·
i 0 −i

√
2 0 · · ·

0 i
√

2 0 −i
√

3 · · ·
0 0 i

√
3 0 · · ·

· · · · · · ·

 . (32)

Because the operators x̂, p̂ are unbounded, the validity of such a matrix representation requires
a discussion. However, for the purpose of computing the sectional curvature it will be sufficient
to point out that the matrices (31) and (32) correctly reproduce the action of operators on all
vectors with finitely many non-vanishing components in the basis {ϕn}.

Let us find the sectional curvature of the sphere SL2 at the “vacuum” point ϕn|n=0 = ϕ0.
For this, consider the subspace C2 ⊂ L2(R) formed by the first two vectors of the basis. Note
that up to the coefficient 1√

2
, the sub-matrices formed by the first two rows and columns of

matrices (31) and (32) coincide with the Pauli matrices σ̂x, σ̂y respectively. Let us introduce the
bounded operators ŝp, ŝx on L2(R) defined by ŝxϕ = 1√

2
σ̂xϕ, ŝpϕ = 1√

2
σ̂yϕ for ϕ in C2, and by

ŝxϕ = 0, ŝpϕ = 0 for ϕ in the orthogonal complement of C2 in L2(R). Note that the action of
operators p̂, x̂ and [p̂, x̂] on the point ϕ0 is correctly reproduced by the operators ŝp, ŝx:

x̂ϕ0 = ŝxϕ0 (33)

p̂ϕ0 = ŝpϕ0 (34)

[p̂, x̂]ϕ0 = [ŝp, ŝx]ϕ0. (35)

Consider the sphere S3 = SL2∩C2 with the metric induced by the inclusion. As discussed, this
metric coincides with the Killing metric on the group SU(2) = S3. The point ϕ0 is given in the

basis {ϕ0, ϕ1} in C2 by the column

[
1
0

]
. The image ϕ̂0 of the column ϕ0 under the isomorphism

(26) is the identity e in the group SU(2). Accordingly, one can compute the norms of the right
sides of (33), (34) and (35) in the Killing metric. Such a computation verifies that these norms are
equal to the norms of the corresponding left sides in the L2-metric. For example, the norm of the



right side of (35) in the Killing metric is given by
∥∥ϕ̂0

1
2 [σ̂y, σ̂x]

∥∥
K

= ‖iσ̂z‖K =
√

1
2Tr(σ̂z)

2 = 1.

This coincides with the L2-norm of the corresponding left side: ‖[p̂, x̂]ϕ0‖L2
= ‖ϕ0‖L2

= 1.

The sectional curvature of SL2 in the plane through vector fields −ix̂ϕ, −ip̂ϕ at ϕ = ϕ0 is
equal to the sectional curvature Rϕ0(p) of S3 in the plane p through the fields −iσ̂xϕ, −iσ̂yϕ
at this point. By (28), (33), (34) and (35), this sectional curvature is given in terms of the
Lie brakets of these fields, i.e., in terms of the commutator [p̂, x̂] evaluated at ϕ0 and is equal
to 1. Because sphere has a constant sectional curvature, the same result applies to any point.
It follows that the commutator of vector fields associated with the operators of position and
momentum has the same geometric interpretation as the commutator of vector fields associated
with the operators of spin. Namely, the commutators give the sectional curvature of the sphere
of states and produce the same value 1 (~ in an arbitrary system of units) for the radius of the
sphere. This provides one with a purely geometric approach to quantum observables and their
commutators in terms of vector fields on the sphere of states and their Lie bracket.

6. Components of the velocity of state under the Schrödinger evolution
We now have all necessary ingredients to put the classical and quantum mechanics on an equal
footing and to discover their innermost relationship. From (22), we know that for any state

ϕ ∈ SL2 , the velocity of state dϕ
dt in the Schrödinger equation can be decomposed onto the

components parallel and orthogonal to the fibre {ϕ} of the bundle π : SL2 −→ CPL2 :

dϕ

dt
= −iEϕ− iĥ⊥ϕ. (36)

The norm of the parallel component −iEϕ is the expected value of energy E. It represents
the phase velocity of state. The norm of the orthogonal component −iĥ⊥ϕ is equal to the
uncertainty of energy ∆E on the state ϕ. It represents the velocity of motion of the fibre {ϕ}.
In particular, from (36) it follows that under the Schrödinger evolution, the speed of evolution
of state in the projective space is equal to the uncertainty in energy.

The orthogonal component −iĥ⊥ϕ of the velocity can be further decomposed into physically
meaningful components. To see this, let’s begin with an equation that follows from the
Schrödinger dynamics:(

dϕ

dt
,−iÂϕ

)
=

(
ϕ,

1

2
{Â, ĥ}ϕ

)
−
(
ϕ,

1

2
[Â, ĥ]ϕ

)
. (37)

The left hand side of (37) is the projection of the velocity of state onto the vector field

associated with the observable Â. The imaginary part of the projection (the term with the

commutator [Â, ĥ]) yields the Ehrenfest theorem for a time-independent observable Â. The

real part of this projection (the term with the anticommutator {Â, ĥ}) is the projection in the
sense of Riemannian metric on SL2 . This Riemannian projection can be used to identify further
components of the velocity of state.

Suppose that at t = 0, a microscopic particle is prepared in the state

ϕa,p(x) =

(
1

2πσ2

)3/4

e−
(x−a)2

4σ2 ei
p(x−a)

~ , (38)

where σ is the same as in (4) and p = mv0 with v0 being the initial group-velocity of the
packet. Consider the subset Mσ

3,3 of all initial states ϕa,p given by (38) in L2(R3). The map

Ω : R3 × R3 −→Mσ
3,3,

Ω(a,p) = ϕa,p(x), (39)



is a homeomorphism from the classical phase space onto Mσ
3,3 with the topology induced by the

metric on L2(R3). In fact, it is one-to-one and the points (a,p) and (b,q) are close in R3 × R3

if and only if the functions ϕa,p, ϕb,q are close in L2(R3). The map Ω and its inverse are also
smooth, so that Mσ

3,3 is a 6-dimensional embedded submanifold of L2(R3) diffeomorphic to the
classical phase space.

Consider the set of all fibres of the bundle π : SL2 −→ CPL2 through the points of Mσ
3,3. The

resulting bundle π : Mσ
3,3×S1 −→Mσ

3,3 identifies Mσ
3,3 with a submanifold of CPL2 , denoted by

the same symbol. For Ω(a,p) = reiθ, where r is the modulus and θ is the argument of Ω(a,p),
the vectors ∂r

∂aα e
iθ and i ∂θ

∂pβ
reiθ are orthogonal in the Riemannian metric on the sphere SL2 .

They are also orthogonal to the fibre {ϕa,p} in L2(R3) and can be, therefore, identified with
vectors tangent to the projective manifold Mσ

3,3 at {ϕa,p}. The Riemannian metric induced on

Mσ
3,3 is the Fubini-Study metric on CPL2 , constrained to Mσ

3,3.

For any path {ϕ} = {ϕτ} with values in Mσ
3,3 ⊂ CPL2 , the norm of velocity vector d{ϕ}

dτ in
the Fubini-Study metric is given by∥∥∥∥d{ϕ}dτ

∥∥∥∥2

FS

=
1

4σ2

∥∥∥∥dadτ
∥∥∥∥2

R3

+
σ2

~2

∥∥∥∥dpdτ
∥∥∥∥2

R3

. (40)

It follows that under a proper choice of units, the map Ω is an isometry that identifies the
Euclidean phase space R3 × R3 of the particle with the submanifold Mσ

3,3 ⊂ CPL2 furnished
with the induced Fubini-Study metric. The map Ω is an extension of the isometric embedding
ωσ = ρσ ◦ ω introduced in section 3 from the classical space to the classical phase space.

The obtained embedding of the classical phase space into the space of quantum states is
physically meaningful. To see this, let us first project the orthogonal component − i

~ ĥ⊥ϕ of the

velocity dϕ
dt onto vectors tangent to the curves of constant values of p and a (classical space and

momentum space components) in the projective manifold Mσ
3,3. Calculation of the projection of

the velocity dϕ
dt onto the unit vector − ∂̂r

∂aα e
iθ (i.e., the classical space component of dϕ

dt ) for an

arbitrary Hamiltonian of the form ĥ = − ~2
2m∆ + V (x) yields

Re

(
dϕ

dt
,− ∂̂r

∂aα
eiθ

)∣∣∣∣∣
t=0

=

(
dr

dt
,− ∂̂r

∂aα

)∣∣∣∣∣
t=0

=
vα0
2σ
. (41)

Calculation of the projection of velocity dϕ
dt onto the unit vector i ∂̂θ∂pαϕ (momentum space

component) gives

Re

(
dϕ

dt
, i
∂̂θ

∂pα
ϕ

)∣∣∣∣∣
t=0

=
mwασ

~
, (42)

where

mwα = − ∂V (x)

∂xα

∣∣∣∣
x=x0

(43)

and σ is assumed to be small enough for the linear approximation of V (x) to be valid within
intervals of length σ.

The velocity dϕ
dt also contains component due to the change in σ (spreading), which is

orthogonal to the fibre {ϕ} and the phase space Mσ
3,3, and is equal to

Re

(
dϕ

dt
, i
d̂ϕ

dσ

)
=

√
2~

8σ2m
. (44)



Calculation of the norm of dϕ
dt = i

~ ĥϕ at t = 0 gives∥∥∥∥dϕdt
∥∥∥∥2

=
E

2

~2
+

v2
0

4σ2
+
m2w2σ2

~2
+

~2

32σ4m2
, (45)

which is the sum of squares of the found components. This completes a decomposition of the
velocity of state at any point ϕa,p ∈Mσ

3,3.

For a closed system, the norm of dϕ
dt = i

~ ĥϕ is preserved in time. For a system in a stationary

state, this amounts to conservation of energy. In fact, in this case ϕt(x) = ψ(x)e−
iEt
~ , which is

a motion along the phase circle, and ∥∥∥∥dϕdt
∥∥∥∥2

=
E2

~2
. (46)

For a closed system in any initial state, the norm of the phase component (expected energy)

and orthogonal component (energy uncertainty) of the velocity dϕ
dt are both preserved.

In the linear potential approximation, valid in the considered case of small σ (the choice of
σ is in our hands; the largest value of σ consistent with observations is related to the boundary
between classical and quantum), the first term in (45) is the square of the term

1

~

(
U +K +

~2

4mσ2

)
, (47)

where U = V (xg) and K =
mv2

g

2 are potential and kinetic energy of the packet considered as

a particle with position xg = x0 + v0t + wt2

2 and velocity vg = v0 + wt. The last term in
parentheses in (47) accounts for the difference in energy of the packets with the same U and K,
but different values of σ. Up to a constant factor, this term equals the component of velocity
due to spreading given by (44). With the unit of length 2σ given by Compton length, this term
is equal to the rest energy mc2 of the particle, making it possible to identify the mass with the
speed of motion of state due to spreading.

From (41) and (42), and a simple consistency check showing that the rate of change of the
projection in (41) is given by acceleration w, one can see that the phase space components

of the velocity of state dϕ
dt = − i

~ ĥϕ assume correct classical values at any point ϕa,p ∈ Mσ
3,3.

This remains true for the time dependent potentials as well. The immediate consequence of
this and the linear nature of the Schrödinger equation is that: Under the Schrödinger evolution

with the Hamiltonian ĥ = − ~2
2m∆ + V (x, t), the state constrained to Mσ

3,3 ⊂ CPL2 moves like
a point in the phase space representing a particle in Newtonian dynamics. More generally,
Newtonian dynamics of n particles is the Schrödinger dynamics of n-particle quantum system
whose state is constrained to the phase-space submanifold Mσ

3n,3n of the projective space for

L2(R3)⊗ ... ⊗L2(R3), formed by tensor product states ϕ1⊗ ... ⊗ϕn with ϕk of the form (38).
Note again that the velocity and acceleration terms in (45) are orthogonal to the fibre {ϕa,p}

of the fibration π : SL2 −→ CPL2 , showing that these Newtonian variables have to do with
the motion in the projective space CPL2 . The velocity of spreading is orthogonal to the fibre
and to the phase space submanifold Mσ

3,3. The implication of this is that the “concentration”
of state under the collapse has nothing to do with a motion in the classical space. This will be
important when discussing collapse of the wave function under a measurement.

Note that the functional

S[ϕ] =

∫
ϕ(x)

[
i~
∂

∂t
− ĥ
]
ϕ(x)d3xdt (48)



with ĥ = − ~2
2m∆ + V (x, t) is the action functional for the Schrödinger equation. At the same

time, for the states ϕ constrained to the manifold Mσ
3,3 this functional is equal to the classical

action. Namely, for ϕ varying over the states ϕa,p of the form (38), the action S[ϕ] is equal to

S =

∫ [
p
da

dt
− h(p,a)

]
dt, (49)

where h(p,a) = p2

2m + V (a) + C is the Hamiltonian function and the constant C is the “rest
energy” term in (47). It follows that there exists a single action functional for the classical and
quantum dynamics, which was perviously observed in a related context by John Klauder in [8].

7. Uniqueness of extension of Newtonian dynamics to CPL2

The velocity of state under the Schrödinger evolution with the Hamiltonian ĥ = − ~2
2m∆ + V (x)

was shown to contain for the states in Mσ
3,3 the classical velocity and acceleration (formulae (41)

and (42)). This was used to establish that Newtonian dynamics of a particle is the Schrödinger
dynamics of the system whose state is constrained to the classical phase space Mσ

3,3.
On the contrary, there exists a unique extension of the Newtonian dynamics formulated on

the classical phase space Mσ
3,3 to a unitary dynamics in the Hilbert space L2(R3). More precisely,

suppose that for any initial state ϕa,p of the form

ϕa,p(x) =

(
1

2πσ2

)3/4

e−
(x−a)2

4σ2 ei
p(x−a)

~ (50)

there exists a path ϕ = ϕt in L2(R3), passing at t = 0 through the point ϕa,p, and such that (41)
and (42) are satisfied. Suppose further that the evolution ϕ = ϕt is unitary, so that, by Stone’s

theorem, dϕ
dt = − i

~Ĥϕ for some self-adjoint operator Ĥ. It is claimed then that the operator Ĥ

is uniquely defined and is equal to − ~2
2m∆ + V (x). In other words, the Schrödinger evolution

is the only unitary evolution on L2(R3) for which the system constrained to the classical phase
space Mσ

3,3 satisfies Newtonian equations of motion for the particle.
To prove, let us first verify that (41) and (42) imply the Ehrenfest theorem on states ϕ ∈Mσ

3,3.
As discussed, the Ehrenfest theorem can be written in the following form:

2Re

(
dϕ

dt
, x̂ϕ

)
=

(
ϕ,

p̂

m
ϕ

)
(51)

and

2Re

(
dϕ

dt
, p̂ϕ

)
= (ϕ,−∇V (x)ϕ) . (52)

From (41) and (50) we have at t = 0,

vα

2σ
= Re

(
dϕ

dt
,− ∂̂r

∂xα
eiθ

)
=

1

σ
Re

(
dϕ

dt
, (x− a)αϕ

)
. (53)

Because of the unitary condition, we have Re
(
dϕ
dt , ϕ

)
= 0 and so (53) yields

2Re

(
dϕ

dt
, xαϕ

)
= vα =

pα

m
. (54)

Together with (ϕ, p̂ϕ) = (ϕ,pϕ) = p this gives the first Ehrenfest theorem (51) on states
ϕ ∈Mσ

3,3.



Similarly, from (42), (43) and (50) we have at t = 0,

mwασ

~
= Re

(
dϕ

dt
, i
∂̂θ

∂pα
ϕ

)
=

~
σ

Re

(
dϕ

dt
,
i(x− a)α

~
ϕ

)
, (55)

with

mwα = − ∂V (x)

∂xα

∣∣∣∣
x=a

. (56)

On the other hand,

p̂ϕ = −i~∇ϕ = −i~
(
−x− a

2σ2
+
ip

~

)
ϕ. (57)

Again, from the unitary condition, we have Re
(
dϕ
dt , ϕ

)
= 0 and so we can rewrite (55) as

mwασ

~
=
σ

~
Re

(
dϕ

dt
, p̂αϕ

)
, (58)

or,

2Re

(
dϕ

dt
, p̂αϕ

)
= mwα. (59)

From this and (56), we get the second Ehrenfest theorem (52) on states ϕ ∈ Mσ
3,3. Note that

the components (53) and (55) are the real and imaginary parts of the classical space component
of the velocity of state. In particular, the classical phase space submanifold inherits a complex
structure from CPL2 .

Now, from the derived Ehrenfest theorem and the Stone’s theorem for a unitary evolution

dϕ

dt
= − i

~
Ĥϕ, (60)

we get the following equations for the unknown self-adjoint operator Ĥ, valid for all functions
ϕ in Mσ

3,3: (
ϕ, i[Ĥ, x̂]ϕ

)
=

~
m

(ϕ, p̂ϕ) (61)

and (
ϕ, i[Ĥ, p̂]ϕ

)
= ~ (ϕ,−∇V (x)ϕ) . (62)

Because Mσ
3,3 is complete in L2(R3), there exists a unique linear extension of the operators x̂,

p̂ and −∇V (x) from Mσ
3,3 onto (a dense subset of) L2(R3). Likewise, for a given operator Ĥ,

there exists a unique extension of the quadratic forms in the equations (61) and (62) from Mσ
3,3

to (a dense subset of) L2(R3). The resulting equations define Ĥ uniquely. That is, there exists

a unique operator Ĥ for which (
f, i[Ĥ, x̂]f

)
=

~
m

(f, p̂f) (63)

and (
f, i[Ĥ, p̂]f

)
= ~ (f,−∇V (x)f) (64)

for all functions f in the dense subset D of L2(R3), which is the common domain of all involved
operators. In fact, by choosing an orthonormal basis {ej} in D and considering (63), (64) on



functions f = ek + el and f = ek + iel we conclude that all matrix elements of the operators on
the left and right of the equations (63) and (64) must be equal. So the equations can be written
in the operator form

i[Ĥ, x̂] =
~
m
p̂ (65)

and
i[Ĥ, p̂] = −~∇V (x). (66)

From (65) and (66), it then follows that, up to an irrelevant constant, Ĥ = p̂2

2m + V (x).
Because (41) and (42) remain true for the potentials that depend on time and the equations

used to obtain the result were considered at a fixed moment of time, the derivation remains valid
for the time-dependent potentials V (x, t) as well. Generalization to the case of n interacting
distinguishable particles described by tensor product of states (50) is straightforward and leads

to the Hamiltonian Ĥ =
∑

k
p̂2k

2mk
+ V (x1, ...,xn).

By (39), a point ϕa,p in the classical phase space Mσ
3,3 defines the initial position and

velocity of the particle in R3. The solution of Newton’s equations with this initial condition
defines a unique classical path (at,pt) of the particle. Let’s call the (non-linear) operator
Uc(t, 0) : Mσ

3,3 −→Mσ
3,3, given by

Uc(t, 0) (Ω(a0,p0)) = Ω(at,pt) (67)

with Ω given by (39), the Newtonian evolution operator. It was shown that there exists a unique
unitary evolution operator Uq(t, 0) : L2(R3) −→ L2(R3), such that Uq(t, 0)ϕa,p = ϕt satisfies
(41) and (42) for all ϕa,p ∈Mσ

3,3. It turned out to be the usual Schrödinger evolution operator.

The domain L2(R3) of this operator is the (closure of the) linear envelop of the domain Mσ
3,3 of

the Newtonian evolution operator. The component of the velocity vector field
dUq(t,0)ϕa,p

dt tangent
to Mσ

3,3 gives the usual Newtonian velocity and acceleration of the particle. The meaning of the

additional components of dϕ
dt was revealed in (45).

The obtained embedding of the classical phase space into the space of states complemented
by existence and uniqueness of extension of Newtonian to Schrödinger evolution signifies that
Newtonian dynamics found its full-fledged realization within the realm of quantum physics
governed by the Schrödinger equation. This realization is valid independently of whether it is
taken to mean the actual physical embedding or only as a mathematical representation.

8. The Born rule and the normal probability distribution
The isometric embedding of the classical space Mσ

3 into the space of states L2(R3) results in a
relationship between distances in R3 and in the projective space CPL2 . The distance between
two points a and b in R3 is ‖a− b‖R3 . Under the embedding of the classical space into the space

of states, the variable a is represented by the state δ̃3
a. The set of states δ̃3

a form a submanifold
Mσ

3 in the Hilbert spaces of states L2(R3), which is ”twisted” in L2(R3). It belongs to the sphere

SL2 and spans all dimensions of L2(R3). The distance between the states δ̃3
a, δ̃3

b on the sphere
SL2 or in the projective space CPL2 is not equal to ‖a− b‖R3 . In fact, the former distance
measures length of a geodesic between the states while the latter is obtained using the same
metric on the space of states, but applied along a geodesic in the twisted manifold Mσ

3 . The
precise relation between the two distances is given by

e−
(a−b)2

4σ2 = cos2 θ(δ̃3
a, δ̃

3
b), (68)

where θ is the Fubini-Study distance between states in CPL2 . The distance θ in the projective
space of states CPL2 appears here for a good reason: the fibres of the fibration π : SL2 −→ CPL2



through the points of the classical space Mσ
3 are orthogonal to this space. This is why the

distance in Mσ
3 can be expressed in terms of the distance in CPL2 . Despite the non-trivial

geometry contained in (68), the formula itself is easy to derive. The left hand side is the result

of integration in |(δ̃3
a, δ̃

3
b)|2. On the other hand, the same expression is equal to the right side of

(68) by definition of the Fubini-Study metric.
The relation (68) has an immediate implication onto the form of probability distributions

of random variables over Mσ
3 and CPL2 . In particular, consider a random variable ψ over

CPL2 . Suppose that the restricted random variable δ̃3
a, equivalently, a, defined over Mσ

3 = R3

is distributed normally on R3. Then the direction-independent probability distribution of ψ
satisfies the Born rule for the probability of transition between arbitrary states. The opposite is
also true. In other words, we claim that: The normal distribution law on Mσ

3 implies the Born
rule on CPL2. Conversely, the Born rule on the space of states implies the normal distribution
law on Mσ

3 .
The fact that the Born rule implies the normal distribution on Mσ

3 is straightforward.

According to the Born rule, the probability density f(b) to find the particle in a state δ̃3
a

at a point b is equal to

|δ̃3
a(b)|2 = |(δ̃3

a, δ
3
b)|2 =

(
1

2πσ2

)3/2

e−
(a−b)2

2σ2 ≡ fa,σ(b), (69)

which is the normal distribution function. It follows that on the elements of Mσ
3 , the Born rule

is the rule of normal distribution.
The Born rule on Mσ

3 can be also written in term of the probability P (δ̃3
a, δ̃

3
b) of transition

between the states δ̃3
a, δ̃

3
b in Mσ

3 :

P (δ̃3
a, δ̃

3
b) = |(δ̃3

a, δ̃
3
b)|2. (70)

Assuming δ̃3
b is sufficiently sharp, the formulas (69) and (70) mean the same thing. In fact,

|(δ̃3
a, δ̃

3
b)|2 = fa,

√
2σ(b)(∆x)3, (71)

where fa,
√

2σ is the normal distribution function with variance
√

2σ and ∆x =
√

4πσ2. This

relates the probability in (70) to the normal probability density in (69) and identifies P (δ̃3
a, δ̃

3
b)

with the probability of finding the macroscopic particle near the point b.
Conversely, suppose we have a rule for probability of transition between states in CPL2 which

gives the normal distribution law for the states in Mσ
3 and depends only on the distance between

states. Let’s show that this must be the Born rule. In fact, the Fubini-Study distance between

the states δ̃3
a, δ̃3

b takes on all values from 0 to π/2, which is the largest possible distance between
points in CPL2 . By assumption, the probability P (ϕ,ψ) of transition between any states ϕ and
ψ depends only on the Fubini-Study distance θ(π(ϕ), π(ψ)) between the states. Given arbitrary

states ϕ,ψ ∈ SL2 , let then δ̃3
a, δ̃3

b be two states in M3
σ , such that

θ(π(ϕ), π(ψ)) = θ(δ̃3
a, δ̃

3
b). (72)

It then follows that

P (ϕ,ψ) = P (δ̃3
a, δ̃

3
b) = cos2 θ(δ̃3

a, δ̃
3
b) = cos2 θ(π(ϕ), π(ψ)), (73)

which yields the Born rule for arbitrary states and proves the claim.



9. Measurements on macroscopic and microscopic particles
We are now in a position to compare the process of measurement in the classical and quantum
physics. First of all, the classical space and phase space are now submanifolds in the Hilbert space
of states. This allows us to use the same language when analyzing both types of measurement.
Second, the Newtonian dynamics is now a restriction of the Schrödinger dynamics to the classical
phase space submanifold. Conversely, the Schrödinger dynamics is a unique unitary extension of
the Newtonian dynamics from the classical phase space to the Hilbert space. This allows us to
begin with a model of measurement satisfying Newton laws and extend it to a model consistent
with the rules of quantum mechanics. Finally, the normal probability law is the restriction
of the Born rule to the classical space submanifold. Conversely, the Born rule is the unique
isotropic extension of the normal probability law from the classical space to the space of states.
In particular, a classical model of measurement with a normal distribution of the measured
quantity should lead us to a model consistent with the Schrödinger dynamics and the Born rule.

Measurements performed on a macroscopic particle satisfy generically the normal distribution
law for the measured observable. This is consistent with the central limit theorem and indicates
that the specific way in which the observable was measured is not important. To be specific,
consider measurements of position of a particle. A common way of finding the position of a
macroscopic particle is to expose it to light of sufficiently short wavelength and to observe the
scattered photons. Due to the unknown path of the incident photons, multiple scattering events
on the particle, random change in position of the particle, etc., the process of observation can
be described by the diffusion equation with the observed position of the particle experiencing
Brownian motion from an initial point during the time of observation. This results in the normal
distribution of observed position of the particle.

The ability to describe the measurement of the position of a macroscopic particle as a
diffusion seems to be a general feature of measurements in the macro-world, independent of
a particular measurement set-up. The averaging process making the central limit theorem
applicable and leading to the normal distribution of the position random variable can be seen,
for example, as the result of random hits experienced by the particle from the surrounding
particles participating in the measurement. These random hits are equally likely to come from
any direction, independent of the initial position of the particle, leading to Brownian motion and
the validity of the diffusion equation for the probability density of the position random variable
for the particle.

It is claimed now that at any time t, the initial state ψ of a microscopic particle undergoing
a similar measurement of position is equally likely to shift in any direction in the tangent space
to the appropriate projective space of states. In proving this result, we will use an example
of a particle exposed to a stream of photons of sufficiently high frequency and number density.
The scattered photons are then observed to determine the position of the particle. The field
of photons in the experiment will be treated classically, as a fluctuating potential in a region
surrounding the source. Despite the classical treatment of the field and other assumptions made
about the potential, a more general proof in section 11 will confirm that the result derived here
is general.

Recall first that the space Mσ
3,3 is complete in L2(R3). Consider the subset of Mσ

3,3 formed
by the states

ϕmn(x) =

(
1

2πσ2

)3/4

e−
(x−αn)2

4σ2 ei
βmx
~ , (74)

where α =
√

2πσ, β = h√
2πσ

and m,n take values on the lattice Z3 × Z3 of points with integer

coordinates in R3 ×R3. The set of functions (74) is known to be also complete in L2(R3). Any
state in L2(R3) can be then represented by a linear combination of states ϕmn. (For αβ < h
the system of functions ϕmn is called the Gabor or Weil-Heisenberg frame.) In particular, the



initial state ψ of the particle can be represented by a sum

ψ =
∑
m,n

Cmnϕmn. (75)

The set Mσ
3 is also complete in L2(R3). Here too there exist countable subsets of Mσ

3 that
are complete in L2(R3). Moreover, an arbitrary initial state ψ in L2(R3) can be approximated
as well as necessary by a finite discrete sum

ψ ≈
∑
n

Cnδ̃
3
a−γn, (76)

where a is arbitrary, n ∈ Z3, and the value of γ > 0 together with the number of terms in the
sum depend on ψ and the needed approximation. Taking γ sufficiently small, let us partition
the space R3 into the cubical cells of edge γ centered at the lattice points a− γn and consider
the indicator function 1n for each cell. Assume first that the potential V̂ acts on the entire space
R3. The potential can be written as a sum

∑
n 1nV̂n. The components V̂n for different n can

be assumed to be independent, identically distributed random variables. In the case of position
measurement by scattering photons off the particle, the components V̂n can be associated with
a single photon at time t.

For simplicity, let us neglect the kinetic energy term in the Hamiltonian ĥ. We will see when
the resulting approximation is valid later. Let us denote the solution of the Shrödinger equation

with the initial state ψ by Ψ(t) and set Ψ(t) = e−
iV t
~ ψ(t), where V = (V̂ ψ, ψ) and ψ(0) = ψ.

We then have at t = 0:
dψ

dt
= − i

~
V̂⊥ψ, (77)

where V̂⊥ = V̂ −V , as before. This equation gives the velocity of the state Ψ(t) in the projective

space CPL2 at t = 0. To prove that under the action of V̂⊥ all directions of velocity of state
in T{ψ}CP

L2 are equally likely, consider the components of the displacement δψ = dψ
dt τ of state

during a short time interval τ in the basis −iδ̃3
m ≡ −iδ̃3

a−γm(
δψ,−iδ̃3

m

)
=
τ

~
(V̂⊥ψ, δ̃

3
m). (78)

For any given potential and a given ψ, the form in (78) is a function of the distance between

the points ψ and δ̃3
m in the Fubini-Study metric and, possibly, of the unit vector η ∈ T{ψ}CPL2 ,

tangent to the geodesic from {ψ} to δ̃3
m in CPL2 . We have V̂ =

∑
n 1nV̂n, where each V̂n is a

random variable. Accordingly, (78) defines a random variable for each m. On the level surfaces

|ψ| = λ of |ψ| the value of |(ψ, δ̃3
m)| is the same and the independence of the distribution of the

variables in (78) on the direction is particularly clear. More generally, assuming |(ψ, δ̃3
m)| 6= 0,

let us divide the random variables in (78) by |(ψ, δ̃3
m)|. This yields a new set of random variables

τ
~ (V̂⊥ψ, δ̃

3
m)

|(ψ, δ̃3
m)|

. (79)

Because |(ψ, δ̃3
m)| depends only on the distance between {ψ} and δ̃3

m, the probability distributions
of the random variables given by (78) and (79) are either both dependent or both independent
of η. Provided the potential does not change much within each cell, the expression (79) is equal
up to a constant phase factor to

τ
~ (Vm − V ). (80)



From the decomposition (76), the near-orthogonality of the functions δ̃3
m and the definition of

V , we have

V =
∑
n

Vn|Cn|2. (81)

Because
∑
|Cn|2 = 1, the mean value of the random variable in (80) is zero:

E(Vm − V ) = E(Vm)− E(Vm)
∑
n

|Cn|2 = 0. (82)

As discussed, the random variables Vm in different cells, i.e., for different values of m can be
considered independent and identically distributed. It follows that the probability distributions
of the random variables Vm − V have a zero mean and are identical for all values of m. With
the help of the central limit theorem, one can also claim that these distributions are normal.
So, disregarding the phase factors, the random vector with components (79) has an isotropic
multivariate Gaussian distribution (the covariance matrix is proportional to the identity).

Now, a complex random vector δψ is called circularly symmetric if for any constant phase
α the distribution of eiαδψ is equal to the distribution of δψ. Because V⊥ depends only on
the value of x but not on the constant phase α, we have eiαδψ = − i

~ V̂⊥e
iαψτ . It follows that

the frequency of a particular value of δψ is the same as the frequency of the value of eiαδψ.
We conclude that the random variable δψ can be assumed to take values in the tangent space
T{ψ}CP

L2 and is equally likely to point in any direction in T{ψ}CP
L2 at t = 0. To make this

result valid at an arbitrary moment of time and independent of the direction at previous times,
we may assume that the distribution of potentials is time-independent (stationary) and that
potentials at different moments of time are independent random variables.

Note that if ψ(m) = 0, then the division in (79) is not valid. However, one could make ψ(m)
small, different than zero and take the limit. In this case, one would see that δψ is as likely to
point in the direction tangent to the geodesics from ψ to δ̃3

m as it is in any other direction in
T{ψ}CP

L2 . The fact that the said component goes to zero together with ψ(m) simply means

that ψ and δψ are orthogonal to δ̃3
m. In particular, such state can never reach δ̃3

m under a
measurement.

Let us check that the assumptions used in the derivation of the isotropy of the distribution
of the displacement random variable δψ are realistic. Suppose for example that the position of
an electron is measured by subjecting it to a stream of photons. Assume first that the initial
state of the electron belongs to the classical phase space submanifold Mσ

3,3 of the space of states.

Suppose also that the wave length of the photons is of the order of 1nm = 10−9m (x-rays)
or larger. Let us estimate the terms of the decomposition (45) for the velocity of state of the
electron. From the Compton scattering formula, we have for the difference in wave length of the
incoming and scattered photons

λf − λi =
h

mc
(1− cos θ) ∼ 10−12m. (83)

The transferred energy is then

∆E =
hc

λi
− hc

λf
∼ 10−20J. (84)

With the electron initially at rest, we have for the speed v acquired during the interaction

mv2

2
∼ 10−20J, or, v ∼ 105m/s. (85)



The accuracy of position measurement is limited by the wave length. Setting σ = λ ∼ 10−9m,
we have for the classical velocity component of dϕ

dt , given by the second term in (45)

v

2σ
∼ 105

10−9
= 1014s−1. (86)

Estimating the time of interaction τ by λ/c ∼ 10−17s, we have for the classical acceleration
component, given by the third term in (45):

mwσ

~
= 1017s−1. (87)

For the spreading component, given by the last term in (45), we obtain

~
4
√

2σ2m
∼ 1013s−1. (88)

In the estimate, the acceleration term is the largest of the three. Also, the resolution parameter
σ in the non-relativistic position measurement experiments is typically much larger than the
used value of 1nm. With the increase in σ, the spreading term decreases as 1/σ2, the velocity
term decreases as 1/σ and the acceleration term increases linearly with σ. In particular, for the
scattering of visible light off an electron, we have λ ∼ 10−5m, which gives the acceleration term
of the order of 1016s−1, velocity term ∼ 1010s−1 and the spreading term ∼ 107s−1. Furthermore,
with an increase in the mass m, the value of the spreading and velocity terms further decrease,
while the acceleration term remains the same, showing that it is by far the dominant term under
these conditions.

Let us now write an arbitrary initial state ψ as a superposition (75) of states in Mσ
3,3. Then

the variation δψ = dψ
dt τ can be also written as a series in functions from Mσ

3,3, so that each
term of the series is a constant times a function in Mσ

3,3. The initial speed v of each component
function in Mσ

3,3 is limited by the speed of light c. If v is of the same order as c, then the
velocity and acceleration terms in the component function are of the same order. However,
given the non-relativistic character of the problem, the major terms in the series correspond to
v � c. The spreading term in each term of the series is the same and is much smaller than the
acceleration term. Therefore, assuming as before that the terms of the series are near-orthogonal,
we can neglect the velocity and spreading parts in each term, which amounts to keeping only
the potential term in the Hamiltonian. In particular, the motion of the state in these conditions
amounts to a jiggling of the wave packet without much spreading or displacement.

Let us check now that under reasonably general measurement conditions, the periods of a
free evolution of the electron state can be neglected. In other words, interaction with the field
is happening continuously in time. From the number density of photons, we can estimate the
number of photons in one cubic meter of space by N ≈ 2.02× 107T 3 and the average energy of
a photon by 2.7kBT , where kB is the Boltzmann constant and T is temperature. For instance,
taking T ∼ 500K, we obtain N ∼ 1015. The photon with the average energy at this temperature
has the wave length λ ∼ 10−5m. Under these conditions, at any time t there is about one photon
per cube of the volume λ3. So, at any t, each Mσ

3,3 component of ψ experiences the potential of
a photon passing by. Given these conditions, neglecting the free evolution of the electron state
is a reasonable approximation.

Despite being heuristic, these estimates demonstrate that during the type of measurement
considered in this section, the potential term is the main term in the Hamiltonian responsible for
the dynamics of the particle under the Schrödinger evolution. On the other hand, if the number
density of photons is significantly lower, the evolution will consist of a free Schödinger evolution



combined with the periods when the state is driven by the potential term alone. We will return
to this issue in section 11, where an alternative approach to the problem will be discussed.

When measuring the position of a macroscopic particle, the observed particle is exposed
to a random potential that is responsible for the normal distribution of the position random
variable. We now see that the state of a microscopic particle undergoing a similar measurement
and exposed to the same potential will experience a random motion on the space of states CPL2 ,
such that any direction δψ of displacement of the state is equally likely. From the section 8 we
know that the normal probability distribution of position on Mσ

3 and direction-independence
of the distribution of states on CPL2 result in the Born rule for the probability of transition
between states. That is, under a random potential produced by the measuring device the state
ψ of the measured microscopic particle performs a random walk on the sphere of states and the
probability for the state of reaching a neighborhood of any point ϕ on the sphere is given by
the Born rule: P (ϕ,ψ) = |(ϕ,ψ)|2.

Given the lack of Lebesgue measure on an infinite-dimensional Hilbert space, one may wonder
how the state would have any chance of reaching a neighborhood of a given point in CPL2 .
However, a realistic measuring device occupies a finite volume in the classical space. So the
potential created by it can only affect a bounded region Q in R3. The initial state ψ of the
particle can be split onto the state ψQ = ψ|Q with support in Q (restriction of ψ to Q) and
the leftover state χ = ψ − ψQ. The state χ is not going to change under the potential and will
not participate in the measurement (the probability for it of reaching a detector in Q is zero).

By (76), the state ψQ is a finite linear combination of the states δ̃3
n. Furthermore, under the

motion in the random potential V̂ described by equation (77), the state will continue to stay

in the finite-dimensional linear envelop LQ of the states δ̃3
n centered at the points a− γn in Q.

In particular, the Lebesgue volume of a ball of a positive radius in LQ exists and is positive.
It follows that the state ψQ has a non-vanishing probability of reaching a neighborhood of the

state δ̃3
a and the relative probabilities of reaching neighborhoods of states δ̃3

a for different points
a are given by the Born rule.

10. The Born rule for measurements of spin
To get another insight into the origin of the Born rule, let us return to the space C2 of spin states
of a spin 1/2 particle. To obtain the corresponding projective space of states CP 1, consider the

complex lines {ϕ} formed for a given ϕ =

[
ϕ1

ϕ2

]
by the vectors λϕ, λ ∈ C. Provided ϕ1 6= 0,

there is a unique point of intersection of the line with the affine plane of vectors

[
1
ξ

]
, ξ ∈ C

in C2. Namely, by setting

λ

[
ϕ1

ϕ2

]
=

[
1
ξ

]
, (89)

one obtains
ξ =

ϕ2

ϕ1
. (90)

The map u = {ϕ} −→ ξ provides a coordinate chart on CP 1 that identifies CP 1 without a point

(the complex line through

[
0
1

]
) with the set C of complex numbers. Under the isomorphism

ω̂ in (26), the vectors

[
1
ξ

]
form an affine subspace in the Lie algebra su(2). The algebra su(2)

with the Killing metric is the Euclidean space R3 of vectors x =
∑

k x
kiσ̂k. The stereographic

projection then identifies the unit sphere S2 at the origin of R3 with the above plane C plus a
point, i.e., with CP 1 itself. Moreover, the usual metric on S2 induced by its embedding into R3



is the Fubini-Study metric on CP 1. The relationship of the coordinate ξ in the plane C with
coordinates (x1 = x, x2 = y, x3 = z) of the corresponding point on the sphere S2 is given by

ξ =
x+ iy

1− z
. (91)

Solving this for x, y and z and using (90), one obtains:

x = ϕ1ϕ2 + ϕ1ϕ2, (92)

y = i(ϕ1ϕ2 − ϕ1ϕ2), (93)

z = ϕ2ϕ2 − ϕ1ϕ1. (94)

The resulting map π : S3 −→ S2 given by π(ϕ1, ϕ2) = (x, y, z) is a coordinate form of the bundle
projection from the sphere of unit states in C2 onto the space CP 1 of physical states. The map
π relates the spaces of representation of the groups SU(2) and SO(3) and maps the spin state
of a particle to a vector in R3.

Suppose that the z-component of spin of a particle in the initial state ϕ is measured, causing a
random motion of state on S3 (see the previous section). Suppose for simplicity that the change
in the z coordinate of the state at each step of this random motion is ±d for some positive
d� ~, with the positive and negative values being equally likely (isotropy). Then the Born rule
for the state follows. In fact, from (94) it follows that

|ϕ1|2 =
1 + z

2
, and |ϕ2|2 =

1− z
2

. (95)

The gambler’s ruin mechanism tells us now that the probability P2 for the state ϕ to end at the

state

[
0
1

]
(z = −1), as a result of the described random motion is equal to

P2 =
number of steps from z to − 1

number of steps from − 1 to 1
=

1− z
(1− z) + (1 + z)

=
1− z

2
= |ϕ2|2. (96)

Similarly, the probability P1 that ϕ will end at

[
1
0

]
is given by P1 = |ϕ1|2.

11. The motion of state under measurement
Let us now look into details of the stochastic motion of state under a measurement. Note that in
the non-relativistic quantum mechanics, the particle, and therefore its state in a single particle
Hilbert space, cannot disappear or get created. The unitary property of evolution means that
the state can only move along the unit sphere in the space of states L2(R3). To express this
conservation of states in the case of observation of position of the particle, consider the density
of states functional ρt[ϕ;ψ]. Here we begin with an ensemble of particles whose initial state
belongs to a neighborhood of the state ψ on the sphere of states SLQ ⊂ LQ. The functional
ρt[ϕ;ψ] measures the number of states that by the time t belong to a neighborhood of a state
ϕ ⊂ SLQ . Under the isometric embedding ω : R3 −→ Mσ

3 ⊂ L2(R3), the states in Mσ
3 are

identified with positions of particles. So the density of states functional ρt[ϕ;ψ] must be an
extension of the usual density of particles ρt(a; b) with initial position b in R3. In other words,
we must have ρt(a; b) = ρt[δ̃

3
a; δ̃3

b].
In the case of macroscopic particles, the conservation of the number of particles is expressed

in differential form by the continuity equation. For instance, if ρt(a; b) is the density at a point



a ∈ R3 of an ensemble of Brownian particles with initial position near b and jt(a; b) is the
current density of the particles at a, then

∂ρt(a; b)

∂t
+∇jt(a; b) = 0. (97)

We will assume that ρt(a; b) and jt(a; b) are normalized per one particle, i.e., the densities are
divided by the number of particles. In this case, the particle density and the probability density
can be identified.

The conservation of states of an ensemble of microscopic particles is expressed by the
continuity equation that follows from the Schrödinger dynamics. This is the same equation
(97) with

ρt = |ψ|2, and jt =
i~
2m

(ψ∇ψ − ψ∇ψ). (98)

For the states ψ ∈Mσ
3,3 we obtain

jt =
p

m
|ψ|2 = vρt. (99)

Because the restriction of Schrödinger evolution to Mσ
3,3 is the corresponding Newtonian

evolution, the function ρt in (99) must be the density of particles, denoted earlier by ρt(a; b).
Once again, it gives the number of particles that start on a neighborhood of b and by the time
t reach a neighborhood of a. The relation ρt(a; b) = ρt[δ̃

3
a; δ̃3

b] tells us that ρt in (98) must be

then the density of states ρt[δ̃
3
a;ψ]. It gives the number of particles initially in a state near ψ

found under the measurement at time t in the state near δ̃3
a.

We conclude that the flow of states on the space of states contains the flow of particles and
the probability flow on R3 as particular cases. However, there is much more to it than just
an abstract extension of these physical notions. For one, we saw in the previous section how
under a certain random potential associated with a position measurement, the initial state ψ
was equally likely to be displaced in any direction on the appropriate projective space of states.
As a result, the state was undergoing a random motion on the space of states and the probability
to find the state at a point ϕ was shown to be given by the Born rule. In terms of the density
of states functional, this result can be described as follows: we are dealing with an ensemble of
states initially positioned near the point ψ so that the density of states functional is concentrated
at the point ψ. As the time goes by, the states undergo a random motion in accord with the
Schrödinger equation with a random potential and the density of states functional “spreads out”
in the space of states. As we saw, the density of states at a point ϕ depends only on the distance
from ψ to ϕ and satisfies the Born rule.

Also, from the Schrödinger equation and the fact that the Schrödinger dynamics constrained
to Mσ

3,3 is equivalent to the Newtonian one, and using nothing else, we obtained the relationship

ρt[δ̃
3
a;ψ] = |ψt(a)|2. (100)

This relationship explains the identification of |ψt(a)|2 with the probability density, which is one
of the postulates in quantum theory. Indeed, the probability density to find the system in a
state for an ensemble of states is proportional to the value of the density of states functional on
that state, which for the states in Mσ

3 is given by (100). So |ψt(a)|2 is the probability density
to find the particle near a simply because this quantity is the density of quantum states near
the point δ̃3

a. If there are more states near δ̃3
a, it becomes more likely to find the state under an

observation near that point.
Furthermore, the continuity equation (97) in quantum mechanics follows from the Schrödinger

equation and is true for any potential. Suppose we begin with an arbitrary random potential



V that under the Newtonian dynamics yields the normal distribution of the position random
variable. By section 7, there is a unique extension of the Newtonian to Schrödinger dynamics.
The formula (100) asserts then the validity of the Born rule for the resulting distribution of
states undergoing the Schrödinger evolution with an arbitrary such potential V . This conclusion
extends the results of section 9, originally obtained for the potential typically experienced by
the particles in a Brownian motion. In addition, a purely geometric derivation of the Born rule
in section 8 acquires here its dynamical validation. Note also that the isotropy of the probability
distribution that needed to be assumed in the derivation of section 8 now follows directly from
the Schrödinger dynamics and its reduction to the Newtonian one.

It is important to clearly distinguish the deterministic and the stochastic Schrödinger
evolutions. The motion of state in quantum mechanics normally follows the deterministic
Schrödinger equation with a given potential. However, as advocated here, under the conditions
typically associated with a measurement, the state evolves by the Schrödinger equation with
a random potential. The potential initiates a random motion of the state on the space of
states and the resulting change in the density functional. The difference between these two
types of evolution is analogous to the difference between the usual Newtonian motion of a
macroscopic particle in a given potential and the Brownian motion of the particle under random
hits, particularly in modeling a measurement by the diffusion. Of course, in light of the discussed
relationship of Newtonian and Schrödinger dynamics, the analogy is not surprising. Note that
the typical process of measurement must be sufficiently fast or must satisfy alternative conditions
to be able to neglect the deterministic Schrödinger evolution during the measurement. These
conditions were discussed in section 9. In the opposite case, the motion of state will consist of
the deterministic drift and a random motion about the moving mean. The analogy with the
measurement on a macroscopic particle can serve here a guiding principle.

In the integral form, the conservation of states in L2(R3) can be written in the following
form:

ρt+τ [ϕ;ψ] =

∫
ρt[ϕ+ η;ψ]γ[η]Dη, (101)

where γ[η] is the probability functional of the variation η in the state ϕ and integration goes over
all variations η such that ϕ+η ∈ SL2 . When the state of the particle is constrained to Mσ

3 = R3,
this equation must imply the usual diffusion on R3. The restriction of (101) to Mσ

3 means that

ϕ = δ̃3
a and η = δ̃3

a+ε − δ̃3
a, where ε is a displacement vector in R3. As we already know, the

function ρt[δ̃
3
a; δ̃3

b] = ρt(a; b) is the usual density of particles in space. Let us substitute this

into (101), replace γ[η] with the equal to it probability density function γ(ε) ≡ γ[δ̃3
a+ε − δ̃3

a]
and integrate over the space R3 of all possible vectors ε. As in the Einstein derivation of the
Brownian motion, assume that γ(ε) is the same for all a and independent of the direction of ε
(space symmetry). Therefore, the terms

∫
εkγ(ε)dε and

∫
εkεlγ(ε)dε with k 6= l vanish. It follows

as in the Einstein derivation that

∂ρt(a; b)

∂t
= K∆ρt(a; b), (102)

where K = 1
2τ

∫
ε2γ(ε)dε is a constant.

The diffusion equation (102) describes the dynamics of an ensemble of particles in the classical
space Mσ

3 . If initially all particles in the ensemble are at the origin, then the density of the
particles at a point a ∈ R3 at time t is given by

ρt(a; 0) =

(
1

4πkt

) 3
2

e−
a2

4Kt . (103)



In particular, for the mean-squared displacement of the Brownian particle we obtain

da2

dt
= 2K. (104)

Because the embedding of Mσ into CPL2 is isometric, we have a2 = θ2 for small values of
the distance ‖a‖R3 (this can be also seen from (68)). Also, the density of particles is equal to
the density of states functional constrained to Mσ

3 . From this and the isotropy of the density of

states functional ρt[δ̃
3
a;ψ] it follows that

dθ2

dt
= 2K, (105)

near t = 0. In section 13, the equation (105) will be used to explain why the macroscopic
particles are constrained to the classical space Mσ

3 .
From section 5, we know that the sphere of states SL2 has a radius equal to one Planck unit.

The classical Euclidean space Mσ
3 = R3 is isometrically embedded into this microscopic sphere

and spirals through its infinite dimensions. Also, for small values of σ even a small change in
the position a ∈ R3 yields a state that is near-orthogonal to the original state δ̃3

a ∈ Mσ
3 . These

facts together with (105) may result in a short time interval of spreading of the density of states
functional over the sphere. For σ equal to one Planck unit of length this time interval may be
of the order of Planck time. This is relevant to the seemingly instantaneous nature of collapse.
However, to make a meaningful statement on this basis it would still be necessary to estimate
the probability of finding the state in a tubular neighborhood of the manifold Mσ

3 ⊂ CPL2 .

12. Collapse of quantum state
In the previous section, we considered a diffusion on the space of states, described by the
Schrödinger equation with a random potential. Although the probability of transition between
states under the diffusion was shown to satisfy the Born rule, the resulting process is very
different from what is usually understood by the collapse. The fact that a random potential
may lead to a random fluctuation of state is rather trivial and goes against of what one normally
tries to achieve when explaining or modeling the collapse. The existing collapse models utilize
various ad hoc additions to the Schrödinger equation with the goal of explaining why the state
under the resulting stochastic process “concentrates” to an eigenstate of the measured observable
(usually, position or energy) [9]-[20]. Instead, it is argued here that under a generic measurement,
an ensemble of states with an initial position near ψ “diffuses” isotropically into the space of
states by a unitary Schrödinger evolution. Whenever a particular state in the ensemble reaches
a neighborhood of an eigenstate of the measured observable, we say that the “collapse” has
occurred. In this case, the measuring device can record the value of the measured physical
quantity.

According to this scenario, the measuring device has two separate functions. On one hand,
it initiates a diffusion by creating a “noise”. On the other, it registers a particular location of
the diffused state. For instance, the “noise” in the position measuring device could be due to
a stream of photons. The device then registers the state reaching a point in Mσ

3 . In a similar
way, a momentum measuring device registers the states that under the diffusion reach the eigen-
manifold of the momentum operator (the image of Mσ

3 under the Fourier transformation). Note
the similarity in the role of measuring devices in quantum and classical mechanics: in both cases
the devices are designed to measure a particular physical quantity and inadvertently create a
“noise”, which contributes to a distribution of values of the measured quantity.

According to this, the measuring device in quantum mechanics is not responsible for creating
a basis into which the state is to be expanded. If several measuring devices are present, they are



not “fighting” for the basis. When the eigen-manifolds of the corresponding observables don’t
overlap, only one of them can “click” for the measured particle as the state can reach only one
of the eigen-manifolds at a time.

What does it all say about measurement of position of macroscopic and microscopic particles?
During the period of observation of position of a macroscopic particle, the position is a
random variable that satisfies the diffusion equation. Normally, observation happens during
a short enough interval of time and the variance of the corresponding probability distribution
is sufficiently small. A particular value of position variable during the observation is simply
a realization of one of the possible outcomes. The change in observed position of the particle
can be equivalently thought of as either a stochastic process bt with values in R3 or a process
δ̃3
b,t with values in Mσ

3 . The advantage of the latter representation is that the position random

variable gives both the position of the particle in Mσ
3 = R3 and, under a proper choice of σ,

the probability density to find it in a different location a (in the state δ̃3
a), due to uncontrollable

interactions with the measuring device under the observation.
Measuring position of a microscopic particle has, in essence, a very similar nature. Under

observation, the state ψ is a random variable with values in the space of states CPL2 . To
measure position is to observe the state on the submanifold Mσ

3 (or Mσ
3,3) in CPL2 . In this

case, the random variable ψ assumes one of the values δ̃3
a, with the uniquely defined probability

density compatible with the normal density on R3. This probability density is given by the
Born rule. Here too, the random variable ψ gives both the position of the state of the particle
in CPL2 and the probability density to find the particle in a different state δ̃3

a.
So the difference between the measurements is two-fold. First, under a measurement, the

state ψ of a microscopic particle is a random variable over the entire space of states CPL2 and
not just over the submanifold Mσ

3 . Second, unless ψ is already constrained to Mσ
3 (the case

which would mimic the measurement of position of a macroscopic particle), to measure position
is to observe the state that “diffused” enough to reach the submanifold Mσ

3 . To put it differently,
the measuring device is not where the initial state is. Assuming the state has reached Mσ

3 , the
probability density of reaching a particular point in Mσ

3 is given, as we saw, by the Born rule.
We don’t use the term collapse of position random variable when measuring position of a

macroscopic particle. Likewise, there seems to be no physics in the term collapse of the state
of a microscopic particle. Instead, due to the diffusion of state, there is a probability density to
find the state of the particle in various locations on CPL2 . In particular, the state may reach
the space manifold Mσ

3 = R3. If that happens and we have detectors spread over the space, then
one of them clicks. If the detector at a point a ∈ R3 clicks, that means the state is at the point
δ̃3
a ∈ CPL2 (that is, the state is δ̃3

a). The number of clicks at different points a when experiment
is repeated is given by the Born rule. The state is not a “cloud” in R3 that shrinks to a point
under observation. Rather, the state is a point in CPL2 which may or may not be on R3 = Mσ

3 .
When the detector clicks, we know that the state is on Mσ

3 .
Note once again that there is no need for any new mechanism of “collapse” in the model.

An observation is not about a “concentration” of state and the stochastic process initiated by
the observation is in agreement with the conventional Schrödinger equation with a randomly
fluctuating potential (“noise”). The origin of the potential depends on the type of measuring
device or properties of the environment capable of “measuring” the system. Fluctuation of
the potential can be traced back to thermal motion of molecules, atomic vibrations in solids,
vibrational and rotational molecular motion, and the surrounding fields.

13. The classical behavior of macroscopic bodies
It was demonstrated that the Schrödinger evolution of state constrained to the classical phase
space Mσ

3,3 results in the Newtonian motion of the particle. A similar result holds true for
systems of particles. To reconcile the laws of quantum and classical physics, one must also



explain the nature of this constraint. Why would microscopic particles be free to leave the
classical space, while macroscopic particles be bound to it?

Suppose for simplicity that the macroscopic particle under consideration is a crystalline solid.
The position of one cell in the solid defines the position of the entire solid. If one of the cells
was observed at a certain point a, the state of the solid immediately after the observation (in
one dimension with a being the left most cell) is the product

ϕ = δ̃a ⊗ δ̃a+∆ ⊗ ... ⊗ δ̃a+n∆, (106)

where ∆ is the lattice length parameter. The general quantum-mechanical state of the solid is
then a superposition of states (106) for different values of a in space:

ϕ =
∑
a

Caδ̃a ⊗ δ̃a+∆ ⊗ ... ⊗ δ̃a+n∆. (107)

Why would non-trivial superpositions of this sort be absent in nature?
The classical phase space Mσ

3n,3n of a n-particle system consists of all tensor products
ϕ1 ⊗ ... ⊗ ϕn with the state ϕk of each particle given by (38). As discussed, the Schrödinger
dynamics of n-particle system constrained to Mσ

3n,3n is the Newtonian dynamics of the system.

Note also that the isomorphism ωn : R3× ...×R3 −→Mσ
3n, ωn(a1, ...,an) = δ̃3

a1
⊗ ...⊗ δ̃3

an allows
us to interpret n-particle states in Mσ

3n as points in the classical configuration space R3n or
positions of n particles in the single classical space R3. A similar map identifies the submanifold
Mσ

3n,3n with the classical phase space of n particles. These maps together with the established
relationships of the classical and quantum dynamics allow us to think of Mσ

3n and Mσ
3n,3n as the

physical classical space and phase space with n particles.
To understand the dynamics of macroscopic bodies under measurement, consider the

Brownian motion of a crystalline solid. The motion of any solid can be represented by the
motion of its center of mass under the total force acting on the body and a rotational motion
about the center of mass. The motion of the center of mass is the motion of a material point
under the random force term, which is the sum of forces acting from the surrounding particles
on each cell. Suppose for simplicity that the solid is one-dimensional and consists of n-cells.
Let ρ[ϕ;ψ] be the density of states functional on the space CPL2 , where L2 is the subspace in
L2(R) ⊗ ... ⊗ L2(R), formed by the entangled states (107). The conservation of states for the
system reads as before

ρt+τ [ϕ] =

∫
ρt[ϕ+ η;ψ]γ[η]Dη, (108)

where the meaning of terms is clear from (101). Define δ̃⊗a = δ̃a+∆1 ⊗ δ̃a+∆2 ⊗ ...⊗ δ̃a+∆n ∈Mσ
3n

and consider the functions
ρt(a; b) = ρt[δ̃

⊗
a ; δ̃⊗b ], (109)

and
ρt(a;ψ) = ρt[δ̃

⊗
a ;ψ], (110)

where a, b denote the center of mass and ∆k describe the positions of each cell relative to the
center of mass. Applying the results of sections 9 and 11, we conclude that the state of the
solid will experience a random motion on CPL2 and that any direction of displacement of the
state in T{ψ}CP

L2 at any time t is equally likely. In particular, if ψ is constrained to Mσ
3n, then

(108) yields, as in the case of a single particle, the usual diffusion equation for the material point
positioned at the center of mass of the solid.

It is a well established and experimentally confirmed fact that macroscopic bodies experience
an unavoidable interaction with the surroundings. Their “cells” are pushed in all possible



directions by the surrounding particles. For instance, a typical Brownian particle of
radius between 10−9m and 10−7m experiences about 1012 random collisions per second with
surrounding atoms in a liquid. The number of collisions of a solid of radius 10−3m in the same
environment is then about 1019 per second. Collisions with photons and other surrounding
particles must be also added. Even empty space has on average about 450 photons per cm3 of
space.

Now, suppose the state of a macroscopic body (in one dimension) is initially given by
ψ = δ̃b+∆1 ⊗ ...⊗ δ̃b+∆n . Recall that this means that the initial distribution of position random
variable is Gaussian with the center of mass at b. Under interaction with the surroundings the
state ψ undergoes a random motion on the space of states CPL2 . Consider the spatial (i.e.,
restricted to Mσ

3n) component of the motion near t = 0. As we know, the mean position of the
center of mass will remain equal to b. Also, macroscopic bodies are distinguished by a large
number of “cells”, or a large dimension. As a result, the diffusion coefficient K in (102) is
negligible so that the diffusion in space is trivial. But we know that the probability density of
states under diffusion is direction-independent: if the state does not diffuse in the space Mσ

3n,
then it cannot diffuse in the space of states either! In particular, if K = 0 in (104), then K = 0
in (105), which means that the density of states ρt(θ) must be constant in time. Therefore, in
the absence of additional potentials acting on the macroscopic body it will maintain its original
state ψ.

The situation is surprisingly similar to that of a pollen grain and a ship initially at rest in
still water. While under the kicks from the molecules of water, the pollen grain experiences a
Brownian motion, the ship in still water will not move at all. Because of the established relation
of Newtonian and Schrödinger dynamics, this is more than an analogy. In fact, when the state
is constrained to the classical phase space submanifold, the “pushes” experienced by the state
become the classical kicks in the space that could lead to the Brownian motion of the body.

Let us estimate the value of the diffusion coefficient for a macroscopic body. As known after
the works of Stokes and Einstein, the diffusion coefficient for a spherical particle is well described
by the expression

K =
kBT

6πηr
, (111)

where r us the radius of the particle and η is the dynamic viscosity. In particular, for a
macroscopic particle of radius r ∼ 1mm in the air, η ∼ 10−5N · s/m2, at room temperature,

we get K ∼ 10−12m2/s. The variance of position of the particle is given by x2 = 2Kt. In
particular, it would take about 106s or more than 10 days for the standard deviation of 1mm
in the distribution of the displacement of the particle to occur.

Now, the actual time of observation of position of particles in experiments is much shorter.
For instance, if we scatter visible light off the particle to determine its position, the time interval
of observation could be as short as 10−13s, which for a 1mm of radius particle in the air
would amount to the displacement of the order of 10−21m. This quantity is much less than
the accuracy of measurement, limited by the wavelength λ ∼ 10−5m, and cannot be observed in
the measurement. Of course, if the diffusion process were to continue, we would start seeing some
deviations from the original position of the particle. However, given the significant amount of
time that this requires, these deviations would be negligible, when compared to the changes due
to interactions of the particle with the surroundings. At the same time, the mean displacement
will be always zero, making our ability to discover the motion even more challenging. Note
that the Fubini-Study distance between Gaussian states that are 10−21m apart in Mσ

3 with
σ ∼ 10−5m can be calculated via (68) and is about 10−16rad. So the state is hardly moving
away from its original position and cannot realistically reach points in the space of states that
are away from that position. In particular, it becomes impossible to find the state positioned
initially in the configuration space Mσ

3n at a different point of that space.



Suppose now an external potential V is applied to the macroscopic system. According to (45),
this will “push” the state that belongs to the classical phase space submanifold in the direction
tangent to the submanifold. Therefore, the external potential applied to a macroscopic body
will not affect the motion of state in the directions orthogonal to the classical phase space
submanifold. That means that the state will remain constrained to the submanifold. On the
other hand, as we know from the same section, the constrained state will evolve in accord with
Newtonian dynamics in the total potential V + VS , where VS is the potential created by the
surroundings. However, since at any time t the total force −∇VS exerted on the macroscopic
body by the particles of the surroundings can typically be neglected, the body will evolve
according to Newtonian equations with the force term −∇V . To be sure, the particles of the
surroundings are responsible for the friction. In the Hamiltonian description of interaction of
the body with the surroundings (as in the Ullersma model [21]), the friction comes from a
contribution to the total potential in the Hamiltonian. However, whenever the friction can be
neglected, the dynamics of the solid is determined by the force −∇V .

So, the origin of the classical behavior of macroscopic bodies in the theory is two-fold. First
of all, the initial state of a macroscopic body is on Mσ

3,3. That is, a macro body is created
at a point of the submanifold Mσ

3,3. Second, because of the interaction of the particle with
the surroundings (radiation, molecules of air, water and other media), the state undergoes a
diffusion process rather than a free Schrödinger evolution. Also, because of the macroscopic
character of the body, the diffusion coefficient is extremely small. The probability distribution
of the variation of the state of the body has a zero mean and is nearly constant in time. We
don’t see a quantum evolution of the state, but rather a negligible diffusion. This diffusion does
not influence measurement of position of the body as that measurement happens on a much
shorter time scale.

From this analysis, it becomes clear that the transition of macroscopic to microscopic
happens for the macroscopic bodies for which the Brownian motion in the surrounding media is
observable. If a macroscopic body is sufficiently small so that the Brownian motion of the body
in the media can be observed in an experiment, then the superposition of states of different
positions of the body becomes observable as well. In fact, it was demonstrated that under the
conditions typical for the Brownian motion, the state of the system has equal probability of
any direction of displacement in the space of states. In particular, the state may become a
superposition of distinguishable states of a given position in R3. Interference effects on such
states are then observable.

14. The role of decoherence
So far, the state of the measured system was considered independently of the measuring device
and the environment. This is possible as long as the influence of the environment can be modeled,
at least approximately, by a potential. However, in many cases the state of the measured particle,
whose position is measured, and the surroundings cannot be described independently. The state
of the total system is then a linear combination of the terms

δ̃3
a ⊗ Ea, (112)

where Ea represents the state of the surroundings when the particle is in the state δ̃3
a. At the

same time, the result of measurement is always a single term like (112). How could it be?
Given the observed relationship between the Newtonian and Shrödinger dynamics, let us

begin with the following classical mechanical example of an entangled state. Consider a pair of
macroscopic particles, for simplicity in one dimension, connected by a weightless rigid rod that
keeps the particles at a fixed distance d from each other. Suppose the position of one of the
particles is measured. As before, the diffusion mechanism can be used to describe the resulting
normal distribution of the position random variable. If position of the particle is found to be



a, then position of the second is guaranteed to be a + d. If position of the second particle is
measured and found to be b instead, then position of the first is guaranteed to be b− d.

In the language of quantum states, the state of the pair at any time is δ̃a ⊗ δ̃a+d for some
a ∈ R. This state belongs to a one-dimensional submanifold N of the two-dimensional manifold
Mσ

1 ⊗Mσ
1 , which itself is a submanifold of the Hilbert space L2(R) ⊗ L2(R). Here Mσ

1 is the

submanifold of L2(R) made of the normalized Gaussian functions δ̃a of width σ. The difference
between this state and the state of a pair of microscopic particles entangled in a “similar”
manner is that now the state belongs to the linear envelop LN of N , which is a subspace of
L2(R) ⊗ L2(R). So, a normalized entangled state lives on the unit sphere SLN ⊂ LN and not
only on the submanifold N of thereof. A system of two particles connected by a rod is a classical
mechanical analogue of the entangled state of a pair of particles and is, at least mathematically,
a special case of the entangled state. The measurement of position of one particle in the pair
connected by a rod is mathematically a particular case of the collapse of the entangled state
of the pair. Furthermore, nothing prevents us now from applying the same construction to an
arbitrarily constrained system of more than two macroscopic particles.

The similarity of this picture to the one that relates the classical space and the Hilbert
space of states of a single particle is quite obvious. And indeed, the results obtained previously
for a single particle can be reproduced here verbatim. As in section 9, we conclude that the
distribution of the displacements of the state ψ under a generic measurement is isotropic. It
follows that the Born rule must indeed be satisfied for the system in an entangled state. That
is, under the measurement the state ψ undergoes a random motion on the space of states and
can potentially reach the submanifold N in CPLN . The probability of reaching a neighborhood
of a particular point δ̃a ⊗ δ̃a+d in CPLN is given by the Born rule. To find the pair in the state
δ̃a ⊗ δ̃a+d is the same as to find the first particle at a (and, therefore, the second particle at
a+ d).

It is clear that the number of “parts” in a quantum system makes no difference for the
proposed mechanism to work. The entanglement between the particle and the surrounding
simply enlarges the Hilbert space of possible states of the system. The measurement of only
one part of the entangled system results in a random motion of the total state on the space of
states. The measurement of position of a particle is successful if under this motion the state
reaches the submanifold of the product states δ̃3

a ⊗Ea. The relative probabilities of finding the
state near a specific point of the submanifold is given by the Born rule.

The issue of where to place the “cut” in the surroundings, to avoid considering the entire
universe in an entangled state with the measured particle is analogous now to the same issue
in Newtonian mechanics. There too, in principle, the entire universe influences the motion of
a measured particle. However, a good approximation can be obtained by assuming that the
particle represents a closed system, by reducing the role of the environment to a potential, or by
considering a system of finitely many particles, or else, by yet another mechanism that effectively
reduces the degrees of freedom of the system and makes the problem solvable.

So far, decoherence was not present in the discussion. Formally, decoherence is a
mathematical expression of the fact that a quantum system interacting with the environment
behaves like a probabilistic mixture and needs to be described by the probability and not by
the state itself. The dynamical part of the process that leads to decoherence consists in the
entanglement between the state of the particle and the environment. This part is due to the
usual unitary evolution of the total system and it precedes decoherence. The decoherence itself
consists in a fast decrease in the interference effects between terms of the total state of the system,
due to the near-orthogonality of the states of the environment Ea(t), as the system evolves in
time. The theory is centered around, and does not usually go beyond the issue of entanglement
and the resulting loss of coherence. It does not describe the way in which specific measurement
results are obtained and does not derive the Born rule. At the same time, decoherence theory



uses an array of very useful models that provide physical content for the theory. These models
testify to the universal character of the loss of coherence and transition to classical probability
resulting from interaction with the environment.

Moreover, interaction with the incident particles in the model of spatial decoherence by
scattering is what also triggers the diffusion of state, under the discussion here. In this
context, decoherence may be considered a superficial expression of the underlying physical
process of diffusion of state. In fact, the diffusion of state under a measurement signifies that
the system is described by the density of states functional. When applied to measurement
of position, the functional yields a probabilistic distribution of the position random variable,
which is the end-result of the (spatial) decoherence. Note that the diffusion is a dynamical
process, unlike the “pure entanglement form” of decoherence itself. Despite being a “fake” or
“microscopically unitary” decoherence [22], the diffusion of state seems to provide a universal
dynamical mechanism for the loss of coherence and collapse of state.

15. The double-slit experiment
The derivation of Newtonian from Schrödinger dynamics, the relationship of the Born rule to the
normal probability distribution, an explanation of the classical behavior of macroscopic bodies
and a clear picture of collapse all suggest that the isomorphism between the classical space R3 and
the manifold Mσ

3 must be considered a physical and not just a mathematical identification. Let
us accept this hypothesis and use it to analyze quantum-mechanical experiments and to address
the paradoxes of quantum mechanics. As discussed, the superposition principle in quantum
mechanics represents the main obstacle to reconciliation of the quantum and the classical. Let
us therefore begin with the simplest manifestation of the superposition principle: the double-slit
experiment.

Different forms of the experiment are well known and don’t need to be reviewed here. We are
going to discuss the simplest set-up of the experiment, involving an electron gun, a plate with a
pair of parallel slits, and a scintillating screen or a photographic plate to observe the interference
pattern. Our first task is to identify the Hilbert space of the system and the submanifold of the
corresponding classical system. We will deal with a single electron. Also, since the origin of the
electron will not be important, the electron gun will be left out of the picture. For now we will
also leave out the screen registering the outgoing particles and the surroundings.

The Hilbert space of the system is the tensor product of spaces L2(R3), one for each
particle in the system. However, the state of the macroscopic plate with the slits has the
form (106) in section 13. That is, the plate is given by a point ψP on the submanifold
Mσ

3n = Mσ
3 ⊗ ...⊗Mσ

3 in CPL2 . Here L2 is the tensor product of Hilbert spaces L2(R3) for all
particles of the plate. As discussed in the section 13, the isomorphism ωn : R3× ...×R3 −→Mσ

3n,

ωn(a1, ...,an) = δ̃3
a1
⊗ ... ⊗ δ̃3

an allows us to view the states in Mσ
3n as points in the classical

configuration space R3n or positions of n particles in the single classical space R3. That is how
our usual view of the plate becomes possible and how the state ψP gets identified with a set of
material points that represent the particles of the plate in R3. As discussed in section 14, the
interaction between the plate and the environment prevents an entanglement between the states
of the macroscopic plate and the electron. Moreover, since the plate is practically unaffected by
the electron, its state during the experiment remains ψP so that the state of the total system
belongs to the manifold L2(R3)⊗ ψP .

We can now proceed with the analysis of the experiment. First, the wave packet of the electron
propagates toward the plate. If the electron is sufficiently fast, the spreading of the packet on
the approach to the plate can be neglected. During this time interval, the propagation of the
initial packet ψ is happening essentially by a displacement ψt(x) = ψ(a−vt). The electron state
moves along (parallel to) the classical space submanifold Mσ

3 in L2(R3). The state Ψt = ψt⊗ψP
of the total system moves along the submanifold Mσ

3 ⊗ ψP in L2(R3) ⊗ ψP , diffeomorphic to



Mσ
3 = R3. The motion can be thought of in the classical terms; we have a material point

propagating towards the plate. If desirable, we can add photons to this picture, to ensure that
we can “see” the plate. In fact, if refraction in the media is neglected the photon wave packet
always propagates along the classical space Mσ

3 without spreading. The isomorphism ωn can
then be used to interpret the entire process in terms of the electron, the plate and the photon,
all in the same classical space R3.

During the second stage of the experiment, the electron goes “through” the slits in the plate.
Although it is useful to “visualize” the plate by the state ψP , or by the corresponding set of
points in R3, the effect of the plate on the electron can be described by a potential V̂ , which is
infinite on the plate and zero at the slits. The potential acts non-trivially on the subset of L2(R3)
of all state functions whose support has non-empty intersection with the plate. The Schrödinger
evolution of the electron is still described by a path ψt in the Hilbert space. However, at this
time, the shape of the function ψt is different. After interaction with the potential the state
function is a superposition c1ψ1 + c2ψ2, where the packets ψ1, ψ2 represent the state of the
electron passing though one of the slits with the second slit closed. The resulting superposition
continues propagating in the same direction, forming a path ψt.

What happens at this step is very important. Let us describe the motion of the state in
terms of the Schrödinger evolution on the space of states H = L2(R3)⊗L2 of the electron-plate
system. The state Ψt = ψt⊗ψP of the system propagates along the classical space submanifold
Mσ

3 ⊗ ψP = R3 on the sphere SH in H, approaching the plate in the induced metric on the
sphere (or the Fubini-Study metric on the projective space CPH). On interaction with the
potential representing the plate, the state ψt evolves into a superposition c1ψ1t+c2ψ2t. In terms
of the geometry on the space of states, the path ψt is no longer valued in the classical space
submanifold Mσ

3 in L2(R3). In fact, the classical space submanifold is formed by the Gaussian
states. Those states have a single “hump”, while ψt behind the plate is a “double-humped” state
function. As the state interacts with the plate, the distance from the state to the the classical
space R3 increases.

Using the identification of the state ψP with the set P in Mσ
3 of states of all particles of the

plate, we can also view the entire process of interaction with the plate in a single space L2(R3).
The set P is the image of the plate in R3 under the isomorphism ωσ of section 3. The classical
part of the experiment can be formulated within the submanifold Mσ

3 alone and consists of the
electron state (a point on, or near Mσ

3 ) approaching the plate P . Under interaction with the
plate, the state of the electron becomes ψt = c1ψ1t + c2ψ2t. Even when the states ψ1t and ψ2t

are Gaussian states, representing the points in the classical space Mσ
3 , the superposition is not

a Gaussian state. Therefore, the superposition at time t is not a point in the classical space. As
the result of interaction with the plate, the path ψt moves away from the classical space Mσ

3 and,
therefore, passes over the plate with the slits (which is a subset P of Mσ

3 , in this representation).
The origin of the paradox of the double-slit experiment is now clear. When trying to view the

dynamics of the electron in the experiment within the classical space Mσ
3 = R3, we are facing

the dilemma: which slit did the electron go through? When formulated in these terms, the only
correct answer seems to be that it went “through both” or to admit that position is not defined.
This violently clashes with everything we know about the world around us and contradicts
Newtonian mechanics. It forces us to think of the electron in terms of some kind of “electron
cloud” that can “assemble” back to the particle (collapse) when measured. Alternatively, that
the answer to Einstein’s question - “is the moon there, when nobody looks?”, - must be negative,
at least for the electrons.

Under the Schrödinger dynamics, the evolution of the electron is a path ψt in the Hilbert
space. It is a path in the usual sense; a continuous and single-valued function of time with values
in L2(R3). When the state is constrained to Mσ

3 , ψt is the usual path of a macroscopic particle
in Newtonian dynamics. When the electron interacts with the plate, the path continues into the



Hilbert space. Because the path can be written now as a sum ψt = c1ψ1t + c2ψ2t, we tend to
think that both parts, ψ1t and ψ2t are real, so that the path of the electron splits into the paths
that go through slits 1 and 2. This is paradoxical and contradictory. In fact, if the same wave
function is written as a superposition of eigenstates of a different observable, then, by the same
logic, the new components must be real as well. Since there are many observables, the notion
of reality becomes ill-defined. The way out is to accept that the adequate way to describe the
reality is by the vector ψt and not by its components ψ1t and ψ2t, that depend on the choice of a
basis. When the state function belongs to the submanifold Mσ

3 , the electron behaves classically.
In general, however, the state of the electron is not confined to Mσ

3 and satisfies the Schrödinger
equation.

The issue of reality of the components ψ1t and ψ2t is similar to the following question in
classical physics. When a physical vector (say, a velocity vector) is written in terms of its
components in a certain basis, should we count the components as real? The answer is obvious:
the physical vector itself is real because it is basis independent. However, the components of
the vector are just shadows of the real thing as they change with the change of basis, similar
to the way a shadow changes when the source of light is moved around. Our problem with
the superposition principle is rooted in the desire to attach to the classical components like ψ1t

and ψ2t the status of a “real thing”. The paradox of the superposition is resolved by accepting
the total state ψt as an adequate description of reality, while considering ψ1t and ψ2t for what
they really are: representation dependent components of the vector ψt. To answer Einstein’s
question: The moon and the electron are there, when nobody looks. Their existence is described
by the state, at any time and not just when the object is measured. Whenever the state belongs
to the classical space R3 = Mσ

3 , it describes the usual classical existence in the Newtonian sense.
But unlike the classical position, the state also catches the quantum origin of nature.

Suppose that position of the electron is measured by the screen behind the plate. As discussed
in sections 11 and 12, a measurement of position produces a diffusion on the projective space
of states. If the initial state of the electron was ψ, the density of states functional at the point
δ̃3
a was shown to be |ψ(a)|2. Because the state is a superposition of two states that describe

the electron passing through one of the slits, the density of states functional contains the cross
term. This term in the density results in an alternating probability of reaching different parts
of the screen, producing a typical interference picture on the screen.

What happens when we place a source of light between the plate with the slits and the screen?
In this case, the diffusion of the electron state begins earlier. After passing through the plate,
the electron state is “two-humped”. In particular, this initial state of the electron is positioned
away from Mσ

3 . Suppose that on interaction with the photons of the source of light, the electron
is observed near one of the slits. That means, in particular, that the diffused electron state is on
the classical space submanifold Mσ

3 . So the state function of the electron observed near one of
the slits must be “single-humped”. The electron in such a Gaussian-like state is later observed
on the screen. Clearly, no interference picture would appear on the screen.

What about a delayed-choice version of the experiment when we decide to determine which
slit the electron went through after the electron has passed the plate with the slits? For instance,
we could turn the light on after the electron went through the slits. The paradox is that the
electron seems to “decide” retroactively to behave as a particle or a wave, and, accordingly, to go
through one slit, or both, depending on our decision to turn the light on. However, the previous
analysis is not altered by this change in the experiment. Whether or not the light source is
present, the state of the electron after the slits is “two-humped”. In particular, inserting a
screen between the plate and the light source will show the interference pattern. When the light
source is turned on and the electron is observed near one of the slits, the “two-humped” state is
transformed to a “single-humped, Gaussian-like state. As a result, the screen behind the light
source will not show interference picture.



As before, we see that the paradox is due to our assumption that the electron must be on
the classical space manifold Mσ

3 at any time. In this case, the observed interference pattern
signifies that the electron somehow “spreads out” over both slits and behaves like a wave. On
the other hand, if the light source is on, then the electron visibly goes through one of the slits
only and behaves like a particle. The paradox is resolved by accepting that evolution of the
electron is described by a path ϕt in the space of states CPL2 . When the electron interacts with
the plate, the path abandons the classical space submanifold Mσ

3 in CPL2 , the state function is
“two-humped” and the interference picture is observable. When the source of light is turned on
and the electron is observed by one of the slits, the state function is “single-humped” and the
interference is not present. The moment when the light source is turned on is irrelevant. The
nature of the electron does not change. In particular, the electron does not go back in time to
“adjust” its nature depending on our decision to turn the light source on. The electron does
not spread over the slits. Moreover, the electron does not go through the slits. If anything, it
goes over the slits into the large dimensions of the space of states and comes back whenever its
position is measured. This resolves the paradox of the double-slit experiment.

16. EPR experiment
The state of a pair of microscopic particles is an element of the tensor product Hilbert space
H = L2(R3) ⊗ L2(R3). When positions of both particles are known, the state belongs to the
submanifold Mσ

3 ⊗Mσ
3 in CPH . In section 14, a classical-mechanical version of an entangled

state was discussed. It consists of two macroscopic particles connected by a weightless rigid
rod, considered for simplicity in one dimension. If position of one particle in such a system is
measured to be a, then position of the second particle is automatically known to be a+d, where
d is the length of the rod. The state of the pair is then δ̃a⊗ δ̃a+d. A pair of microscopic particles
in a superposition of such states is an example of an EPR pair. If momentum of the first particle
in a pair is found to be p, then the momentum of the second will be −p.

There are essentially two paradoxes associated with EPR-pairs. The first one consists of the
non-local character of “communication” between the particles of the pair. Namely, how could
a measurement performed on one particle instantaneously affect the other particle, no matter
how far away? The other paradox is related to our ability to influence the reality of position or
momentum of the second particle by choosing to measure either position or momentum of the
first. This calls into question the notion of physical reality as well as completeness of quantum
theory.

Similarly to the single particle case, the evolution of the pair is a path in the space of
states CPH . Whenever the path takes values in the submanifold Mσ

3 ⊗ Mσ
3 , the position

of both particles is known. Moreover, if the state is constrained to Mσ
3 ⊗ Mσ

3 , then the
Schrödinger dynamics of the pair is equivalent to the Newtonian one. As before, the constructed
isomorphisms ωn allow us to identify the state of the pair in Mσ

3 ⊗Mσ
3 with a point in the

configuration space R3 × R3 of the system of two point-particles or positions of both particles
in the classical space R3.

Suppose the state of the pair is a point on CPH away from the submanifold Mσ
3 ⊗ Mσ

3 .
Suppose that position of one of the particles is measured. As discussed in section 14, the state
of the system will undergo a diffusion in CPH and the probability for the state of reaching
a particular point in Mσ

3 ⊗Mσ
3 is given by the Born rule. Note that position of only one of

the particles needs to be measured for the state to be able to reach the manifold Mσ
3 ⊗Mσ

3 .
Under the measurement, the state of the pair will undergo a random motion while following a
continuous path ψt from the initial state to a point in Mσ

3 ⊗Mσ
3 .

It is important that the distance d between the points a and a + d has nothing to do with
the motion of the state ψ to an observed position state δ̃a ⊗ δ̃a+d. The observed properties of
one particle are not communicated to the other one by any signal or a field in space. Moreover,



there are no particles in the sense of objects on Mσ
3 ⊗Mσ

3 , or on Mσ
3 = R3. Rather, there is

a state ψt representing the pair. When the state is constrained to Mσ
3 ⊗Mσ

3 , the particles are
described by the classical Newtonian dynamics. So we can think of them in purely classical
terms, as indeed, material points. However, the state in CPH , not constrained to the classical
space or phase space submanifolds describes the pair as a quantum object that embraces and
supersedes the material point of Newtonian mechanics.

We see that the paradoxical “spooky action at a distance” is not present anymore. The state
of the pair takes over the individual reality of the particles. There is no instantaneous collapse
that somehow makes the pair “real”. The pair is always real and exists in a form described by
the state. For the state constrained to the classical phase space Mσ

6 ⊗Mσ
6 , we recover the usual

classical-mechanical description of a pair of material points in R3. But in all cases, the state is
an appropriate entity to describe physical characteristics of the observed world. The paradox of
“creation” of reality of position or momentum of one particle by measuring the corresponding
quantity of the second clears up as well. These physical characteristics only make sense for the
state constrained to the manifold Mσ

6 ⊗Mσ
6 and alike. In that particular case, their relation to

the motion of state was derived in section 6. Otherwise, these physical characteristics are only
“shadows” of the deeper physics described by the state. The space of states is the new physical
arena that extends the classical space. The state offers a more complete way of identifying
characteristics of physical bodies. It generalizes the notion of position, momentum and other
observed quantities and reproduces these quantities when constrained to an appropriate classical
submanifold.

17. Schrödinger’s cat paradox
The issue here is that the existence of entangled states of microscopic systems results in a
contradiction when applied to macroscopic objects. In particular, in the famous Schrödinger
thought experiment we get superpositions of states of a cat being alive and dead. As discussed
in section 13, a macroscopic system is subjected to interaction with the environment, or, to put
it differently, is ”measured by the environment”. From the same section we know that the state
of the “measured” macroscopic system undergoes a trivial diffusion and so it does not change
at all. The macroscopic object is therefore constrained to the classical space Mσ

3n. Assume that
an entangled state of a cat and a decaying atom is somehow created. To measure the system
is to measure one component of the system. For instance, when we check if the cat is alive,
we also know that the atom has not decayed. The measured system is then in the product
state. However, because the cat is always ”measured” the state of the total atom-cat system is
maintained in the product form. So, under the normal conditions the state of a microscopic and
a macroscopic system cannot be entangled. There cannot be Schrödinger cats running around.

Note that the inconsistent view of reality by different observers in the Wigner’s friend type
of experiment, discovered by Frauchiger and Renner [23], is only present when an entanglement
of microscopic and macroscopic objects is possible. As discussed, such an entanglement is not
possible. At the same time, there is much more to be investigated now that the physical arena
became the space of states. In particular, the notion of reality is altered for the objects not
constrained to the classical space submanifold. We need to understand what it means in detail.
Further, if the space is now a submanifold in the space of states, then what is an appropriate
extension of the space-time manifold? How does it fit into the scheme? Would the results of
relativity theory need to be changed? This requires further investigation.

18. Summary and experimental verification
The dynamics of a classical n-particle mechanical system on the classical space R3 was
identified with the Schrödinger dynamics with the states constrained to the classical phase
space submanifold Mσ

3n,3n in the space of states. Conversely, we saw that there is a unique



unitary time evolution on the space of states of a quantum system that yields Newtonian
dynamics when constrained to the classical phase space. This resulted in a tight, previously
unnoticed relationship between classical and quantum physics. Under this relationship, the
classical Euclidean space R3 is isometrically embedded into the space of states CPL2 with
the Fubini-Study metric and is identified with the submanifold Mσ

3 of CPL2 . The Newtonian
dynamics reigns on Mσ

3 , while the Schrödinger dynamics is its unique extension to the space
of states CPL2 . The normal probability distribution on Mσ

3 has a unique extension to CPL2

and becomes the Born rule for the probability of transition between states. Vector fields on Mσ
3

have a unique extension to linear vector fields on the space of states. Quantum observables are
identified with the associated linear vector fields. Commutators of observables are Lie brackets
of the vector fields and are related to the curvature of the space of states. The physical quantities
of velocity, acceleration and mass in Newtonian dynamics are now components of the velocity
of quantum state.

The process of measurement in quantum mechanics is now an extension of the measurement
in classical physics that itself produces a normal distribution of the measured observable and
can be described by a diffusion equation. The state under a measurement is equally likely to
fluctuate in any direction on the space of states. This fact is responsible for the validity of the
Born rule for the probability of transition of the initial state to a particular final destination.
The state is not a cloud in the classical space that somehow “shrinks” under a measurement.
Rather, the state undergoes a random motion with a chance of reaching certain areas of the space
of states in the process. The evolution remains unitary and satisfies the Schrödinger equation
with a random potential without contradicting the known “no-go” results. The “collapse” of
the state becomes an unnecessary and redundant concept.

This approach to measurement is applicable to quantum systems consisting of an arbitrary
number of particles. When the system is macroscopic, the diffusion of state trivializes and the
state remains unchanged in time. As a result, macroscopic particles are constrained to the
classical space submanifold of the space of states. On the other hand, microscopic particles can
leave the submanifold and exist in a superposition of position eigenstates. The double-slit and
numerous other quantum-mechanical experiments demonstrate this property. When position of
a microscopic particle is measured and the result is obtained, the state returns to the classical
space submanifold. A particular point in Mσ

3 where the state was found determines the value
of the position variable.

The entangled states of two or more particles are represented by the points in the space
of states of the system that is not on the classical space or phase space submanifold. Similar
to the case of a single particle, under a measurement the point representing the state of the
pair in the space of states undergoes a random motion. To make a measurement on an EPR-
pair, it suffices to measure just one of the particles. The measurements yield an isotropic
distribution of the displacement of state in the space of states, implying the validity of the Born
rule. A measurement on one of the particles in an entangled pair restricts the outcomes of the
corresponding measurement on the second particle. However, the measurement does not imply
a “communication” between the particles. Instead, the point in the space of states representing
the state of the pair moves in a continuous way and reaches an eigenstate of the measured
observable. The probability of reaching a particular eigenstate is given by the Born rule.

The obtained realization of the Newtonian mechanics in functional terms and the derived
relationship of the classical and quantum theories is not just a reformulation of the theory. The
results of the classical and quantum mechanics are indeed reproduced in the theory. However,
the embedding resulted in a tighter relationship between the theories. This relationship can be
experimentally tested. A meaningful relationship between Newtonian and Schrödinger dynamics
can be seen in several places. First, there is a formula (36) that yields the known result that the
speed of evolution of state is equal to the uncertainty in energy, derived in a clear geometrical



way. Further, the decomposition (45) relates Newtonian velocity and acceleration, and, for the
appropriate value of σ, also the mass of a particle to the corresponding components of the velocity
of quantum state. However, these results are consistent with the Schrödinger dynamics itself
and the Ehrenfest theorem that follows from it and cannot serve a validation of the constructed
embedding.

What helps to come up with an experiment is the “rigidity” of the embedding: the extension
of the Newtonian dynamics and Newtonian models to the space of states is unique. This allows
us to approach the process of measurement in quantum theory in a new way, as an extension
of the random motion associated with a classical measurement. An important consequence of
this is the notion of a density of state functional and its derived isotropy property that can be
tested. Indeed, if several observables are measured on a particular state of a system at the same
time, we should be able to test the isotropy of the distribution of frequencies of the measured
eigenvalues. That is, the state should be seen “collapsing” equally frequently to the eigenstates
of different observables, positioned at the same Fubini-Study distance from the initial state. The
observation of different components of spin of a particle at the same time would probably be
the easiest way to set up such an experiment.

Another experiment could test the classical to quantum boundary. This boundary is predicted
by the theory to be determined by the largest particles for which the Brownian motion in an
appropriate media is observable. In fact, as long as the Brownian motion for the particle is
observable, the state of the particle is capable of diffusing into the space of states. In particular,
superpositions of the position eigenstates become possible and can be observed.

The obtained results lead one to the conclusion that macroscopic and microscopic bodies may
not be so different. The only important distinction is that microscopic systems live in the space
of states while their macroscopic counterparts live in the classical space submanifold of thereof.
Because our life happens in the macro-world and we deal primarily with macroscopic bodies, it
is hard for us to understand the infinite-dimensional quantum world around us. As soon as the
classical-space-centered point of view is extended to its Hilbert-space-centered counterpart, the
new, clearer view of the classical-quantum relationship emerges.
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