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Abstract

The many-worlds interpretation of quantum mechanics (MWI) is
based on three key assumptions: (1) the completeness of the physical
description by means of the wave function, (2) the linearity of the
dynamics for the wave function, and (3) multiplicity. In this paper,
I propose a new thought experiment in which a post-measurement
superposition undergoes no net change while individual branches do
change under certain unitary time evolution. Moreover, I argue that
MWT gives contradictory predictions for this experiment. In order to
avoid the contradiction and save many worlds, it seems that we must
drop one or both of the first two assumptions.

1 Introduction

The many-worlds interpretation of quantum mechanics (MWI) assumes that
the wave function of a physical system is a complete description of the
system, and the wave function always evolves in accord with the linear
Schrodinger equation. In order to solve the measurement problem, MWI
further assumes that after a measurement with many possible results there
appear many equally real worlds, in each of which there is a measuring
device which obtains a definite result (Everett, 1957; DeWitt and Graham,
1973; Barrett, 1999; Wallace, 2012; Vaidman, 2018)E| In this paper, I will
propose a new thought experiment and argue that MWI gives contradictory
predictions for this experiment.

1This assumption is supported by an extensive analysis of decoherence and emergence
in the modern formulations of MWTI (see, e.g. Wallace, 2012).
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2 A thought experiment

Consider a usual situation where a measuring device M interacts with a
measured system S. When the state of S is |1)g, the state of M changes
and it obtains a result 1:

1) g [ready) y;y = 1) g 1), - (1)

When the state of S is |2)g, the state of M changes and it obtains a result
2:

2)g Iready) pp = 12) g 12) 51 - (2)

According to MWI, there is no world branching and there is still one mea-
suring device, namely the original one, after the above measurement.

Now suppose the measuring device M interacts with the system S being
in a superposed state |1)g + |2)g. For simplicity I omit the nomalization
factor 1/4/2. By the linearity of the dynamics for the wave function, the state
of the composite system after the interaction will evolve into the following
superposition:

Ds D+ 12)s 120ar - (3)

According to the multiplicity assumption of MWI, this post-measurement
superposition corresponds to two (or two sets of) worlds, in each of which
there is a measuring device which has a definite state, obtaining a result 1 or
obtaining a result 2. We may denote these two worlds as W11 and Wao. Here
I omit the environment terms in the evolution, which, in a more complete
form, should be [1)g (1), |1) g +12)512) s |2) - This does not influence my
following analysis when viewing the whole composite system including the
environment as an isolated system.

Consider a unitary time evolution operator Uy which changes [1)¢ 1),
to |2)¢|2), and |2)¢(2),, to |1)g|1),,P| Then by the linearity of the dy-
namics, the time evolution of the above post-measurement state under Uy
is

Un()g | Dar +12)512)00) = 12)5 12007 + 115 1) 0 - (4)

It can be seen that after the unitary time evolution Uy the post-measurement
state does not change. Then, according to the multiplicity assumption of
MWI, the state after Uy still corresponds to two worlds, W11 and Wase, in

2For a Hilbert space with dimension greater than two, the swap operator Uy can be
accomplished in many ways, such as with a 180 degree rotation about the ray halfway
between the two state vectors. I thank ... for this useful comment. Note that a similar
thought experiment involving the swap operator Unx was first proposed and discussed by
Gao (2019).



each of which there is a measuring device which has a definite state, either
obtaining a result 1 or obtaining a result 2.

An interesting question now arises: what is the corresponding relation
between the worlds after Uy and the worlds before Un? It can be expected
that the corresponding relation depends on how Uy is accomplished. Let
us see a form of Uy which satisfies the criteria for decoherence so that
the histories can have consistent transition probabilities assigned. Suppose
the dimensions of the Hilbert spaces of both the system and the measur-
ing device are greater than two. Then we also have the bases [1)¢(2),,
and |2)g[1),, besides |1)¢[1),, and |2)¢|2),,. Moreover, suppose Uy first
changes [1)g[1),, to |2)g|1);, (during which |1),, keeps unchanged) and
then changes 2)¢[1),, to |2)¢|2),, (during which |2)¢ keeps unchanged)ﬁ
Similarly, Uy first changes [2) ¢ (2),, to |1)¢|2),, and then changes [1)¢(2),,
to |1)g [1),,, namely

Dg D = 12)s1Dar = 12)512) 0 (5)

and

12)512)a = Vg l2)a = Vg Das- (6)

Then, at any time ¢ during the process of Uy there will be in general a
superposition of four branches:

c11(t) [1) g [1)pr + c12(t) [1) g 12) py + c21(2) [2) 5 [1) s + c22(2) [2) 5 [2) 57 - (7)

Since these branches are decoherent, Uy satisfies the criteria for deco-
herence; there will be in general four worlds during the process of Un: Wiy,
Wia, Woi, and Way. Moreover, the histories and @ can have consistent
transition probabilities assigned, and the transition probabilities of both
histories are oneﬁ This means that after Uy, W71 changes to Was through
Wa1, and W changes to Wi through Wis.

3 A contradiction

Now we can prove that the combination of the three key assumptions of
MWT leads to a contradiction in the above thought experiment.

According to the assumption of multiplicity, the post-measurement su-
perposition |1)¢[1),, + |2)g]2),, corresponds to two worlds, Wi; and Waa,
in each of which there is a measuring device which has a definite state, ei-
ther obtaining a result 1 or obtaining a result 2. According to the linearity
of the dynamics for the wave function, this superposition does not change

3Note that Uy is essentially continuous and needs a finite time to be accomplished.
41 thank ... for this helpful comment.



after the time evolution Uy defined by and . According to the com-
pleteness of the physical description by means of the wave function, since
this superposition does not change after Uy, the complete physical state of
the composite system being in this superposition does not change after Uy .
This means that every aspect of the state of reality of the composite system
does not change after Uy, and in particular, the state of each real world
the system comprises does not change. If anything physical changes after
Uy, then the physical description by means of the wave function will be not
complete, since the wave function does not change after Uy.

On the other hand, after a certain Uy defined by and @, the state
of each world does change; Wy changes to Wao, and Was changes to Wiy.
In particular, the state of the measuring device M in each world changes,
either from obtaining result 1 to obtaining result 2 or from obtaining result
2 to obtaining result 1. Thus, we prove that the three key assumptions of
MWTI leads to a contradiction in the above thought experiment.

One may think that it is possible for the complete state of a system to
be unchanged even if the states of some parts of the system change. For
example, consider a simple non-quantum analogyﬂ Imagine two similar
spherical bodies orbiting one another in a universe where nothing else is
changing. As the bodies orbit, they change colors. At an initial instant,
there are a green body on the left and a red one on the right. After each
completes a half rotation and they have swapped positions, there are again
a green body on the left and a red one on the right (as the bodies have
changed colors over this period). Then, one may conclude that the state of
the universe is the same, but the state of each body has changed, since each
has moved and changed color.

However, it can be seen that this example does not show that the state
of the universe may keep unchanged even if the states of some parts of
the universe change. Here is the reason. If the two bodies are identical
except color, then after the transformation, the physical states of the two
bodies have not changed, and the state of the universe has not changed
eitherﬁ On the other hand, if the two bodies are not identical besides color,
such as possessing different properties denoted by 1 and 2, then after the
transformation the state of the universe have changed. Suppose at the initial
instant the green body on the left is body 1 and the red body on the right is
body 2. Then after the transformation, body 1 is on the right and body 2 is
on the left, and thus both the states of the two bodies and the state of the
universe have changed. Therefore, in either case, the above example does
not show that the complete state of a system may keep unchanged even if
the states of some parts of the system change.

°I thank ... for this interesting example.
5During the transforming process, the physical states of the two bodies do change, but
the state of the universe also changes.



4 Further discussion

What about other Upys which do not satisfy the criteria for decoherence?
Can we also prove the existence of a contradiction for these Upns? I think
the answer may be positive.

First, since the post-measurement superposition before and after Uy are
exactly the same, if the superposition before Uy corresponds to two worlds,
then the superposition after Uy will also correspond to two worlds. This
is true independently of the unitary time evolution Uy and whether Uy
violates the criteria for decoherence.

Next, if the whole superposition represents the complete physical state
and it does not change, then the underlying state of reality will not change
and everything in the physical world will not change, including those emer-
gent high-level objects. In this case, if individual branches do change (when
the whole superposition undergoes no change), then they cannot represent
something physical such as real worlds. On the other hand, if something
physical changes and the whole wave function does not change, then the
wave function cannot represent the complete physical state. For example, if
individual branches represent real worlds as MWI assumes, then when the
whole wave function undergoes no change while these worlds do not keep
unchanged, the wave function cannot represent the complete physical state.

Now, if Uy does not satisfy the criteria for decoherence, then the histories
of the initial two worlds do not have unique transition probabilities assigned
(without resorting to auxiliary rules). For example, a certain form of Uy
may bring about interference, and the initial two worlds will merge and two
new worlds will appear during the time evolutionm In this case, MWI does
not predict that the state of each world keeps unchanged after Uy. Then, if
the completeness of the physical description by means of the wave function
requires that each world should not change after Uy, then there will be still
a contradiction.

Finally, it can be argued that the state of each world cannot keep un-
changed after Uy, and thus the contradiction seems inevitable. Consider
a more general post-measurement superposition: a|1)¢|1),, + 512) g [2) ;-
Its time evolution under Uy is:

alg )y +B12)512)a = al2)g|2)y + B811)g[1) - (8)

Worlds and their evolution are arguably independent of the values of o and
5. If the state of each world keeps unchanged after Uy, then the term
a|l)g|1),, will evolve to 3|1)g|1),,, and the term 3(2)¢|2),, will evolve
to a|2)4[2),,. But this violates the linearity of the dynamics for the wave
function. In particular, when oo = 1 and 3 = 0, it means that [1)¢|1),, will
evolve to 0, and 0 will evolve to |2)¢2),,; this is impossible.

"I thank ... for raising this insightful objection.



There are two possible ways to avoid the above contradiction. The first
way is to deny that after the evolution the state of the composite system
has not changed. This requires that the wave function of a system is not
a complete description of the state of the system, and additional variables
are needed to introduce to describe the complete state. In other words, the
assumption of the completeness of the physical description by means of the
wave function should be dropped. The second way is to deny that after
the evolution the states of the worlds have changed. This is possible when
there is only one world or the linearity of the dynamics is violated. In other
words, the assumption of multiplicity or the assumption of the linearity of
the dynamics for the wave function should be dropped.

5 Conclusion

In this paper, I propose a new thought experiment in which a post-measurement
superposition undergoes no net change while individual branches do change
under certain unitary time evolution. I argue that MWI gives contradic-
tory predictions for this experiment. The contradiction results from the
combination of three key assumptions of MWI: (1) the completeness of the
physical description by means of the wave function, (2) the linearity of the
dynamics for the wave function, and (3) multiplicity. In order to avoid the
contradiction and save many worlds, it seems that we must drop one or both
of the first two assumptions, although this is against the spirit of modern
formulations of MWI.
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