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Ezequiel LÓPEZ-RUBIO

the date of receipt and acceptance should be inserted later

Abstract Classic conceptions of model simplicity for machine learning are mainly
based on the analysis of the structure of the model. Bayesian, Frequentist, infor-
mation theoretic and expressive power concepts are the best known of them, which
are reviewed in this work, along with their underlying assumptions and weaknesses.
These approaches were developed before the advent of the Big Data deluge, which
has overturned the importance of structural simplicity. The computational simplic-
ity concept is presented, and it is argued that it is more encompassing and closer
to actual machine learning practices than the classic ones. In order to process the
huge datasets which are commonplace nowadays, the computational complexity
of the learning algorithm is the decisive factor to assess the viability of a machine
learning strategy, while the classic accounts of simplicity play a surrogate role.
Some of the desirable features of computational simplicity derive from its reliance
on the learning system concept, which integrates key aspects of machine learning
that are ignored by the classic concepts. Moreover, computational simplicity is di-
rectly associated with energy efficiency. In particular, the question of whether the
maximum possibly achievable predictive accuracy should be attained, no matter
the economic cost of the associated energy consumption pattern, is considered.

Keywords model simplicity · machine learning · Bayesianism · information
theory · energy efficiency

This is a preprint of the paper published in the European Journal for Philosophy of Science.
The final published version is at https://dx.doi.org/10.1007/s13194-020-00288-8

Ezequiel LÓPEZ-RUBIO
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1 Introduction

Automated model selection is one of the most relevant features of machine learn-
ing. It gives the scientist a powerful tool to quantitatively assess the merits of
several possible models in the light of their predictive performance when fitted
to large volumes of data. In the current Big Data age, many scientific and engi-
neering endeavors involve the execution of machine learning software to obtain a
fitted model, with little or no human intervention. This calls for an analysis of the
criteria which are employed in such software to choose one model over another.
Simplicity is often employed to justify these selections, but the concept of sim-
plicity has different meanings depending on the school of thought that a machine
learning practitioner adheres to. Here we aim to explain such differences and their
associated underlying assumptions about the goals of model selection. Further-
more, we describe and discuss the computational concept of simplicity, which is
frequently applied in practice but often neglected in the literature. Finally, we
claim that the computational concept of simplicity is more appropriate to under-
stand current practices in machine learning than the classic ones. In this work,
we focus on model selection for machine learning, and not for general scientific
inference.

In what follows we will use the following terminology. A model is a mathemat-
ical structure that aims to fit some experimental data. A model contains zero, one
or more adjustable (also called learnable) parameters, which are real numbers that
must be determined. Therefore, a model with one or more parameters has infinite
possible realizations1, which we call instantiations. A machine learning algorithm
takes a model and a set of training data as inputs and returns a set of values for
the adjustable parameters of the model, i.e. an instantiation of the model. We also
say that the algorithm fits the model to the data so that a fitted (instantiated)
model is obtained.

We start by presenting four classic concepts of simplicity which have been
applied to machine learning models (Section 2). Then the relations among machine
learning models, the learnable parameters that they contain, and the learning
algorithms which are used to adjust the parameters are discussed, along with
the concept of a learning system, which contains them (Section 3). After that,
the proposed concept of computational simplicity is detailed, and its epistemic
advantages with respect to the classic ones (Section 4). The relations among the
classic and computational approaches of simplicity are studied in Section 5. Next,
some non epistemic justifications of the proposed computational simplicity concept
are outlined (Section 6). Finally, Section 7 concludes this work by highlighting the
relevance of computational simplicity to state of the art machine learning.

2 Four brands of simplicity for machine learning models

Ockham’s razor is invoked by machine learning theorists to prefer simpler models:

Entities should not be multiplied beyond necessity.

1 An uncountable infinity, since the parameters are real numbers. In the particular case that
all adjustable parameters are constrained to be integers, the number of possible realizations is
a countable infinity.
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It must be understood as a search strategy to extract good models from data, and
not as a statement that Nature must actually be simple (de Rooij and Grünwald,
2011, p. 893). It has been argued that, even if it does not lead to the true model,
it finds models that yield reliable predictions (de Rooij and Grünwald, 2011, p.
894).

As an example, let us consider a typical application of machine learning, namely
the modeling of customers of an e-commerce site. Given the complexity of human
behavior, it is almost impossible to build machine learning models that capture all
the details of this problem. Therefore, machine learning practitioners assume that
the true model is not attainable. Nevertheless, under the Ockam’s razor principle,
it is possible that a simple model can be obtained by learning from customer
activity data collected by the web site software. Such a model might be good
enough to produce accurate predictions of customer actions like buying a certain
product or revisiting the site.

For instance, it could be found in the collected data that 90% of the customers
that have already purchased items in the site for a total amount of more than
2,000$ actually revisit the site. On the basis of such an observation, a simple
decision tree model might be learned by a machine learning algorithm that contains
a rule which states that if a customer has purchased more than 2,000$ on the site,
then she is predicted to revisit. Here the amount 2,000$ is an adjustable parameter
which is learned from the data.

However, there are many possible ways to define simplicity in the machine
learning context (Domingos, 1999, p. 409; Kelly, 2007, p. 270). Next, we review
four of them.

2.1 The Bayesian concept

The standard view in the Bayesian school understands probabilities as degrees
of belief in the truth of a statement (Sober, 2015, p. 64; Forster, 2001, p. 88).
Bayesian model selection chooses the model which has the highest probability
given the data (Wasserman, 2000, p. 93). In order to compare two models, their
Bayes factor can be computed, which is the evidence of one of the models versus
the other (Wasserman, 2000, p. 98). This calculation requires the assumption of
prior probability distributions for the models and their parameters.

The Bayesian Information Criterion (BIC) is the criterion of choice according
to Bayesianism (Sober, 2015, p. 135). It is an approximation to the log Bayes factor
(Wasserman, 2000, p. 100) that has the advantage that no prior information must
be supplied since only the maximum likelihood instantiation of each model is
necessary (Claeskens and Hjort, 2008, p. 81). The BIC is an unbiased estimator of
the probability of observing the data given the model (Sober, 2015, p. 139). After
that, the model associated with the highest posterior probability of observing
the data is chosen (Claeskens and Hjort, 2008, p. 79). The maximization of this
posterior probability automatically leads to a balance between the goodness of
fit of the model to the data and the complexity of the model, which is known as
the Bayesian Ockam’s razor (Huang and Beck, 2018, pp. 712-713; Murphy, 2012,
p. 157). The Bayesian framework favors models with fewer adjustable parameters
because they concentrate the prior probability mass in a smaller range of options
(Sober, 2015, p. 125). In other words, simpler models have a smaller number of
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possible instantiations, which means that more prior probability mass is allocated
to each instantiation (Henderson et al, 2010, pp. 186-187).

It is sometimes interpreted that the Bayes factors or the BIC select the model
which is believed to be true with the highest probability (Grünwald, 2007, p. 540).
However, this interpretation fails when a model is compared to a restriction of it
(a submodel). From the axioms of probability, it follows that the submodel cannot
have a higher probability than the model, but Bayesian model selection sometimes
chooses the submodel (Forster, 2001, p. 95).

Bayesian model selection might be employed to predict whether a customer will
revisit our example e-commerce site, given her past activity on the site. Typically
the competing models have several learnable parameters that are adjusted from
the data collected by the web site software about many customers over time.
Given the history of a customer, each model will output the probability that
the customer revisits the site. Then the acquired data about the customers who
actually revisited the site could be used, so that the BIC applies the Bayesian
Ockam’s razor to choose the model which attains the best balance between the
model accuracy, i.e. how the predicted revisit probabilities match the actual revisit
data, and the model complexity, i.e. the amount of parameters to be adjusted from
the customer activity data. This selection is based on the maximization of the
posterior probability of observing the revisit data.

2.2 The Frequentist concept

The Frequentist approach holds that probability only has a meaning when it refers
to a repeatable experiment (de Rooij and Grünwald, 2011, p. 895). Therefore,
the Bayesian evaluation of a model, based on the probability of the model given
the observed data, does not make sense under this interpretation. Frequentism
conducts model assessment without considering subjectively assigned prior prob-
abilities, which enhances the perceived objectivity of its conclusions, as compared
to Bayesianism (Dawid, 2017, pp. 378-381). The AIC is the best known Frequen-
tist criterion (Sober, 2015, pp. 128-135). The AIC does not assign probabilities to
models since it is based on an unbiased estimation of the predictive accuracy of
each model.

The AIC favors models with fewer adjustable parameters because it is based
on an unbiased estimate of the predictive accuracy of a model which contains
the number of adjustable parameters with a negative sign. This means that the
lower the number of adjustable parameters, the higher (better) the AIC. This
mathematical fact reflects the experience of scientists when they try to employ a
model which fits the training data very well but performs poorly on new test data
(Sober, 2015, pp. 130-131). In machine learning terms, it is said that a model with
too many adjustable parameters overfits the data.

While both AIC and BIC favor models with fewer adjustable parameters, they
diverge in their interpretation of Ockam’s razor. The main difference between Fre-
quentist and Bayesian model selection is that the Bayesian approach intends to
maximize the probability of the model given the data so that it assigns probabil-
ities to models. In the Bayesian context, more adjustable parameters mean lower
model probability, and this is provided as the Bayesian foundation of Ockam’s
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razor (Sober, 2015, p. 141). The Frequentist approach refrains from model prob-
ability assignments, which means that models with more adjustable parameters
are penalized on the grounds that they are estimated to have lower predictive
accuracy, irrespective of their probability. Therefore, the Frequentist justification
of Ockam’s razor refers to the estimated accuracy of the models. As mentioned
in (Sober, 2015, p. 149), model parsimony is used as a surrogate for accuracy.
Following our previous account of Bayesian model selection for e-commerce cus-
tomer revisit prediction, the AIC differs from the BIC in that the AIC chooses
the model that is estimated to have the highest predictive accuracy for future
customer revisits, irrespective of any model probabilities.

Accuracy is what really matters, and this explains why the AIC and the BIC
are less used than direct estimations of predictive accuracy obtained by cross val-
idation. The AIC is a parsimony based, indirect estimator of predictive accuracy
(Bandyopadhyay and Forster, 2011, p. 3). The BIC does not even aim to maximize
predictive accuracy, but it evaluates the evidence for a model given the observed
data (Wasserman, 2000, pp. 99-100). In contrast to these criteria, cross validation
actually measures the predictive accuracy over validation data sets. The predictive
accuracy measured by cross validation over validation data sets often turns out to
be a better estimator of the performance of a model on a test set than BIC or AIC
(Hastie et al, 2009, p. 254). Moreover, cross validation can be used for non proba-
bilistic models (Murphy, 2012, p. 370). All of this assumes that predictive accuracy
is the primary goal. Therefore, machine learning practitioners mostly adhere to
an instrumentalist conception of science (Sober, 2015, pp. 143-144). Parsimony
is seen as a secondary goal so that if the predictive accuracy is similar among
several candidate models, the candidate with the smallest number of adjustable
parameters is chosen (James et al, 2014, p. 214).

2.3 The information theoretic concept

Information coding is at the root of the Minimum Description Length (MDL)
concept of simplicity, see (Montañez, 2017, pp. 73-75; Domingos, 1999, pp. 412-
413). Under the MDL framework, probability distributions are equivalent to codes,
so that the truth or the belief in the truth of a model is not relevant (de Rooij and
Grünwald, 2011, p. 895). MDL aims to minimize the sum of the number of bits
that are required to represent the data plus those required to represent the model
(Domingos, 1999, p. 412; Pothos and Wolff, 2006, p. 213; Grünwald, 2007, p. 132).
Hence MDL can be decomposed into a model fit term plus a model simplicity term
(Montañez, 2017, p. 73). The MDL principle is based on the observation that any
regularities on the data enable efficient compression of such data. Models with
fewer adjustable parameters require fewer bits to be coded. This means that more
parsimonious models are preferred, provided that the models adequately capture
the underlying patterns in the data so that the data are efficiently compressed.

Both MDL and BIC have been proved to behave suboptimally when the true
model does not belong to the set of models to choose from (Grünwald, 2007, p.
530), a situation that occurs very frequently in practice (Grünwald and Langford,
2007, p. 139). The main drawback of MDL is that, while models that are good
at prediction implicitly compress the training data by identifying data patterns
(Grünwald, 2007, p. 595), there are models which compress the training data ad-
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equately but do not perform well at predicting new test data. In other words,
implicit training data compression is necessary, but not sufficient, to attain good
predictive performance. For the customer revisit example, this is a significant im-
pediment to employ MDL since the true model does not belong to the set of models
under comparison. This means that MDL could choose a model which summarizes
the observed customer behavior data very efficiently, but predicts future revisits
poorly.

2.4 The expressive power concept

Perhaps the most typical task in machine learning is classification. It consists
of predicting a class label given an input vector which lies in some input space
comprising several features. Classification problems greatly vary in their difficulty.
The most difficult problems are those where nearby vectors in the input space
have different class labels. This intricacy of the distribution of the labels must be
matched by the classification models which aim to solve the problem. That is, a
classification model must have enough expressive power to represent the intricate
boundaries among the classes in the input space. This observation has led to some
measures of model simplicity which are based on the richness of the kind of class
boundaries that they can represent.

The best known of such measures is the Vapnik-Chervonenkis (VC) dimension.
The VC dimension of a classification model is defined as the largest number of
input vectors which can be shattered by the model, where the set of points is
shattered if the model can learn a boundary which perfectly separates them no
matter how the class labels are assigned to the points (Hastie et al, 2009, p. 238).
This way, a researcher can evaluate the relative simplicity of two classification
models by comparing their VC dimensions. Models with excessive VC dimension
should be avoided because they might overfit (Vapnik, 2000, pp. 297-298), i.e. they
could focus on irrelevant features of the input dataset.

A key shortcoming of the VC dimension is that it does not assume any form
of the distribution of the input vectors and their labels. This implies that it does
not consider any kind of regularity in such distribution, while real problems do
exhibit strong regularities. For example, e-commerce customer activity contains
significant patterns, such as daily and seasonal activity trends, which are ignored
by the VC dimension theory. Therefore the estimation by the VC dimension of the
capability of a model to solve a classification problem is often too conservative,
which greatly limits its applicability (Bishop, 2006, pp. 344-345; Shalev-Shwartz
and Ben-David, 2014, p. 116).

Another quantitative measure of the flexibility of a classification model to learn
an input distribution is Rademacher complexity. It measures to which extent, in
average terms, a model can fit the random noise that may corrupt a given input
distribution (Mohri et al, 2014, pp. 34-35). A higher Rademacher complexity in-
dicates that the model is more rich and flexible so that it can accommodate more
intricate input distributions. It is defined with respect to a certain input distribu-
tion, so it takes into account the regularities of the input, unlike the VC dimension.
However, Rademacher complexity is known to be hard to compute (Oneto et al,
2018, p. 4660). In particular, it is more difficult to bound or estimate than the VC
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dimension, and in some cases it is NP-hard, i.e. it requires an exponential number
of calculations (Mohri et al, 2014, pp. 33, 38).

3 Models, learnable parameters and learning algorithms

In this section, I will argue that in machine learning the complexity of models is
inextricably linked to the complexity of the algorithms that learn them. Software
is made of algorithms plus data structures (Wirth, 1985):

Programs, after all, are concrete formulations of abstract algorithms
based on particular representations and structures of data.

In prediction software, the data structures are the model. In this work I refer to the
computational complexity of a specific algorithm, also called algorithm efficiency
(Levitin, 2011, p. 42), and not to the (more abstract and elusive) computational
complexity of a problem, also called intrinsic complexity of a problem (Moore and
Mertens, 2011, p. 23). Computational efficiency is acknowledged as a criterion to
justify the suitability of software (Kelly, 2007, pp. 271, 273). The mere fact that the
problem of learning a certain model can be solved, which is all that the simplicity
concepts considered in Section 2 care about in terms of computation, says very
little about the potential of the model to be applied in practice. There are many
possible algorithms to learn a model, and for each learning algorithm, there is an
infinity of possible programs that implement it, each with its own computational
complexity. Therefore, in machine learning, the sole specification of a learnable
model is not enough to assess simplicity (Kelly, 2007, p. 273). Model evaluation,
model selection, and algorithm selection are seen as different aspects of the same
task (Raschka, 2018, p. 1). The number of parameters of the model and the speed
with which those parameters can be learned are seen as two equally important
factors (Lin and Tegmark, 2016, p. 2). The object whose simplicity should be
assessed is the overall learning system, which is composed (at least) of:

1. The data acquisition process.
2. The hardware where the computations are performed.
3. The learnable model.
4. The learning algorithm (software) which is executed on the hardware, with the

acquired data as input, and outputs the learned instantiation of the model.
5. The prediction procedure (software), executed on the hardware, which accepts

the learned instantiation of the model and a query as inputs, and outputs a
prediction.

Hardware is also important to assess the simplicity of a learning system, because
models which are unfeasible to learn on a certain kind of hardware, become easy to
use on other kinds of hardware. The differences in the computational complexity
among implementations of the same algorithm depending on hardware considera-
tions can be enormous (Parashar et al, 2019, p. 305). This is what happens with
deep learning neural networks, which are too complex to be learned on standard
hardware, but affordable on specific graphics hardware. However, in this work, I
will focus on the importance of learning algorithms to evaluate simplicity.

Let us consider an example of a learning system, namely a recommender sys-
tem for our example e-commerce site. The data acquisition consists of recording
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successive purchase transactions by the same customer so that a register of the
purchase history of many customers is collected. This data acquisition process re-
quires dedicated software, databases, and computers. Some additional hardware
and software are necessary to run the machine learning methods themselves. Next,
a data scientist chooses a learnable model that might be adequate to predict, given
the past behavior of a customer, which items she would be interested to buy in
the future. After that, the learnable model is trained on the collected purchase
histories by a suitable learning algorithm. Finally, the trained model is employed
to execute a prediction procedure to show a visiting customer some items which
she might like to purchase.

Inspired on the Inference to the Best Explanation (IBE) principle (Cabrera,
2017, p. 1248), we can define the Refinement to the Best Prediction (RBP) scheme:

1. D is a set of data.
2. Software S1 predicts D sufficiently well.
3. No competing software S2, ..., SN predicts D better than S1.
4. One is justified in using S1 to predict D.

Please note that truth does not have an explicit role here. It is not a logical
inference process, but a software refinement one. Maybe the model which exists
in S1 is closest to the underlying real process which D comes from, but this is
not a goal. In other words, machine learning allows that the models inside the
Si are black boxes with little or no resemblance to the physical process which
generated the data D. Once the data are generated in step 1, the underlying
physical process is irrelevant to the subsequent steps of the RBP scheme. In this
context, the computational efficiency of the prediction software becomes a key
factor to choose a learning system over another.

Learnable models contain a certain number of learnable parameters whose val-
ues must be estimated from the data. The first three classic approaches considered
in Section 2 (Bayesian, frequentist and information-theoretic) evaluate the simplic-
ity of the learned model with all their adjusted learnable parameters with respect
to a space of possible models, but they completely ignore the computational pro-
cedure by which such learnable parameters have been determined. Furthermore,
these three classic approaches are designed to measure the complexity of what are
known as parametric models, as opposed to nonparametric models. On one hand,
parametric models are based on the assumption that the observed data can be ex-
plained and summarized by a probability distribution of a specific mathematical
form which is characterized by a relatively small number of learnable parameters.
On the other hand, nonparametric models do not make assumptions about the
mathematical form of the probability distribution which underlies the observed
data nor they try to summarize the available dataset. This means that nonpara-
metric models grow with the size of the dataset, while they have very few learnable
parameters, often just one learnable parameter. The neglection of nonparametric
models causes the failure of classic simplicity concepts to account for nonpara-
metric model selection (Rochefort-Maranda, 2016, p. 270; de Rooij and Grünwald,
2011, p. 892). Moreover, these three classic conceptions of simplicity are useless
to explain how scientists choose among a range of parametric and nonparamet-
ric models. That is, parametric and nonparametric models are incommensurable
under these classic simplicity models. The situation only gets worse for machine
learning models which do not define any probability distribution. Notably enough,
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this class of models includes many of the most celebrated machine learning mod-
els2. In these cases, the AIC and the BIC cannot even be defined.

The fourth kind of classic simplicity measures, namely the expressive power
ones (Subsection 2.4) also has important shortcomings. Like the previous ones,
they do not consider the computational procedure that is followed to learn a
model. The VC dimension completely ignores the strong regularities which often
exist in real datasets D, which leads to inaccurate assessments of the capability
of the models to learn such real datasets. Rademacher complexity is hard to com-
pute, which hampers its practical applicability. Furthermore, both VC dimension
and Rademacher complexity are defined for supervised learning problems where
the desired output is provided by a supervisor, so that the simplicity of models for
many fundamental tasks in machine learning such as unsupervised clustering, di-
mensionality reduction, density estimation, and reinforcement learning cannot be
analyzed with them. In contrast to this, computational efficiency can be employed
to assess the simplicity of all kinds of machine learning models.

4 Computational simplicity

As seen in Section 3, classic conceptions of simplicity are incomplete because they
do not address the computational burden of learning the adjustable parameters
of a model. Here we propose an alternative concept of simplicity which works
for parametric, nonparametric, non probabilistic, unsupervised and reinforcement
learning models. It is founded on a new version of Ockham’s razor, that we may
call the Big Data razor:

Definition 1 Big Data razor. Computations should not be multiplied beyond
necessity.

Computational simplicity has already been recognized as one of several alternative
concepts of simplicity (Rochefort-Maranda, 2016, pp. 271-272). It has also been
pointed out that, while favoring simplicity does not necessarily lead to the true
model, it speeds up the search process (Kelly, 2011, p. 1000), which highlights
the importance of the computational load associated with model selection. Here
we aim to argue that computational simplicity is a critical criterion for current
machine learning.

Computational limitations have always played a role in machine learning. The
novelty is that before Big Data, the scalability of algorithms as the number of sam-
ples grows was not so important because most datasets were small. This implies
that the relative importance of computational complexity was moderate, as com-
pared to classic measures of model complexity. Nowadays sample sizes N of 109

to 1011 are common (Cahsai et al, 2017, p. 1419, 1426; Hestness et al, 2017, pp. 5-
10), and they are becoming even more frequent. For example, more than 109 items
are shipped by the same e-commerce site per year (Carman, 2018). This means
that machine learning models whose computational requirements scale badly to

2 The class of non probabilistic machine learning models includes: Support Vector Machines,
k-means, decision trees, random forests, artificial neural networks (including deep learning
neural networks) and many others. Most of them can be adapted to output probabilities, but
they are usually employed without such adaptation, i.e. the model selection is carried out
without any reference to probabilities.
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those sample sizes are simply discarded, no matter how simple their structures
may be, because only computationally cheaper models can harness the incoming
data deluge.

An example of the Big Data razor is the success of two deep learning neu-
ral networks to detect objects in images: FasterRCNN (Ren et al, 2017) is more
accurate than Yolo (Redmon and Farhadi, 2018), but Yolo is faster (Dhiraj and
Jain, 2019, p. 118). FasterRCNN follows a two step approach (Ren et al, 2017,
pp. 1138-1139). First, it generates a relatively large number of region proposals,
i.e. rectangles (also called bounding boxes) which might enclose an object. After
that, it analyzes the region proposals to estimate how likely they are to actually
contain an object. In contrast to this, Yolo performs the object detection in a
single step, since it directly generates regions which are very likely to enclose an
object. Furthermore, Yolo comes in several versions that accept images of different
resolutions. The higher the resolution, the more accurate the object detection, but
the larger the network and its associated computational load. That is, Yolo ver-
sions are in a relation of computational load versus accuracy tradeoff (Redmon and
Farhadi, 2018, p. 4). Due to its two step architecture, FasterRCNN is slower than
Yolo, but FasterRCNN is more accurate because its analysis of the input image is
more detailed. Depending on the time requirements of the application, one of them
is chosen: FasterRCNN or some of the Yolo versions. Even for the same network,
some implementations are more or less accurate depending on the object detection
accuracy that you wish to attain (Kang et al, 2018; Ma et al, 2018). In general
terms, it can be said that the more accuracy, the more calculations are required
(Huang et al, 2017, p. 7315). A linear relationship has been experimentally found
between the accuracy and the number of images that can be processed per unit
time (Canziani et al, 2016, p. 6). A similar tradeoff is found in classification. The
more calculations, the more accuracy which can be attained (Kpotufe and Verma,
2017, pp. 1, 16; Jose et al, 2013, pp. 1, 8).

The above examples illustrate the fact that in machine learning often predic-
tive accuracy and computational simplicity are competing goals which stand in
a relation of tradeoff, while classic concepts of simplicity (Bayesian, Frequentist,
information theoretic and expressive power) are not considered.

There is a practical reason for this quest for computational simplicity. Com-
putation has an economic cost in terms of hardware, software, and energy. In our
example recommender system for an e-commerce site, there is a need for machine
learning algorithms that can be executed with a small computational effort, so
that cheaper web servers are required and less electrical power is employed to sup-
ply them. All of this reduces the monetary cost of running the web site, i.e. the
profits are increased. Therefore less computation means the cheaper application
of machine learning to an ever growing range of tasks (Agrawal et al, 2018, ch.
3). In turn, this economic rationale directs researchers and practitioners towards
computationally simple models. This justification of simplicity departs from the
epistemic justifications of the classic concepts of simplicity. These classic justifica-
tions are problematic and suggest that parsimony is a surrogate goal (Sober, 2015,
p. 149).

Since predictive accuracy comes at a computational (and hence economic) cost,
for the Big Data era the models which are obtained by a learning algorithm with a
computational complexity which is higher than linear are not practical (Hong et al,
2019, p. 1; Burkov, 2019, ch. 8). It is not only that the space of possible models is
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infinite (Korb, 2004, p. 437), which was already known before the advent of Big
Data. It is also that many of the possible models cannot be learned (adjusted)
within practical computer resource limits.

The old (Bayesian, statistical) balance was between overfitting and underfit-
ting, i.e. between the simplicity of the model and its predictive accuracy. While
the old balance is still valid for parametric models, there is a new balance between
the predictive accuracy of the learned model and the computational complexity
of the associated learning algorithm, measured in terms of computation time and
memory usage (Jiang et al, 2019, p. 201). The new balance is not restricted to
parametric models since it applies to nonparametric and non probabilistic models
too. The computational complexity of the test phase, i.e. when the learned model
is employed to generate predictions, is also very important. This is because the
test phase might be more computationally demanding than the training phase if
the learned model is to be maintained for some time to yield many predictions.
In other words, the relative importance of the computational complexity of the
training and test phases depends on the expendability of the learned model.

The computational simplicity concept, considered in the context of the learning
system depicted in Section 3, can help to explain why Big Data calls for models
whose learning algorithms have linear complexity (or lower). To a first approxi-
mation, it can be assumed that the energy (and monetary cost) of acquiring N
samples of data is directly proportional to N , i.e. it is linear with N . If the learning
algorithm has linear complexity, this implies that the ratio between the energy re-
quired to learn the model and the energy required to acquire the data is a constant
independent of N . However, if the learning algorithm has a complexity which is
higher than linear, then the ratio tends to infinity as N grows. Hence the learning
phase absorbs an unsustainable fraction of the energy devoted to run the entire
learning system, as the number of available data samples N increases. For our
example recommender system, this means that the energy employed to predict
the future behavior of the customers grows much larger than the energy devoted
to processing their actual purchase orders. This situation is characteristic of the
Big Data era since the rate of growth of the amount of computation required to
learn state of the art machine learning models has dramatically accelerated since
2012 (Amodei et al, 2019).

In the light of the above considerations, it can be inferred that a triple balance
must be attained among three variables: the cost of acquiring the data, the cost
of learning the model, and the cost of using the model to make accurate predic-
tions. The computational simplicity concept can provide a unified framework to
understand the two last variables, while the first one (the data acquisition cost)
depends on the scientific or technological field that the models are applied to.

Parsimony in terms of the number of adjustable parameters is not a goal in
itself, although it affects the memory usage and indirectly the computation time.
In other words, each adjustable parameter occupies some memory space, so models
with more parameters have more memory usage. Besides, each adjustable param-
eter requires some computational effort to learn it, so adding more parameters
to a given model usually results in higher computation time. Truth is not a goal
either since it is assumed that none of the competing black box models reflects
the actual structure of the problem. As mentioned before, the exact behavior of
the customers of an e-commerce site is too complex to be captured by a machine
learning model. There was a probabilistic turn (Sober, 2015, p. 152) in the 20th
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century which meant that we did not assume anymore that nature is simple or
that it is probably simple. The Big Data turn of the 21st century means that ma-
chine learning practitioners assume that models whose computational complexity
is small enough to manage large and ever increasing volumes of data have the best
chances to generate good predictions. Computationally simple algorithms which
performed poorly with small amounts of data yield excellent results when supplied
with large datasets, and it is believed that some problems can be essentially solved
as soon as enough data is provided (Pereira et al, 2009, p. 9; Sun et al, 2017, p.
8). It is acknowledged that these simple models are not true. In other words, after
the Big Data turn model selection is not driven by purely theoretical motivations,
because the cost of running the overall learning system has become a fundamental
factor to choose one model over another. It must be noted that before the advent
of massive data processing by machine learning methods, the computational cost
of adjusting the parameters of a model was not a pressing concern for machine
learning practitioners. Nowadays, a standard strategy to cope with a given dataset
is to try to learn a set of computationally cheap models, and then see which one
yields the best predictive accuracy. The cheaper the models, the more tries that
can be attempted for a fixed computational budget.

In this new context, the key questions are:

1. How accurate can we get within our current computational limits? Prediction
is seen as a process of progressive refinement, which advances at the pace of
the improvements in the computational resources. The discovery of the true
model is not a concern because predictive accuracy is all that matters for most
application fields of machine learning.

2. Is there a limit to the accuracy increase of these simple models as the number
of data samples N grows? As seen above, the true model is not searched for,
while it is not clear how close we can get to the truth by approximate mod-
els. This question can not be answered by theoretical reasoning. It can only
be ascertained by experimentation on ever growing datasets provided by Big
Data techniques. This strategy is driven by the observation that larger datasets
lead to better results, although it is also observed that the marginal perfor-
mance decreases as the size of the dataset increases (Sun et al, 2017, p. 850).
There is a subjective perception that for a given model, there is a maximum
possible accuracy which can not be surpassed no matter how big the training
set is (Fernández-Delgado et al, 2014, pp. 3134-3135; Hestness et al, 2017, p.
11). For the e-commerce site example, this means that customer behavior is
not fully predictable by any particular model, even if an unlimited amount
of data is available. This leaves the question of whether radically new models
could outperform the current best models to generate accurate predictions for
a particular problem (Huang et al, 2017, p. 7315).

We may call this the computational turn. The state of affairs in machine learning
is that researchers no longer aim to obtain the true model, but an approximate
one which can be learned with a small computational load, while providing high
accuracy.

The main reason behind this computational turn is the recent increase by
several orders of magnitude of the number of available data samples N , which has
dramatically emphasized the relevance of computational simplicity with respect
to classic measures of model simplicity. Often machine learning algorithms whose
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computational complexity is higher than linear cannot be applied to very large
datasets (Witten et al, 2017, p. 507), which did not happen before the Big Data
deluge.

Let us consider the example of comparing a machine learning model Quad that
is associated to a quadratic complexity learning algorithm3 with a model Lin that
is associated to a linear complexity learning algorithm4. The average execution
times of both algorithms can be written as follows:

TQuad = N2KQuadFQuad (1)

TLin = NKLinFLin (2)

where N is the number of training samples; FQuad and FLin are the numbers of free
parameters of Quad and Lin, respectively; and KQuad and KLin are constants that
depend on the models, the software implementations of the training algorithms,
and the hardware where the algorithms are executed on. It must be pointed out
that for parametric models, FQuad and FLin must not depend on N , i.e. the size of
the model must not depend on the number of available training samples (Russell
and Norvig, 2016, p. 737). Moreover, KQuad and KLin must not depend on N
either since we focus on a particular setup of software and hardware.

Now let us define the execution time ratio between Quad and Lin:

R =
TQuad

TLin
=

N2KQuadFQuad

NKLinFLin
=

NKQuadFQuad

KLinFLin
(3)

which is the number of times that Lin is faster than Quad.

If the dataset has a moderate size N , then it makes sense to compare Quad and
Lin by means of classic model simplicity measures, which focus on the numbers of
free parameters FQuad and FLin. For example, it could be the case that FQuad <
FLin so that Quad is judged to be simpler than Lin, provided that the execution
time ratio R is not too large. In other words, the classic simplicity measures and the
execution time are complementary simplicity measures which can be collectively
assessed by the machine learning practitioner. However, the advent of Big Data
means that N grows by several orders of magnitude. Before Big Data, N was in
the hundreds or thousands of samples, while nowadays N can be in the millions
or billions. This implies that the execution time ratio R also grows by several
orders of magnitude, as seen in equation (3). As N grows to infinity, the execution
time ratio R also tends to infinity. Here is where the Big Data razor shaves off
the Quad model since it does not matter how simple Quad might be in terms
of the classic simplicity measures, because the difference in the execution times
as measured by R is just too large. The situation becomes even more dramatic
for learning algorithms whose execution time is proportional to N3, i.e. cubic

3 This means that the execution time of the learning algorithm is proportional to N2. For ex-
ample, kernelized Support Vector Machines (Bishop, 2006, p. 349), and decision tree induction
by the C4.5 algorithm with numeric attributes (Witten et al, 2017, pp. 219-220, 508).

4 This means that the execution time of the learning algorithm is proportional to N . For
example, Naive Bayes classifiers (Bishop, 2006, p. 380), and logistic regression (Hastie et al,
2009, p. 120).
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complexity5. That is, the relevance of model simplicity criteria that do not consider
the execution time decays as N grows in the Big Data era.

5 The interplay among the classic and computational notions of
simplicity

Here the relations among the classic and computational accounts of simplicity are
explored. The classic ones have not been abandoned in current machine learning
practices, although they play a secondary role:

Claim In the Big Data era, the classic notions of simplicity are surrogate goals of
computational simplicity.

That is, the classic notions which deal with the structural simplicity of the
models are considered by machine learning practitioners because they are indirect
indicators of the computational load required to train the model, and not by their
intrinsic value.

Next, the above claim is justified. The classic notions outlined in Section 2 are
mainly devoted to assessing the simplicity of the machine learning models. As seen
in Section 1, a machine learning model is a mathematical structure with one or
more learnable parameters. The computational complexity of a learning algorithm
is related to the structural complexity of the model that the algorithm is applied
to. For example, we may take equations (1) and (2), and put the dependence with
respect to the number of training samples N into a function F (N), so that the
average execution time of a generic learning algorithm reads as follows:

TGeneric = F (N)KGenericFGeneric (4)

where FGeneric is the number of free parameters of the model, and KGeneric is a
constant that depends on the model, the software implementation of the training
algorithm, and the hardware where the algorithm is executed on. Equation (4)
means that the average execution time is directly proportional to the number of
free parameters, which is associated with the structural complexity of the model.
Now, depending on the number of free parameters FGeneric of the chosen model,
the average execution time TGeneric varies. Consequently, structural complexity
is often correlated with computational complexity, so the former is an indirect
indicator of the latter.

The preference for simple models of classic notions can be interpreted as a
search strategy in the space of the possible models (de Rooij and Grünwald, 2011,
p. 893). However, a model must be instantiated in order to yield predictions, which
are the ultimate goal of machine learning activity. Therefore, it is mandatory to
learn the parameters of the model in order to instantiate it, prior to the extraction
of predictions and their evaluation to measure predictive performance. This means
that the relevant search space for machine learning is the space of possible model
instantiations, which comprises all instantiations of all the considered models. In
order to carry out a search in such space, classic notions of model complexity
can play an auxiliary role. Classic notions can direct the search to models whose

5 This means that the execution time of the learning algorithm is proportional to N3. For
example, kernel ridge regression (Witten et al, 2017, p. 508).
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structure is smaller. But the key factor is the computational load of instantiating
(training) the models, as seen in Section 4. This is managed by the computational
notion of complexity that speeds up the process of instantiation of the models
by choosing learning algorithms with a small computational complexity. In other
words, computational simplicity governs the overall search process, while classic
notions can help in the prioritization of some search directions over others in the
space of all model instantiations.

This framework where classic and computational notions of simplicity work
together is associated with scenarios where there are many possible models and
many learning algorithms to choose from. The same algorithm can be employed to
train several different models. This is the case of the Expectation Maximization
(EM), which can be employed to train probabilistic mixtures of Gaussian (Bishop,
2006, p. 435) or Bernoulli distributions (Bishop, 2006, p. 444), or Bayesian linear
regression models (Bishop, 2006, p. 448). Conversely, a model can be trained by
several different algorithms. For example, Bayesian networks can be learned by a
wide range of algorithms (Acid et al, 2004, p. 219).

In order to avoid overfitting in current applications of machine learning to Big
Data, computational techniques such as cross validation, bootstrap, regularization
and early stopping are commonly employed (Hastie et al, 2009, p. 241, 253, 398;
Russell and Norvig, 2016, p. 708, 713; Witten et al, 2017, p. 162, 169, 393, 419,
431). This tendency is due to their lack of assumptions about the datasets, which
widens their applicability.

6 Non epistemic justifications of computational simplicity

In this section, we investigate how the previously explained computational sim-
plicity concept (Section 4) relates to the energy consumption and economic cost
of the application of machine learning to real problems.

Some operations within the model learning stage of a learning system (Section
3) spend a disproportionately high amount of energy. This is the case of the op-
timization of the neural architecture for deep learning artificial neural networks
since each step in this optimization often requires training of a full neural network.
Sometimes the performance increment is small, so it must be evaluated whether it
is worth the huge amounts of extra computation and the associated energy cost.
The manager of our example e-commerce site may discover that it is not profitable
to employ the most accurate customer behavior prediction model if the monetary
value of the additional customer purchases is smaller than the extra cost of running
the prediction software. Energy efficiency is acknowledged as a design criterion for
the proposal of new deep neural network architectures, where a balance must be
attained between energy consumption and predictive accuracy (Yang et al, 2017,
pp. 1916, 1920; Li et al, 2016, p. 477), since the energy cost of deep learning is
notoriously high (Ganguly et al, 2019, p. 335). This is directly connected to the
computational simplicity criterion since energy consumption is to be measured in
terms of the number of computational operations required to complete a learning
task (Strubell et al, 2019). An optimization with at least two independent goals is
established, where one of the goals is the minimization of the economic cost and
the other goal is the maximization of the predictive accuracy.
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In the particular case of deep learning neural networks, substantial energy sav-
ings can be attained by using the fine tuning technique. First, a neural network is
trained with a standard set of training samples. This is a computationally heavy
task since the entire network must be trained from scratch. Then the neural net-
work is tuned to accomplish a specific task, which involves retraining a small por-
tion of the network. This way, most of the initial training effort is reused, thereby
drastically reducing the overall energy expenditure. This technique departs from
classic machine learning approaches, which usually involved retraining the models
for each new application. In the case of deep learning, the computational require-
ments are so huge that the classic naive retraining approach is simply not feasible
for many organizations because they can not afford the costs. That is, typically our
example e-commerce site software is based on some readily available pre-trained
neural network, which is then tuned to learn the behavior of the customers of this
specific web site so that the computational effort and the associated energy budget
devoted to learning the predictive model are kept as low as possible.

There are reasons for the past neglection of computational simplicity and other
energy consumption criteria. Machine learning is seen as a rapidly expanding
branch of science with great potential to enable the automation of many tasks
in the near future. Therefore, advanced machine learning systems are not subject
to the criticisms that older technologies may have, because automation is recog-
nized as a possible way to save human time and effort. While it is true that many
tasks might be more efficiently executed by learning machines, optimal efficiency
can only be attained by constraining the energy consumption of these machines.
Otherwise, it would still be more energy efficient to employ humans for the task
than replacing them with machines. In other words, machine learning systems
should not be granted an unlimited amount of computational resources. In order
to make informed economic decisions about this matter, the benefits and costs of
different strategies to implement machine learning methods must be elicited.

7 Conclusion

Classic concepts of simplicity aim to capture the parsimony of the machine learn-
ing model. The number of adjustable parameters is the most straightforward way
to measure model complexity, and it is considered both by the Bayesian and Fre-
quentist approaches. These two approaches differ mainly in their interpretation of
the concept of probability. Bayesian model selection intends to choose the model
that is estimated to have the highest probability of having generated the data, with
the help of suitable choices for the prior probabilities, while the Frequentist field
does not assign probabilities to models and focuses on estimating the predictive
accuracy of the models. Minimum Description Length measures model complexity
as the number of bits that are required to encode the model, under a suitable
coding system. On their part, expressive power approaches measure the expressive
power of a model, i.e. its ability to fit the intrinsic structure of the problem at
hand. As seen, the four classic approaches to simplicity considered here only ana-
lyze the structure of the model, so that they ignore other aspects that are essential
to employ machine learning models in practice. These additional aspects are cov-
ered by the learning system concept, which integrates all the relevant conceptual
and physical structures required to successfully apply machine learning methods.
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The computational load necessary to train and test a model is a reliable, end to
end measure of the effort which is devoted to accomplishing a machine learning
task. Moreover, it is more encompassing than any of the classic concepts, since
computational simplicity can directly be employed to compare parametric, non
parametric, non probabilistic, unsupervised and reinforcement machine learning
models.

Current practices in machine learning suggest that computational simplicity
is what practitioners really seek to minimize since the simplicity of the structure
of the model or its expressivity are not by themselves direct indicators of the
real effort required to learn and apply the model. Therefore, structural simplicity
can be regarded as a surrogate goal of computational simplicity. Computational
resources are always limited, and this implies that a tradeoff must be found be-
tween computational effort and predictive accuracy. This tradeoff can be seen as
an economic decision since computational load translates directly into energy and
hardware costs. Choices about computational effort are associated with various
energy consumption patterns. In most cases, there is a technological limit for the
predictive accuracy that machine learning can attain at the current state of the art
so that the tradeoff between effort and accuracy is bounded within the computa-
tional resource limits and the predictive accuracy limits. In other words, in many
cases, it is not optimal to raise the energy consumption levels without limits until
the maximum technologically possible predictive accuracy is achieved. Therefore,
purely theoretical criteria about the structure of the models play a less important
role for model selection in the Big Data era, since the size of the datasets has
grown by several orders of magnitude. These aspects of machine learning activity
are no longer overlooked by scientists and practitioners.
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