Open problems that concern computable sets $\mathcal{X} \subseteq \mathbb{N}$ and cannot be formalized in $Z F C$ as they refer to current knowledge about \mathcal{X}

Sławomir Kurpaska, Apoloniusz Tyszka

Abstract

Conditions (1)-(8) below concern sets $X \subseteq \mathbb{N}$. (1) There are a large number of elements of X and it is conjectured that X is infinite. (2) No known algorithm decides the finiteness of \mathcal{X}. (3) There is a known algorithm that for every $n \in \mathbb{N}$ decides whether or not $n \in \mathcal{X}$. (4) There is an explicitly known integer n such that $\operatorname{card}(X)<\omega \Longrightarrow X \subseteq(-\infty, n]$. (5) \mathcal{X} is widely known in number theory. (6) There is no known equality $\mathcal{X}=\mathcal{X}_{1} \cup \mathcal{X}_{2}$, where X_{1} and X_{2} are defined simpler than X. (7) No known set \mathcal{Y} is defined simpler than \mathcal{X} and satisfies $(\boldsymbol{y} \subseteq \mathcal{X}) \wedge(\operatorname{card}(\mathcal{X} \backslash \boldsymbol{y})<\omega)$. (8) No known set \boldsymbol{Y} is defined simpler than \mathcal{X} and satisfies $\operatorname{card}((\mathcal{X} \backslash \boldsymbol{Y}) \cup(\boldsymbol{y} \backslash \mathcal{X}))<\omega$. We do not know any set $X \subseteq \mathbb{N}$ that satisfies conditions (1)-(4) and (5). The same is true, if condition (5) is replaced by condition (6) or (7) or (8). For every explicitly known integer n, some simply defined set $\mathcal{X} \subseteq \mathbb{N}$ includes the set $(-\infty, n] \cap \mathbb{N}$ and satisfies conditions (1)-(4). Let $\mathcal{P}_{n^{2}+1}$ denote the set of primes of the form $n^{2}+1$. The set $\mathcal{X}=\mathcal{P}_{n^{2}+1}$ satisfies conditions (1)-(3) and (5)-(8). The set $\mathcal{X}=\left\{k \in \mathbb{N}\right.$: the number of digits of k belongs to $\left.\mathcal{P}_{n^{2}+1}\right\}$ contains $10^{10^{450}}$ consecutive integers and satisfies conditions (1)-(3) and (6)-(8).

 Some hypothetical statement implies that these sets \mathcal{X} satisfy condition (4).Key words and phrases: computable set $\mathcal{X} \subseteq \mathbb{N}$, current knowledge about \mathcal{X}, explicitly known integer n, finiteness (infiniteness) of \mathcal{X} remains conjectured, known algorithm for every $n \in \mathbb{N}$ decides whether or not $n \in \mathcal{X}$, large number of elements of \mathcal{X}, n bounds \mathcal{X} if \mathcal{X} is finite, no known algorithm decides the finiteness of \mathcal{X}, open mathematical problem that cannot be formalized in ZFC.

1. Basic definitions and lemmas

Definition 1. Let $\beta=(((24!)!)!)!$.
Lemma 1. $\beta \approx 10^{10^{10^{10}}} \begin{array}{r}25.16114896940657\end{array}$.
Proof. We ask Wolfram Alpha athttp://wolframalpha.com
Lemma 2. ((7!)!)! $\approx 10^{10^{16477.87280582041}}$.
Proof. We ask Wolfram Alpha about $0.0+((7!)!)!$.
Definition 2. We say that an integer $n \geqslant-1$ is a threshold number of a set $\mathcal{X} \subseteq \mathbb{N}$, if $\operatorname{card}(\mathcal{X})<\omega \Longrightarrow X \subseteq(-\infty, n], c f$. [10] and [11].

Definition 3. We say that a non-negative integer n is a weak threshold number of a set $\mathcal{X} \subseteq \mathbb{N}$, if $\operatorname{card}(\mathcal{X})<\omega \Longrightarrow \operatorname{card}(\mathcal{X}) \leqslant n$.

If a set $\mathcal{X} \subseteq \mathbb{N}$ is empty or infinite, then any integer $n \geqslant-1$ is a threshold number of \mathcal{X}. If a set $\mathcal{X} \subseteq \mathbb{N}$ is non-empty and finite, then the all threshold numbers of \mathcal{X} form the set $[\max (\mathcal{X}), \infty) \cap \mathbb{N}$. If a set $\mathcal{X} \subseteq \mathbb{N}$ is empty or infinite, then any non-negative integer n is a weak threshold number of \mathcal{X}. If a set $\mathcal{X} \subseteq \mathbb{N}$ is non-empty and finite, then the all weak threshold numbers of \mathcal{X} form the set $[\operatorname{card}(\mathcal{X}), \infty) \cap \mathbb{N}$.

Theorem 1. For every set $\mathcal{X} \subseteq \mathbb{N}$, if an integer $n \geqslant-1$ is a threshold number of \mathcal{X}, then $n+1$ is a weak threshold number of \mathcal{X}.

Proof. For every set $\mathcal{X} \subseteq \mathbb{N}$ and for every integer $n \geqslant-1$, the inclusion $\mathcal{X} \subseteq(-\infty, n]$ implies that $\operatorname{card}(X) \leqslant n+1$.

Let $\mathcal{P}_{n^{2}+1}$ denote the set of primes of the form $n^{2}+1$. We do not know any weak threshold number of $\mathcal{P}_{n^{2}+1}$. The same is true for the sets

$$
\left\{n \in \mathbb{N}: 2^{2^{n}}+1 \text { is composite }\right\}
$$

and

$$
\{n \in \mathbb{N}: n!+1 \text { is a square }\}
$$

Lemma 3. For every positive integers x and $y, x!\cdot y=y!$ if and only if

$$
(x+1=y) \vee(x=y=1)
$$

Lemma 4. (Wilson's theorem, [1, p. 89]). For every integer $x \geqslant 2, x$ is prime if and only if x divides $(x-1)!+1$.

The conditions below concern sets $\mathcal{X} \subseteq \mathbb{N}$.
(1) There are a large number of elements of \mathcal{X} and it is conjectured that \mathcal{X} is infinite.
(2) No known algorithm decides the finiteness of \mathcal{X}.
(3) There is a known algorithm that for every $n \in \mathbb{N}$ decides whether or not $n \in \mathcal{X}$.
(4) There is an explicitly known integer n such that $\operatorname{card}(\mathcal{X})<\omega \Longrightarrow \mathcal{X} \subseteq(-\infty, n]$.
(5) X is widely known in number theory.
(6) There is no known equality $\mathcal{X}=\mathcal{X}_{1} \cup \mathcal{X}_{2}$, where \mathcal{X}_{1} and \mathcal{X}_{2} are defined simpler than X.
(7) No known set \mathcal{Y} is defined simpler than \mathcal{X} and satisfies $(\boldsymbol{y} \subseteq \mathcal{X}) \wedge(\operatorname{card}(\mathcal{X} \backslash \boldsymbol{Y})<\omega)$.
(8) No known set \mathcal{Y} is defined simpler than \mathcal{X} and satisfies $\operatorname{card}((\mathcal{X} \backslash \boldsymbol{y}) \cup(\boldsymbol{Y} \backslash \mathcal{X}))<\omega$.
(4•) There is an explicitly known integer n such that $\operatorname{card}(\mathcal{X})<\omega \Longrightarrow \operatorname{card}(\mathcal{X}) \leqslant n$.
(1 \diamond) There are a large number of elements of \mathcal{X} and it is conjectured that $\mathcal{X}=\mathbb{N}$.
(2 \diamond) No known algorithm decides the equality $\mathcal{X}=\mathbb{N}$.
(1*) There are a large number of elements of X and it is conjectured that X is finite.

2. Open Problems 1 and 2

The following two open problems cannot be formalized in ZFC as they refer to current knowledge about \mathcal{X}.

Open Problem 1. Is there a set $\mathcal{X} \subseteq \mathbb{N}$ that satisfies conditions (1)-(3), (4•), and (5)?

Open Problem 2. Is there a set $\mathcal{X} \subseteq \mathbb{N}$ that satisfies conditions (1)-(5)?
Theorem 2. Open Problem 2 claims more than Open Problem 1 .
Proof. Condition (4) implies that $\operatorname{card}(\mathcal{X})<\omega \Longrightarrow \mathcal{X} \subseteq(-\infty,|n|]$. Since $|n| \geqslant-1$, Theorem 1 guarantees that condition (4) implies condition (4•).

Open Problems 1 and 2 remain open, if condition (5) is replaced by condition (6) or (7) or (8).

3. Partial solutions to Open Problem 2

Edmund Landau's conjecture states that the set $\mathcal{P}_{n^{2}+1}$ is infinite, see [4] pp. 37-38] and [7]. Let \mathcal{M} denote the set of all positive multiples of elements of the set $\mathcal{P}_{n^{2}+1} \cap$ (β, ∞).

Theorem 3. The set $\mathcal{X}=\{0, \ldots, \beta\} \cup \mathcal{M}$ satisfies conditions (1)-(4).
Proof. Condition (1) holds as $\operatorname{card}(\mathcal{X})>\beta$ and the set $\mathcal{P}_{n^{2}+1}$ is conjecturally infinite. By Lemma 1, due to known physics we are not able to confirm by a direct computation that some element of $\mathcal{P}_{n^{2}+1}$ is greater than β. Thus condition (2) holds. Condition (3) holds trivially. Since the set \mathcal{M} is empty or infinite, the integer β is a threshold number of \mathcal{X}. Thus condition (4) holds.

Let [•] denote the integer part function.
Lemma 5. For every non-negative integer $n,\left[\frac{3 n-3 \beta+3}{3 n-3 \beta+2}\right]$ equals 0 or 1 . The first case holds when $n \leqslant \beta-1$. The second case holds when $n \geqslant \beta$.

Lemma 6. The function

$$
\mathbb{N} \cap[\beta, \infty) \ni n \xrightarrow{\theta} \beta+n-[\sqrt{n}]^{2} \in \mathbb{N} \cap[\beta, \infty)
$$

takes every integer value $k \geqslant \beta$ infinitely many times.
Proof. Let $t=k-\beta$. The equality $\theta(n)=k$ holds for every

$$
n \in\left\{(t+0)^{2}+t,(t+1)^{2}+t,(t+2)^{2}+t, \ldots\right\} \cap[\beta, \infty)
$$

Theorem 4. The set

$$
\mathcal{X}=\left\{n \in \mathbb{N}: 2+\left[\frac{3 n-3 \beta+3}{3 n-3 \beta+2}\right] \cdot\left(\left(\beta+n-[\sqrt{n}]^{2}\right)^{2}-1\right) \text { is prime }\right\}
$$

satisfies conditions (1)-(4).
Proof. Condition (3) holds trivially. By Lemma $5, \mathcal{X}=\{0, \ldots, \beta-1\} \cup \mathcal{H}$, where

$$
\mathcal{H}=\left\{n \in \mathbb{N} \cap[\beta, \infty):\left(\beta+n-[\sqrt{n}]^{2}\right)^{2}+1 \text { is prime }\right\}
$$

By Lemma 6 , the set \mathcal{H} is empty or infinite. The second case holds when

$$
\begin{equation*}
\exists k \in \mathbb{N} \cap[\beta, \infty) k^{2}+1 \text { is prime } \tag{G}
\end{equation*}
$$

The equality $\mathcal{X}=\{0, \ldots, \beta-1\} \cup \mathcal{H}$ and the last two sentences imply that $\beta-1$ is a threshold number of \mathcal{X} and conditions (1) and (4) hold. Condition (2) holds as due to known physics we are not able to confirm the statement (G) by a direct computation.

4. Number-theoretic statements Ψ_{n}

Let $f(1)=2, f(2)=4$, and let $f(n+1)=f(n)$! for every integer $n \geqslant 2$. Let \mathcal{U}_{1} denote the system of equations which consists of the equation $x_{1}!=x_{1}$. For an integer $n \geqslant 2$, let \mathcal{U}_{n} denote the following system of equations:

$$
\left\{\begin{array}{rll}
x_{1}! & = & x_{1} \\
x_{1} \cdot x_{1} & = & x_{2} \\
\forall i \in\{2, \ldots, n-1\} & x_{i}! & = \\
x_{i+1}
\end{array}\right.
$$

The diagram in Figure 1 illustrates the construction of the system \mathcal{U}_{n}.

Fig. 1 Construction of the system \mathcal{U}_{n}

Lemma 7. For every positive integer n, the system \mathcal{U}_{n} has exactly two solutions in positive integers, namely $(1, \ldots, 1)$ and $(f(1), \ldots, f(n))$.

Let

$$
B_{n}=\left\{x_{i}!=x_{k}: i, k \in\{1, \ldots, n\}\right\} \cup\left\{x_{i} \cdot x_{j}=x_{k}: i, j, k \in\{1, \ldots, n\}\right\}
$$

For a positive integer n, let Ψ_{n} denote the following statement: if a system of equations $\mathcal{S} \subseteq B_{n}$ has at most finitely many solutions in positive integers x_{1}, \ldots, x_{n}, then each such solution $\left(x_{1}, \ldots, x_{n}\right)$ satisfies $x_{1}, \ldots, x_{n} \leqslant f(n)$. The statement Ψ_{n} says that for subsystems of B_{n} with a finite number of solutions, the largest known solution is indeed the largest possible. An elementary reasoning shows that the statements Ψ_{1} and Ψ_{2} are true.

Theorem 5. For every statement Ψ_{n}, the bound $f(n)$ cannot be decreased.
Proof. It follows from Lemma 7 because $\mathcal{U}_{n} \subseteq B_{n}$.
Theorem 6. For every integer $n \geqslant 2$, the statement Ψ_{n+1} implies the statement Ψ_{n}.
Proof. If a system $\mathcal{S} \subseteq B_{n}$ has at most finitely many solutions in positive integers x_{1}, \ldots, x_{n}, then for every integer $i \in\{1, \ldots, n\}$ the system $\mathcal{S} \cup\left\{x_{i}!=x_{n+1}\right\}$ has at most finitely many solutions in positive integers x_{1}, \ldots, x_{n+1}. The statement Ψ_{n+1} implies that $x_{i}!=x_{n+1} \leqslant f(n+1)=f(n)!$. Hence, $x_{i} \leqslant f(n)$.

Theorem 7. Every statement Ψ_{n} is true with an unknown integer bound that depends on n.

Proof. For every positive integer n, the system B_{n} has a finite number of subsystems.

5. A conjectural solution to Open Problem 2

Let \mathcal{A} denote the following system of equations:

$$
\left\{\begin{aligned}
x_{2}! & =x_{3} \\
x_{3}! & =x_{4} \\
x_{5}! & =x_{6} \\
x_{8}! & =x_{9} \\
x_{1} \cdot x_{1} & =x_{2} \\
x_{3} \cdot x_{5} & =x_{6} \\
x_{4} \cdot x_{8} & =x_{9} \\
x_{5} \cdot x_{7} & =x_{8}
\end{aligned}\right.
$$

Lemma 3 and the diagram in Figure 2 explain the construction of the system \mathcal{A}.

Fig. 2 Construction of the system \mathcal{A}
Lemma 8. For every integer $x_{1} \geqslant 2$, the system \mathcal{A} is solvable in positive integers x_{2}, \ldots, x_{9} if and only if $x_{1}^{2}+1$ is prime. In this case, the integers x_{2}, \ldots, x_{9} are uniquely determined by the following equalities:

$$
\begin{aligned}
x_{2} & =x_{1}^{2} \\
x_{3} & =\left(x_{1}^{2}\right)! \\
x_{4} & =\left(\left(x_{1}^{2}\right)!\right)! \\
x_{5} & =x_{1}^{2}+1 \\
x_{6} & =\left(x_{1}^{2}+1\right)! \\
x_{7} & =\frac{\left(x_{1}^{2}\right)!+1}{x_{1}^{2}+1} \\
x_{8} & =\left(x_{1}^{2}\right)!+1 \\
x_{9} & =\left(\left(x_{1}^{2}\right)!+1\right)!
\end{aligned}
$$

Proof. By Lemma 3, for every integer $x_{1} \geqslant 2$, the system \mathcal{A} is solvable in positive integers x_{2}, \ldots, x_{9} if and only if $x_{1}^{2}+1$ divides $\left(x_{1}^{2}\right)!+1$. Hence, the claim of Lemma 8 follows from Lemma 4

Lemma 9. There are only finitely many tuples $\left(x_{1}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0\})^{9}$, which solve the system \mathcal{A} and satisfy $x_{1}=1$.
Proof. If a tuple $\left(x_{1}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0\})^{9}$ solves the system \mathcal{A} and $x_{1}=1$, then $x_{1}, \ldots, x_{9} \leqslant 2$. Indeed, $x_{1}=1$ implies that $x_{2}=x_{1}^{2}=1$. Hence, for example, $x_{3}=$ $x_{2}!=1$. Therefore, $x_{8}=x_{3}+1=2$ or $x_{8}=1$. Consequently, $x_{9}=x_{8}!\leqslant 2$.

Let Φ_{9} denote the statement Ψ_{9} restricted to the system \mathcal{A}. Apoloniusz Tyszka believes that the statement Φ_{9} is true.

Theorem 8. The statement Φ_{9} proves the following implication: if there exists an integer $x_{1} \geqslant 2$ such that $x_{1}^{2}+1$ is prime and greater than $f(7)$, then the set $\mathcal{P}_{n^{2}+1}$ is infinite.

Proof. Suppose that the antecedent holds. By Lemma 8 , there exists a unique tuple $\left(x_{2}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0\})^{8}$ such that the tuple $\left(x_{1}, x_{2}, \ldots, x_{9}\right)$ solves the system \mathcal{A}. Since $x_{1}^{2}+1>f(7)$, we obtain that $x_{1}^{2} \geqslant f(7)$. Hence, $\left(x_{1}^{2}\right)!\geqslant f(7)!=f(8)$. Consequently,

$$
x_{9}=\left(\left(x_{1}^{2}\right)!+1\right)!\geqslant(f(8)+1)!>f(8)!=f(9)
$$

The statement Φ_{9} and the inequality $x_{9}>f(9)$ imply that the system \mathcal{A} has infinitely many solutions $\left(x_{1}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0\})^{9}$. According to Lemmas 8 and 9 the set $\mathcal{P}_{n^{2}+1}$ is infinite.

Let $\mathcal{K}=\left\{k \in \mathbb{N}\right.$: the number of digits of k belongs to $\left.\mathcal{P}_{n^{2}+1}\right\}$.
Lemma 10. $\operatorname{card}(\mathcal{K}) \geqslant 9 \cdot 10^{9 \cdot} \cdot 4^{747} \approx 10^{10^{450.6930560314272}}$.
Proof. The following PARI/GP ([6]) command
isprime (1+9*4^747, \{flag=2\})
returns $\% 1=1$. This command performs the APRCL primality test, the best deterministic primality test algorithm ([9, p. 226]). It rigorously shows that the number $\left(3 \cdot 2^{747}\right)^{2}+1$ is prime. Since $9 \cdot 10^{9 \cdot 4^{747}}$ non-negative integers have $1+9 \cdot 4^{747}$ digits, the desired inequality holds. To establish the approximate equality, we ask Wolfram Alpha about $9 *\left(10^{\wedge}\left(9 * 4^{\wedge} 747\right)\right.$).

Theorem 9. The set $\mathcal{X}=\mathcal{P}_{n^{2}+1}$ satisfies conditions (1)-(3) and (5)-(8). The set $\mathcal{X}=\mathcal{K}$ satisfies conditions (1)-(3) and (6)-(8). The statement Φ_{9} implies that these sets \mathcal{X} satisfy condition (4).

Proof. Since the set $\mathcal{P}_{n^{2}+1}$ is conjecturally infinite, Lemma 10 implies condition (1) for both sets \mathcal{X}. Conditions (3) and (6)-(8) hold trivially for both sets \mathcal{X}. By Lemma 1, due to known physics we are not able to confirm by a direct computation that some element of $\mathcal{P}_{n^{2}+1}$ is greater than $f(7)=(((24!)!)!)!=\beta$. Thus condition (2) holds for both sets \mathcal{X}. Suppose that the statement Φ_{9} is true. By Theorem 8 , $f(7)$ is a threshold number of $\mathcal{X}=\mathcal{P}_{n^{2}+1}$. By Theorem $8, \underbrace{9 \ldots 9}_{f(7) \text { digits }}$ is a threshold number of $\mathcal{X}=\mathcal{K}$. Thus condition (4) holds for both sets \mathcal{X}.

6. Open Problems 3 and 4

The following two open problems cannot be formalized in ZFC as they refer to current knowledge about \mathcal{X}.

Open Problem 3. Is there a set $\mathcal{X} \subseteq \mathbb{N}$ that satisfies conditions (1॰)-(2॰), (2) - (3), (4•), and (5)?

Open Problem 3 claims more than Open Problem 1 as condition ($1 \diamond$) implies condition (1).

Open Problem 4. Is there a set $\mathcal{X} \subseteq \mathbb{N}$ that satisfies conditions ($1 \diamond$)-(2৫) and (2)-(5)?

Open Problem 4 claims more than Open Problem 2 as condition ($1 \diamond$) implies condition (1).
Theorem 10. Open Problem 4 claims more than Open Problem 3
Proof. Condition (4) implies that $\operatorname{card}(\mathcal{X})<\omega \Longrightarrow \mathcal{X} \subseteq(-\infty,|n|]$. Since $|n| \geqslant-1$, Theorem 1 guarantees that condition (4) implies condition (4•).
Open Problems 3 and 4 remain open, if condition (5) is replaced by condition (6) or (7) or (8).

7. A partial solution to Open Problem 4

Let \mathcal{V} denote the set of all positive multiples of elements of the set

$$
\left\{n \in[\beta+1, \infty) \cap \mathbb{N}: 2^{2^{n}}+1 \text { is composite }\right\}
$$

Theorem 11. The set $\mathcal{X}=\{0, \ldots, \beta\} \cup \mathcal{V}$ satisfies conditions $(1 \diamond)-(2 \diamond)$ and (2) $-(4)$.

Proof. The inequality $\operatorname{card}(\mathcal{X})>\beta$ holds trivially. Most mathematicians believe that $2^{2^{n}}+1$ is composite for every integer $n \geqslant 5$, see [2, p. 23]. These two facts imply conditions ($1 \diamond$) and ($2 \diamond$). Condition (3) holds trivially. Since the set \mathcal{V} is empty or infinite, the integer β is a threshold number of \mathcal{X}. Thus condition (4) holds. The question of finiteness of the set

$$
\left\{n \in \mathbb{N}: 2^{2^{n}}+1 \text { is composite }\right\}
$$

remains open, see [3, p. 159]. By this and Lemma 1, the question of emptiness of the set

$$
\left\{n \in[\beta+1, \infty) \cap \mathbb{N}: 2^{2^{n}}+1 \text { is composite }\right\}
$$

remains open. Therefore, the question of finiteness of the set \mathcal{V} remains open. Consequently, the question of finiteness of the set \mathcal{X} remains open and condition (2) holds.

8. Open Problems 5 and 6

The following two open problems cannot be formalized in ZFC as they refer to current knowledge about \mathcal{X}.
Open Problem 5. Is there a set $\mathcal{X} \subseteq \mathbb{N}$ that satisfies conditions (1*), (2)-(3), (4•), and (5)?

Open Problem 6. Is there a set $\mathcal{X} \subseteq \mathbb{N}$ that satisfies conditions (1*) and (2) - (5)? Theorem 12. Open Problem 6 claims more than Open Problem 5

Proof. Condition (4) implies that $\operatorname{card}(\mathcal{X})<\omega \Longrightarrow \mathcal{X} \subseteq(-\infty,|n|]$. Since $|n| \geqslant-1$, Theorem 1 guarantees that condition (4) implies condition (4•).
Open Problems 5 and 6 remain open, if condition (5) is replaced by condition (6) or (7) or (8).

9. Partial solutions to Open Problem 6

A weak form of Szpiro's conjecture implies that there are only finitely many solutions to the equation $x!+1=y^{2}$, see [5].
Lemma 11. ([8, p. 297]). It is conjectured that $x!+1$ is a square only for $x \in$ $\{4,5,7\}$.

Let \mathcal{W} denote the set of all integers x greater than β such that $x!+1$ is a square.
Theorem 13. The set

$$
\mathcal{X}=\{0, \ldots, \beta\} \cup\{k \cdot x:(k \in \mathbb{N} \backslash\{0\}) \wedge(x \in \mathcal{W})\}
$$

satisfies conditions (1*) and (2)-(4).
Proof. Condition (1*) holds as $\operatorname{card}(\mathcal{X})>\beta$ and the set \mathcal{W} is conjecturally empty by Lemma 11 . Condition (3) holds trivially. We do not know any algorithm that decides the emptiness of \mathcal{W} and the set

$$
\mathcal{Y}=\{k \cdot x:(k \in \mathbb{N} \backslash\{0\}) \wedge(x \in \mathcal{W})\}
$$

is empty or infinite. Thus condition (2) holds. Since the set y is empty or infinite, the integer β is a threshold number of \mathcal{X}. Thus condition (4) holds.

Let C denote the following system of equations:

$$
\left\{\begin{aligned}
x_{1}! & =x_{2} \\
x_{2}! & =x_{3} \\
x_{5}! & =x_{6} \\
x_{4} \cdot x_{4} & =x_{5} \\
x_{3} \cdot x_{5} & =x_{6}
\end{aligned}\right.
$$

Lemma 3 and the diagram in Figure 3 explain the construction of the system C.

Fig. 3 Construction of the system C
Lemma 12. For every $x_{1}, x_{4} \in \mathbb{N} \backslash\{0,1\}$, the system C is solvable in positive integers $x_{2}, x_{3}, x_{5}, x_{6}$ if and only if $x_{1}!+1=x_{4}^{2}$. In this case, the integers $x_{2}, x_{3}, x_{5}, x_{6}$ are uniquely determined by the following equalities:

$$
\begin{aligned}
x_{2} & =x_{1}! \\
x_{3} & =\left(x_{1}!\right)! \\
x_{5} & =x_{1}!+1 \\
x_{6} & =\left(x_{1}!+1\right)!
\end{aligned}
$$

Proof. It follows from Lemma 3 .
Let Φ_{6} denote the statement Ψ_{6} restricted to the system C. Apoloniusz Tyszka believes that the statement Φ_{6} is true.

Theorem 14. If the equation $x_{1}!+1=x_{4}^{2}$ has only finitely many solutions in positive integers, then the statement Φ_{6} guarantees that each such solution $\left(x_{1}, x_{4}\right)$ satisfies $x_{1}<24$!.

Proof. Suppose that the antecedent holds. Let positive integers x_{1} and x_{4} satisfy $x_{1}!+1=x_{4}^{2}$. Then, $x_{1}, x_{4} \in \mathbb{N} \backslash\{0,1\}$. By Lemma 12, the system C is solvable in positive integers $x_{2}, x_{3}, x_{5}, x_{6}$. The statement Φ_{6} implies that $x_{6}=\left(x_{1}!+1\right)!\leqslant$ $f(6)=f(5)$!. Hence, $x_{1}!+1 \leqslant f(5)=f(4)$!. Consequently, $x_{1}<f(4)=24$!.

Theorem 15. Let \mathcal{X} denote the set of all non-negative integers n which have (($k!)!)$! digits for some $k \in\{m \in \mathbb{N}: m!+1$ is a square $\}$. We claim that \mathcal{X} satisfies conditions (1*), (2)-(3), and (6)-(8). The statement Φ_{6} implies that \mathcal{X} satisfies condition (4).

Proof. Let $d=((7!)!)!$. Since $7!+1=71^{2}$, we obtain that $\{10^{d-1}, \ldots, \underbrace{9 \ldots 9}_{d \text { digits }}\} \subseteq \mathcal{X}$. Hence, $\operatorname{card}(\mathcal{X}) \geqslant 9 \cdot 10^{d-1}$. By this and Lemmas 2 and 11 , condition (1*) holds. Conditions (2)-(3) and (6)-(8) hold trivially. By Theorem 14 , the statement Φ_{6} implies that $\underbrace{9 \ldots 9}_{\beta \text { digits }}$ is a threshold number of \mathcal{X}. Thus condition (4) holds.

Acknowledgement. Sławomir Kurpaska prepared three diagrams in TikZ. Apoloniusz Tyszka wrote the article.

References

[1] M. Erickson, A. Vazzana, D. Garth, Introduction to number theory, 2nd ed., CRC Press, Boca Raton, FL, 2016.
[2] J.-M. De Koninck and F. Luca, Analytic number theory: Exploring the anatomy of integers, American Mathematical Society, Providence, RI, 2012.
[3] M. Křižek, F. Luca, L. Somer, 17 lectures on Fermat numbers: from number theory to geometry, Springer, New York, 2001.
[4] W. Narkiewicz, Rational number theory in the 20th century: From PNT to FLT, Springer, London, 2012.
[5] M. Overholt, The Diophantine equation $n!+1=m^{2}$, Bull. London Math. Soc. 25 (1993), no. 2, p. 104.
[6] PARI/GP online documentation, http://pari.math.u-bordeaux.fr/dochtml// html/Arithmetic_functions.html.
[7] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, A002496, Primes of the form $n^{2}+1$, http://oeis.org/A002496
[8] E. W. Weisstein, CRC Concise Encyclopedia of Mathematics, 2nd ed., Chapman \& Hall/CRC, Boca Raton, FL, 2002.
[9] S. Y. Yan, Number theory for computing, 2nd ed., Springer, Berlin, 2002.
[10] A. A. Zenkin, Super-induction method: logical acupuncture of mathematical infinity, Twentieth World Congress of Philosophy, Boston, MA, August 10-15, 1998, http: //www.bu.edu/wcp/Papers/Logi/LogiZenk.htm
[11] A. A. Zenkin, Superinduction: new logical method for mathematical proofs with a computer, in: J. Cachro and K. Kijania-Placek (eds.), Volume of Abstracts, 11th International Congress of Logic, Methodology and Philosophy of Science, August 20-26, 1999, Cracow, Poland, p. 94, The Faculty of Philosophy, Jagiellonian University, Cracow, 1999.

Sławomir Kurpaska
Technical Faculty
Hugo Kołłątaj University
Balicka 116B, 30-149 Kraków, Poland
E-mail: rttyszka@cyf-kr.edu.pl

Apoloniusz Tyszka
Technical Faculty
Hugo Kołłątaj University
Balicka 116B, 30-149 Kraków, Poland
E-mail: rttyszka@cyf-kr.edu.pl
Website: http://www.cyf-kr.edu.pl/~rttyszka

