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Abstract

In algebraic approaches to quantum mechanics and quantum field the-
ory, debates about physical equivalence revolve around the concept
of unitary equivalence. Virtually all of these discussions suppress a
closely related concept, antiunitary equivalence. The goal of this pa-
per is to begin the project of disentangling the relationship between
these two concepts. I provide necessary and sufficient conditions for
the existence of antiunitary intertwiners between representations, clar-
ify that antiunitary equivalence does not entail unitary equivalence,
and argue that there are interpretational subtleties that are both phys-
ically important and unique to the antiunitary case.

Contents

1 Introduction 2

2 Three Notions of Equivalence 3

3 The Existence of Antiunitary Intertwiners 5

4 Charges and CPT Symmetry 8

5 Physical Equivalence? 11

∗Department of Philosophy, University of Delaware, 24 Kent Way, Newark, DE 19716,
USA, nswanson@udel.edu

1



1 Introduction

In algebraic approaches to quantum mechanics and quantum field theory
(QFT), debates about physical equivalence revolve around the concept of
unitary equivalence (or more generally quasiequivalence). Many philosophers
have defended unitary equivalence as a sufficient condition for the physical
equivalence of two concrete algebraic representations (e.g., Halvorson and
Müger 2006; Ruetsche 2011; Baker et al. 2015). A few have gone further and
defended its necessity (e.g., Arageorgis 1995; Halvorson and Clifton 2001),
while others have countered that physically equivalent representations can
be related by more general symmetry relations (e.g., Baker 2011).

Virtually all of these discussions suppress a closely related concept, antiu-
nitary equivalence. Ruetsche (2011, p. 28) briefly acknowledges its possible
significance, although her ensuing analysis of physical equivalence restricts
attention to the unitary case without further discussion. Similarly, Strocchi’s
influential account of spontaneous symmetry breaking briefly notes the antiu-
nitary case before excluding it by decree (2008, p. 116). Baker and Halvorson
(2013) intend their distinction between represented and implemented alge-
braic symmetries to encompass the antiunitary case, although they note that
“for purposes of this paper, we ignore the difference between unitary and an-
tiunitary” (p. 468). Earman (2003) is a rare exception, explicitly endorsing
a picture of spontaneous symmetry breaking that covers both unitary and
antiunitary symmetries, although he does not go into any detail about the
similarities or differences between the two cases.

Overall, the attitude towards antiunitary equivalence in the philosophy
literature has been to relegate it to footnotes (if it is mentioned at all). But
this indifference has the potential to generate significant confusion. Do argu-
ments linking unitary equivalence to physical equivalence and spontaneous
symmetry breaking extend to antiunitary equivalence with minor mathemat-
ical adjustment (as sometimes implied)? Or do antiunitary symmetries gen-
erate a distinct set of interpretive problems that must be handled separately
from the unitary case?

The goal of this paper is to begin the project of disentangling the rela-
tionship between unitary and antiunitary equivalence. In §2, I distinguish
three clusters of concepts centered around unitary, antiunitary, and Jordan
equivalence. In §3, I give necessary and sufficient conditions for the existence
of antiunitary intertwiners between representations, clarifying that antiuni-
tary equivalence does not entail unitary equivalence. In §4 I argue that
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these cases are physically significant — in relativistic QFT, conjugate charge
representations are not unitarily equivalent in general, but they are always
antiunitarily equivalent. In §5 I consider the ramifications these observations
have for debates surrounding physical equivalence. (Spontaneous symmetry
breaking will be explored in a separate paper.) I contend that there are
important interpretational subtleties unique to the antiunitary case. As in-
terpreters, we cannot continue to gloss over the distinction between unitary
and antiunitary.

2 Three Notions of Equivalence

Let A be a unital C∗-algebra. A representation of A, (π,H), consists of
a Hilbert space, H, and a ∗-homomorphism, π, mapping A into the set of
bounded linear operators on H. Given two Hilbert spaces, H, K, an isometry
is a linear operator T : H → K, such that TT ∗ = T ∗T . (This ensures that T
identifies H with a closed subspace of K, preserving the Hilbert space norm.)
If (φ,K) is also a representation of A, (π,H) is a subrepresentation of (φ,K)
iff there exists an isometry such that Tπ(A)T ∗ = φ(A) for all A ∈ A. Finally,
a unitary operator is an isometry, U , such that UU∗ = U∗U = I. (Thus U
identifies H with K.)

With these preliminaries in place, we have the following trio of concepts,
familiar from both the mathematics and the philosophy literature. Given
two representations (π1,H1), (π2,H2), of A, the representations are

• unitarily equivalent iff there exists a unitary operator U : H1 → H2,
such that Uπ1(A)U∗ = π2(A) for all A ∈ A,

• quasiequivalent iff π1 and π2 have unitarily equivalent subrepresenta-
tions,

• disjoint iff no (nonzero) subrepresentation of π1 is unitarily equivalent
to a subrepresentation of π2.

Quasiequivalence is a well-defined equivalence relation on representations
since the product of two unitary operators is unitary. Note that a common
alternative definition of quasiequivalence (extensionally equivalent to the one
given here), requires that the von Neumann algebras π1(A)′′ and π2(A)′′ are
∗-isomorphic. For irreducible representations, quasiequivalence reduces to
unitary equivalence. Therefore quasiequivalence generalizes the notion of
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unitary equivalence to reducible representations, which can be decomposed
into direct sums of irreducible subrepresentations. For clarity, we will amend
standard usage and refer to quasiequivalent and disjoint representations as
unitarily quasiequivalent and unitarily disjoint.

Motivated by the possibility of symmetries represented by antiunitary
operators, we can define a parallel trio of concepts. A linear operator, A,
acts linearly on Hilbert space vectors, i.e., A(cx + dy) = cAx + dAy for all
c, d ∈ C, x, y ∈ H. An antilinear operator, B, acts antilinearly on vectors, i.e.,
B(cx + dy) = c̄Bx + d̄By, where the overline denotes complex conjugation.
An antiunitary operator, V : H → K, is an antilinear operator such that
V V ∗ = V ∗V = I. Two representations are

• antiunitarily equivalent iff there exists an antiunitary operator V :
H1 → H2, such that V π1(A)V ∗ = π2(A) for all A ∈ A,

• antiunitarily quasiequivalent iff π1 and π2 have antiunitarily equivalent
subrepresentations,

• antiunitarily disjoint iff no (nonzero) subrepresentation of π1 is antiu-
nitarily equivalent to a subrepresentation of π2.

These definitions almost perfectly mirror the cluster surrounding unitary
equivalence. Anitunitary quasiequivalence reduces to antiunitary equiva-
lence for reducible representations, and two representations are antiunitarily
quasiequivalent iff π1(A)′′ and π2(A)′′ are ∗-conjugate-isomorphic.1 There is
one important formal difference — antiunitary quasiequivalence is not an
equivalence relation. The product of two antiunitary operators is unitary, so
transitivity can fail. Moreover, there are examples of C∗-algebras that are
not conjugate-isomorphic to themselves (Connes, 1975), so reflexivity can fail
too.

1There is a bit of subtly here. We could have defined antiunitary equivalence by
setting V π1(A∗)V ∗ = π2(A) for all A ∈ A, as is more common in parts of the mathematics
literature. In this case π1(A)′′ and π2(A)′′ are ∗-anti-isomorphic rather than a ∗-conjugate-
isomorphic. Anti-isomorphisms reverse products, AB 7→ BA, but preserve the complex
unit, i 7→ i, while conjugate-isomorphisms preserve products, AB 7→ BA, but conjugate
the complex unit, i 7→ −i. Ultimately, the difference does not matter, two C∗-algebras
are conjugate-isomorphic iff they are anti-isomorphic. The definition we have chosen here
maps more cleanly onto the discussion of conjugate group representations in §3. Conjugate
group representations are equivalent to dual group representations, a notion that fits better
with talk of ∗-anti-isomorphisms. See Swanson (2019, Lem. 1-2) for more details.
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This problem is easily fixed. The product of a unitary and antiuni-
tary operator is antiunitary, so the disjunction of unitary and antiunitary
quasiequivalence is a well-defined equivalence relation on representations.
This generates a third trio of concepts. Two representations are

• Jordan equivalent iff there exists a unitary or antiunitary operator U :
H1 → H2, such that Uπ1(A)U∗ = π2(A) for all A ∈ A,

• Jordan quasiequivalent iff π1 and π2 have Jordan equivalent subrepre-
sentations,

• Jordan disjoint iff no (nonzero) subrepresentation of π1 is Jordan equiv-
alent to a subrepresentation of π2.

Some mathematical physicists (e.g., Varadarajan 1968; Emch 1972) have pro-
posed Jordan quasiequivalence as the right notion of physical equivalence in
quantum theory. The motivation here is twofold. First, Wigner’s theorem
ensures that any symmetry that preserves transition probabilities and su-
perselection structure can be represented by either a unitary or antiunitary
operator. Second, it is typically assumed that only the self-adjoint elements
of C∗-algebras directly represent physical quantities. The spectral properties
of these operators are completely captured by the canonical Jordan product
on ASA ⊂ A, defined by A •B := 1

2
(AB+BA). On this basis, it is tempting

to view the rest of the C∗-algebra as superfluous mathematical structure.
Physical equivalence need only preserve the structure of ASA as a (real) Jor-
dan algebra. This is exactly the notion captured by Jordan quasiequivalence
(Emch, 1972, p. 149–55).

For now we will leave open whether Jordan quasiequivalence is sufficient
for physical equivalence. (We will encounter some reasons for skepticism in
§5). Before diving into this question, we need to investigate the relationship
between unitary and antiunitary equivalence in more detail.

3 The Existence of Antiunitary Intertwiners

To see how inattention to the subtleties surrounding unitary and antiunitary
equivalence can lead us astray, consider the following bad chain of reasoning:

If two irreducible representations are (unitarily) disjoint, then
their set of intertwiners is empty. Thus there are no operators
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— unitary, antiunitary, or otherwise — intertwining them. So
antiunitary equivalence always entails unitary equivalence, and
we can ignore it for all practical purposes.

The first inference is fine if we define the set of intertwiners (as commonly
done in the mathematics literature) as the set of bounded linear operators
T : H1 → H2, such that Tπ1(A)T ∗ = π2(A) for all A ∈ A. But then
the second inference does not follow. Alternatively, if we define the set of
intertwiners more permissively as the set of bounded linear or antilinear
operators T : H1 → H2, such that Tπ1(A)T ∗ = π2(A) for all A ∈ A, then
the first inference is bad.2

Does antiunitary equivalence entail unitary equivalence? In general, no.
To find an example that clearly demonstrates this, though, we have to do a
bit of digging. To get started, let (π,H) be an irreducible representation of
A. The conjugate Hilbert space, H̄, is obtained by changing the action of C
on H, cx 7→ c̄x, for all c ∈ C, x ∈ H. Define the conjugate representation,
(π̄, H̄), by setting π̄(A) = π(A).

Proposition 1. Let (π1,H1), (π2,H2) be two irreducible representations of
A. There exists an antiunitary intertwiner, V π1(A)V ∗ = π2(A), for all A ∈
A, iff (π1,H1) is unitarily equivalent to (π̄2, H̄2).3

Proof. Define the antilinear map, J : H2 → H̄2, by setting

J(cx+ dy) = c̄x+ d̄y , (1)

for all c, d ∈ C and x, y ∈ H2. It follows that J2 = I and 〈Jx, Jy〉 = 〈x, y〉 =
〈y, x〉, so J is an antiunitary involution. Since π2(A) is linear,

Jπ2(A)cx = Jcπ2(A)x

= c̄π2(A)x

= π2(A)c̄x

= π̄2(A)cx , (2)

2Note that if T is a linear intertwiner, then the existence of polar decompositions
ensures that T = U |T |, where U is unitary, and thus there exists a unitary intertwiner.
Similarly, if T is antilinear, then T = V |T | where V is antiunitary, and thus there exists
an antiunitary intertwiner.

3This is a natural generalization of Varadarajan (1968, Lem. 3.8) which only applies
to unitary group representations.
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and so Jπ2(A)J = π̄2(A), for all A ∈ A.
Suppose that π1 is unitarily equivalent to π̄2, so there exists a unitary

U : H1 → H̄2, such that Uπ1(A)U∗ = π̄2(A). Using J , we can construct an
antiunitary intertwiner between π1 and π2:

V π1(A)V ∗ := JUπ1(A)U∗J = π2(A) . (3)

To prove the converse, suppose that there exists and antiunitary inter-
twiner, V π1(A)V ∗ = π2(A). The existence of polar decompositions in the
universal enveloping von Neumann algebra, A∗∗, ensures that any antiunitary
operator V = JU , where U is unitary and J is the antiunitary conjugation
operator defined previously (Blackadar, 2006, I.5.2.6). This entails that,

Uπ1(A)U∗ = Jπ2(A)J = π̄2(A) , (4)

so π1 is unitarily equivalent to the conjugate representation of π2. �

Note that our definition of conjugate representations for arbitrary C∗-
algebras is a straightforward generalization of the standard definition of con-
jugate group representations. IfG is a locally compact group, then irreducible
strongly continuous unitary representations of G are also irreducible repre-
sentations of the (full) group C∗-algebra, and vice versa (Blackadar, 2006,
II.10.2.1-4). This connection leads to the following result:

Corollary. There exist antiunitarily equivalent C∗-algebra representations
that are not unitarily equivalent.

Proof. If G is a locally compact group, then each irreducible strongly contin-
uous representation of G is also an irreducible representation of the group C∗-
algebra. In general, conjugate representations of G are not unitarily equiva-
lent, but by proposition 1 they are always antiunitarily equivalent. For the
important special case of compact simply connected Lie groups, each pair of
irreducible conjugate representations is unitarily equivalent iff the associated
Weyl group contains −1 (Simon, 1996, Lem. IX.10.1). This is the case for
SU(2), SO(2n+ 1), SO(4n), and Sp(n), but it is not true for SU(n), U(n),
SO(n), or O(n) in general. �

Group representation theory gives us a nice stock of examples where
antiunitary equivalence does not entail unitary equivalence. The SU(2),
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SO(2n + 1), SO(4n), and Sp(n) cases also provide several examples of an-
tiunitarily equivalent representations that are also unitarily equivalent. Are
there any cases of unitarily equivalent representations that are not antiu-
nitarily equivalent? The examples of C∗-algebras which are not conjugate-
isomorphic to themselves, noted briefly in the last section, are probably the
easiest to point to, although they are otherwise rather thorny entities. Taking
direct sums of irreducible representations from these various camps generates
a zoo of examples falling under the various notions of equivalence introduced
in §2.

Our focus on group theory is not entirely accidental. Conjugate group
representations play an important role in QFT, where they are used to model
field configurations with conjugate charge. In general, these representations
will be unitarily disjoint but antiunitarily quasiequivalent, providing a phys-
ically significant example of the mathematical phenomena just unearthed.

4 Charges and CPT Symmetry

In algebraic QFT, we have three mathematically equivalent ways to describe
superselected charges. The first is via the category of localized transportable
morphisms. Such morphisms map the net of local observable algebras into the
algebra of bounded operators on the vacuum Hilbert space, % : A→ B(Hω).
They are localized in some doublecone or spacelike cone, acting as the identity
in the causal complement, and they can be transported to any similarly
shaped region by the adjoint action of certain unitary operators. If ω is
the vacuum state, ω ◦ % describes a state with charge Q localized in the
relevant region. The category of localized transportable morphisms has a
rich mathematical structure which can be used to describe tensor products
of charged states as well as conjugate charges. The conjugate of % is the
unique (up to unitary equivalence) morphism %̄ such that ω ◦ % ◦ %̄ contains
a component in the vacuum sector.

The second way to characterize charge structure, revealed by the pio-
neering analysis initiated by Doplicher, Haag, and Roberts (1969a,b) and
later generalized by Buchholz and Fredenhagen (1982), is via the category
of representations of the net of local observable algebras that satisfy cer-
tain special boundary conditions. A representation of the net satisfies the
DHR/BF selection criterion iff it is quasiequivalent to the vacuum represen-
tation in the causal complement of some doublecone or spacelike cone. Such
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representations have a folium of states that look like the vacuum everywhere
except within the relevant cone. The key to the DHR/BF analysis lies in
showing that the category of representations satisfying this selection crite-
rion is equivalent to the category of localized transportable morphisms. This
allows us to pull back the tensor product and conjugate structure from the
category of charge morphisms to the category of DHR/BF representations.
Although more abstract, this second viewpoint is seen as more explanatorily
fundamental. (In practice, though, it is usually much easier to work with
charge morphisms.)

There is a third way to describe charges that has more in common with
the approach taken in Lagrangian and constructive QFT. Rather than an ob-
servable algebra, we can start with a net of field algebras, F, acting faithfully
on a Hilbert space, H, and a compact global gauge group, G. The observ-
able algebra, A, is identified with the G-invariant subalgebra of F. Under
the action of G, H decomposes into a direct sum of superselection sectors,

H =
⊕
ξ∈Ĝ

Hξ , (5)

where each sector is a direct sum of irreducible strongly continuous represen-
tations of G labeled by the same group character ξ ∈ Ĝ. Amazingly, each
of these irreducible representations is also an irreducible representation of A
satisfying the DHR/BF selection criteria. Even more amazingly, Doplicher
and Roberts (1990) prove that we can naturally reconstruct the field algebra
and gauge group starting from only the DHR/BF category. (The DHR/BF
category is dual to the category of representations of G in a certain well-
defined sense.) The punchline is that everything that we want to say about
global gauge charges in algebraic QFT can ultimately be cached out in terms
of boundary conditions on the net of observable algebras in a completely
gauge-free manner.4

Returning to the theme of antiunitary equivalence, for each pair of con-
jugate charge morphisms, %, %̄, there are associated conjugate DHR/BF
representations, π, π̄. These representations are direct sums of irreducible
DHR/BF representations, each of which is also an irreducible strongly con-
tinuous representation of the dual gauge group G. Proposition 1 then entails
that irreducible, conjugate DHR/BF representations are always antiunitarily

4It should be noted that the DHR/BF analysis has not yet been extended to cover
charges in theories with local gauge symmetry or massless particles.
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equivalent, and conjugate DHR/BF representations are always antiunitarily
quasiequivalent. Moreover, the corollary entails that except in certain spe-
cial cases where the representations are self-conjugate, DHR/BF conjugate
representations are not unitarily quasiequivalent.

We can prove more. In any causal, Lorentz-invariant, thermodynamically
well-behaved QFT, there is a global reflection symmetry that reverses the
direction of time, flips spatial parity, and conjugates charge. Swanson (2019)
gives a detailed analysis of the logic of the so-called CPT theorem in algebraic
QFT. At the algebraic level, a CPT transformation can be viewed as an
involutive Jordan-automorphism of the net of observable algebras, i.e., a
bijection θ : A → A such that θ2 = 1 and which preserves the canonical
Jordan product. In addition, θ must act as a full spacetime inversion on local
algebras, θA(O) = A(−O), conjugate charge morphisms, θ ◦ % = %̄ ◦ θ, and
have the correct commutation relations with the Poincaré transformations, θ◦
αa,Λ = α−a,Λ◦θ. (The Haag-Kastler axioms posits a privileged representation
of the Poincaré transformation acting as net automorphisms.) We expect
that vacuum states in many (if not all) models of QFT will be CPT-invariant.
It follows that θ will be implemented by an antiunitary operator, Θ, in each
vacuum representation.5 If this is the case, then Θ intertwines conjugate
charge representation:

Proposition 2. If CPT symmetry is implemented in vacuum representa-
tions, then the antiunitary CPT operator intertwines conjugate DHR/BF
charge representations.

Proof. If CPT symmetry is implemented in each vacuum representation,
(πω,Hω), then Θπω(A)Θ = πω(θ(A)), for all A ∈ A. Conjugate charge repre-
sentations, π and π, are unitarily equivalent to the representations (πω◦%,Hω)
and (πω ◦ %̄,Hω), where % and %̄ are the associated localized transportable

5Baker and Halvorson (2013) draw an important distinction between implemented and
represented algebraic symmetries that can be naturally generalized to include the antiu-
nitary case. If α : A→ A is a Jordan automorphism, and π is a representation of A, then
so is π ◦ α(A) := π(α(A)). Wigner’s theorem entails that α can always be represented by
some unitary or antiunitary operator, W , such that Wπ(A)W ∗ = π ◦α(A). This does not
mean that W implements a Jordan equivalence between π and π ◦ α, however, only that
the adjoint action of W is a bijection between the two representations. Jordan equivalence
requires in addition that the adjoint action of W intertwines π and π ◦ α pointwise, i.e.,
Wπ(A)W ∗ = π ◦ α(A) for all A ∈ A. In this case we say that α is implemented by W .
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DHR/BF morphisms. We then have:

Θπω ◦ %(A)Θ = Θπω(%(A))Θ

= πω(θ(%(A)))

= πω(θ ◦ %(A))

= πω(%̄ ◦ θ(A))

= πω ◦ %̄(θ(A)) ,

for all A ∈ A. The first line follows from the definition of πω ◦ %. The
second follows from the hypothesis that CPT symmetry is implementable
and the third from the definition of DHR/BF morphism composition.6 The
fourth line follows from the commutation relations between θ and any charge
morphism and the fifth again from the definition of morphism composi-
tion. Therefore, Θ intertwines conjugate charge representations, Θπ(A)Θ =
π̄(θ(A)), for all A ∈ A. �

The fact that the CPT operator implements an antiunitary equivalence
between charge representations will be an important interpretational data
point that we need to consider in the following section.

5 Physical Equivalence?

We return now to the question left hanging in §2, does Jordan quasiequiva-
lence entail physical equivalence? Since only self-adjoint elements of A rep-
resent physical quantities, and all of their spectral properties are preserved
by Jordan equivalence, it is tempting to answer yes. But there are reasons
to resist this temptation.

If the non-self-adjoint portion of a C∗-algebra is really physically irrele-
vant, then it should be possible to formulate quantum mechanics entirely in
terms of Jordan algebras. There was a historical program that attempted
to do just this, but it eventually ran out of steam for non-trivial mathe-
matical reasons (McCrimmon, 2004, Ch. 1). There is no natural notion of
a tensor product between two Jordan algebras, and as Hanche-Olsen (2006)
eventually proved, any Jordan algebra with a tensor product is really just

6This is especially simple in the DHR case where, as a consequence of Haag duality,
the charge morphisms are endomorphisms of A. In the more general BF case, this is no
longer true, but wedge duality allows us to prove a similar morphism composition rule.
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a C∗-algebra in disguise. Thus, insofar as we view tensor product structure
as physically significant, we should be wary of ignoring the non-self-adjoint
part of the C∗-algebra.

There is a second reason for doubt. As Alfsen and Shultz (1998) em-
phasize, in both classical and quantum theories, observables play dual roles
— they represent physical quantities and they generate symmetries. Each
self-adjoint element of A acts as the infinitesimal generator of a unique 1-
parameter group of statespace automorphisms. The non-self-adjoint part of
A encodes this generating relationship between observables and symmetries
using a canonical Lie product, A ? B := i

2
(AB − BA). (Alfsen and Shultz

prove that this is equivalent to the choice of a certain kind of generalized ori-
entation structure on state space.) Insofar as we think that this generating
relationship carries physical significance, we should proceed with caution.

Evidently, more care is needed. Following Ruetsche (2011, Ch. 2), we
bracket interpretational issues related to the measurement problem and look
for a presumptive notion of physical equivalence for partially interpreted
QFTs. Ruetsche’s favored notion takes the form of a translation scheme
between the kinematics and dynamics of two models, consisting of three
bijections:

• is : S → S ′, between the physically possible states of each model, that
preserves transition probabilities,

• iq : Q → Q′, between the physically possible quantities of each model,
that preserves algebraic relations between quantities and is such that for
all φ ∈ S and A ∈ Q, φ(A) = φ′(A′) where φ′ = is(φ) and A′ = iq(A),

• id : D → D′, between the dynamics of each model (i.e., R-valued 1-
parameter flows on state space, dt), such that dt(φ)(A) = d′t(φ

′)(A′),
where d′t = id(dt).

Ruetsche goes on to argue that unitary equivalence yields such a translation
scheme, and so unitarily equivalent (and by extension unitarily quasiequiva-
lent) representations should be interpreted as presumptively physically equiv-
alent. Essentially the same argument can be applied to antiunitary equiva-
lence. An antiunitary mapping, V : H → H′ induces a bijection on states
that preserves transition probabilities (by Wigner’s theorem), and since it in-
tertwines the corresponding representations, it induces a Jordan isomorphism
that preserves all Jordan-algebraic relations between self-adjoint observables
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(including all spectral properties). Moreover it identifies the flow generated
by the Hamiltonian, H, with the flow generated by H ′ = V HV ∗, and conse-
quently, in the Heisenberg time-evolution picture:

V eitHAe−itHV ∗ = e−itH
′
A′eitH

′
(6)

for all A ∈ A. Therefore, dt(φ)(A) = d′t(φ
′)(A′).

There are two important subtleties that distinguish the antiunitary case
from the unitary one. First, even though an arbitrary Jordan automorphism
is guaranteed to map pure states to pure states, it may not map physical
pure states satisfying some relevant selection criteria to physical pure states.
A unitarily implemented Jordan automorphism is guaranteed to map pure
states to pure states in the same superselection sector. So if the original state
satisfies the relevant selection criteria, the symmetry-transformed state does
as well. In contrast, an antiunitarily implemented Jordan automorphism
can map pure states in one superselection sector to those in another sector.
Prima facie, there is no guarantee that this new sector will satisfy the relevant
selection criteria.

Fortunately, in the DHR/BF case, we avoid this problem. By proposition
1, any antiunitary intertwiner will map an irreducible DHR/BF representa-
tion onto a representation unitarily equivalent to its conjugate and therefore
in the conjugate superselection sector. But this is a quirk related to the exis-
tence of conjugate charges. There is no guarantee that it will hold in general
for other physical selection criteria. Absent a general argument ruling this
possibility out, it would be a mistake to automatically identify antiunitarily
equivalent representations as physically equivalent in an arbitrary quantum
theory. If some generalization of the DHR/BF criterion turns out to be a
necessary constraint on physical states in any well-behaved relativistic QFT,
then the problem might be avoided, but only in this restricted context.

There is a second subtly, however, that raises problems even for well-
behaved relativistic QFTs. Although antiunitary equivalence preserves all
Jordan-algebraic relations, it does not preserve all algebraic relations. In par-
ticular, it does not preserve the Lie product, encoding the generating relation-
ship between observables and 1-parameter groups of state space symmetries.
Unitary equivalence, in contrast, preserves this generating relationship. But
antiunitary equivalence does not completely make hash out of it. Rather, an-
tiunitary intertwiners systematically reverse the Lie product. If π carries the
Lie product A?B, any antiunitarily equivalent representation, π′, is unitarily
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equivalent to π̄, which carries the Lie product (A?B)op := B?A = −(A?B).
In principle, both Lie products can encode the same physical information,
corresponding to opposite choices of orientation structure on state space.7

What possible physical significance could such a choice have?
One obvious physical consequence, indicated by (6), is that the dynamical

bijection, id, reverses temporal orientation. But even though the dynamics
d′t flow in the opposite temporal direction, they are not necessarily the time-
reverse of dt. This requires further that V commutes with H, leaving the form
of the dynamical law unchanged, and that V acts uniformly on spatial degrees
of freedom. Proving that the CPT operator, Θ, does both of these things is
a non-trivial part of the CPT theorem, justifying why Θ can be viewed as
a generalized time-reversal operator. There is a long tradition of identifying
time-reversed states as physically equivalent in theories where the laws are
time-reversal invariant. Following this tradition, we may choose to interpret
Θ-transformed states as physically equivalent, but the same reasoning will
not apply to arbitrary cases of antiunitary equivalence.

Nonetheless, I think that a decent case for interpreting at least some an-
tiunitarily equivalent representations as physically equivalent can be made
along these lines. For philosophers sympathetic to relationalist metaphysics,
this is where the action is. Any such relationalist argument, however, faces
an unexpected challenge. As we have seen in §4, if CPT symmetry is imple-
mented in vacuum representations, Θ intertwines conjugate DHR/BF repre-
sentations. In these cases, the relationalist is forced to interpret conjugate
charge sectors as physically equivalent.

Such an identification threatens to undermine the explanatory success
of the DHR/BF picture of antimatter. It is the existence of conjugate ob-
jects in the category of localized transportable morphisms that allows for
the description of conjugate charges. In order for this notion to be captured
by the specification of boundary conditions on the observable net, the cat-
egory of DHR/BF representations must likewise possess conjugate objects.
It is not obvious that “quotienting” the DHR/BF category by identifying
conjugate objects yields a mathematical structure capable of discharging the
explanatory jobs handled by the usual DHR/BF analysis. To be clear, the re-
lationalist proposal would not eliminate conjugate charges entirely. It would

7The statespace of a C∗-algebra is a compact convex set, whose minimal, norm-exposed
faces are affinely isomorphic to either a line or a Euclidean 3-ball. The Lie product
determines which self-adjoint operator, A or −A, generates clockwise rotations of these
facial 3-balls.
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still make sense to distinguish between conjugate charges within a given
representation, but there would no longer be a difference between a repre-
sentation with two Q-charges and one Q-charge, and a representation with
two Q-charges and one Q-charge. Rather than two possible boundary con-
ditions in this case, net global charge Q and net global charge Q, there is
only one boundary condition, one unit of net global charge. But if we take
the lesson of the DHR/BF analysis to heart, the explanatorily fundamental
way to describe charges in algebraic QFT is via possible boundary conditions
on the net of gauge-invariant observables. The relational difference between
conjugate charges within a representation is then explained by the different
boundary conditions captured by the conjugate representations π and π̄. If
we identify these boundary conditions as physically equivalent, we lose the
ability to tell this type of gauge-invariant story.

These worries pose a distinct challenge for interpreting antiunitary equiv-
alence as sufficient for physical equivalence in the context of relativistic QFT.
How should we view antiunitary intertwiners that do not implement general-
ized time-reversal symmetries? If conjugate charge representations are phys-
ically equivalent, how do we recover the explanatory power of the DHR/BF
picture? Interpreters of QFT should take note.
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