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Abstract 

To consider metaphysical claims a priori and devoid of empirical content, is a rather 

commonplace received opinion. This paper attempts an exploration of a contemporary 

philosophical heresy: it is possible to test metaphysical claims if they play an indispensable role 

in producing empirical success, i.e. novel predictions. To do so one, firstly, needs to express the 

metaphysical claims employed in the logico-mathematical language of a scientific theory, i.e. to 

explicate them. Secondly, they should have an understanding of what it is to test and to verify 

or to falsify a metaphysical claim. Finally, they also need to consider the philosophical practice 

of testing a metaphysical claim. These three aspects are introduced in this paper and they are 

illustrated by means of the metaphysical concept of common cause and the principle of the 

common cause. 

 

0. Introduction.  

This paper concerns scientific metaphysics, the branch of metaphysics that deals with specific 

fields of knowledge and discourse and explores possible domains of existence as determined by 

scientific theories. In particular, I intend to investigate the testability of metaphysical claims 

when considered in the context provided by theories of empirical sciences and to explore the 
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prospects of what Hawley (2006) and French (2017:51) identified as optimism regarding the 

possibility of informing metaphysics by physics. Namely, the view that “…[t]here are actual 

cases in which the involvement of a metaphysical claim in an empirical successful scientific 

theory provides some reasons to think that the claim is true.” Furthermore, source of inspiration 

for this work has been A. Shimony’s (1984) and M. Redhead’s (1987) quite provocative use of 

the term “experimental metaphysics” to refer to the philosophical implications of the 

experimentally confirmed violation of Bell-type inequalities in quantum mechanics, for our 

world picture.   

I urge, firstly, that metaphysical claims are empirically testable only if they contain terms that can 

be adequately explicated in the language of a scientific theory. The adequacy conditions that 

guarantee the testability of a claim will be discussed and illustrated in terms of the principle of 

the common cause. Secondly, I suggest conditions for the verification and falsification of a 

testable metaphysical claim. Thirdly, issues regarding the philosophical practice of explicating 

and testing metaphysical claims are discussed. Among them the proliferation of explications of 

metaphysical concepts is examined with respect to two different attitudes: one that aims to 

devise new explications to circumscribe falsifying instances and evade conflicts with evidence, 

and the one I propose which, in the light of a falsifying instance for a given explication, aims at 

suggesting new explications to attain conclusive falsification of a metaphysical claim.    

 

1. On Explication 

 Explication, according to Carnap (1950:3), is the transformation of an inexact, possibly 

prescientific concept, the explicandum, into a new exact concept, the explicatum, that obeys 

explicitly stated rules for its use.  By means of this transformation a concept of ordinary discourse 

or a metaphysical concept may be incorporated into a well-structured body of logico-

mathematical or empirical concepts. Explication has a long history as a philosophical method 

that, in a wide sense, may be traced back even to Plato’s investigations on definitions. Strictly 

speaking, however, Carnap borrowed the term “Explikation” from Kant and Husserl while Frege 
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may be considered his precursor in this method of philosophical analysis1 and Goodman, Quine 

and Strawson among his prominent intellectual inheritors. Various attempts to explicate 

“explication”2, have found their way within the analytic tradition. In this paper, Ι have chosen to 

refer to a recent account, due to Cordes (2017), which, generally, is considered compatible with 

the Carnapian view despite some differences3.  

Cordes suggests that an explication (Df.3-9) is a six-tuple  

𝐸 = 〈𝐿1(𝐸), 𝐿2(𝐸), 𝐸𝑋1(𝐸), 𝐸𝑋2(𝐸), 𝐶𝐸𝐴(𝐸), 𝐸𝐼(𝐸)〉.  (1) 

𝐿1(𝐸) is the explicandum language of 𝐸, i.e. the language in which the inexact concept or 

expression that one aims to explicate occurs. Ordinary English or the idiom of a particular 

philosophical current or even the scientific jargon of some discipline may be taken as examples 

of explicandum languages.  𝐿2(𝐸) is the explicatum language of 𝐸 i.e. the linguistic framework in 

which the expression that explicates the inexact concept belongs. In general, 𝐿2(𝐸) is more 

precise than 𝐿1(𝐸) and it can also be just “a more exact part of” 𝐿1(𝐸) (Carnap 1963:935).  

𝐸𝑋1(𝐸) is an atomic expression of 𝐿1(𝐸), the explicandum of 𝐸, while  𝐸𝑋2(𝐸) is an atomic 

expression of  𝐿2(𝐸), the explicatum of 𝐸. For example, the explicatum of “triangle” in a first 

order language may be a name (that a Platonist about mathematics would consider the name of 

an abstract object) or a unary predicate representing the property of being triangular. Thus, 

different representations of the explicatum in 𝐿2(𝐸)  may express different metaphysical 

commitments. The explicative introduction 𝐸𝐼(𝐸) of 𝐸 is a formula of 𝐿2(𝐸) that contains the 

explicatum,  𝐸𝑋2(𝐸), as an atomic subexpression. It includes the sentences that introduce the 

explicatum in 𝐿2(𝐸), be they axioms regulating the use of the explicatum or definitions 

 
1 Beaney (2004) points out the absence of a systematic connection between Carnap and Kant or Husserl 

regarding explication and he discusses the influence of Frege’s “Logic in Mathematics” lectures on 

Carnap’s conception of it. 
2 “An explication of ‘explication’” is the title of Hanna’s article (1968) and of section 5 in (Cordes 2017). 

For a general presentation of the notion of explication, see (Cordes and Siegwart 2019). 
3 One major difference is that Cordes discusses the explication of expressions and considers the 

explication of concepts only subsequently as built upon his account of explication (2017: n.5) while 

Carnap discusses the explication of concepts. This difference, however, plays no important role for our 

discussion in this paper. For this reason, sometimes I talk about concepts without making any distinction.  
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introducing it explicitly or anything similar. 𝐶𝐸𝐴(𝐸) is a list of formulas, statements or 

sentences which constitute the criteria of explicative adequacy of 𝐸. The criteria of explicative 

adequacy include all sentences of  𝐿2(𝐸)  that one would desire to follow from the introduction 

of the explicated expression. They usually stem from pre-explicative intuitions associated with 

the explicandum and their satisfaction may be taken to express Carnap’s requirement of 

similarity of the explicatum to the explicandum (1950:7). In the case of an explication of a 

metaphysical concept, metaphysical claims that are expected to be satisfied are included in the 

criteria of explicative adequacy. Since in a successful explication the criteria of adequacy should 

be satisfied given the explicandum introduction in 𝐿2(𝐸), Cordes deem them a measure of 

success of the explication. Thus, he suggested that an explication 𝐸 is successful if and only if for 

all 𝜓 ∈ 𝐶𝐸𝐴(𝐸), {𝐸𝐼(𝐸)} ⊢𝐿2(𝐸) 𝜓 .(Df.10)       

To illustrate his account, Cordes presents Carnap’s explication of the term “successor” (1934:58-

59) in terms of the following six-tuple: 

〈English, Language I, "successor","nf", {"𝑛𝑓(0) = 1"}, "𝑛𝑓(𝑥) = 𝑥| ∧ 1 = 0| "〉,  (2) 

In this explication, English is the explicandum language and "successor" the explicandum. In 

ordinary English the term “successor” applies to an object and designates the next object in an 

ordered series. Language I, the explicatum language, is Carnap’s language of definite number 

properties. This language includes that part of arithmetic of natural numbers in which the 

possession or non-possession of any property by a number can be determined in a finite 

number of steps using a fixed method (1934:11). This language does not designate objects in the 

universe of discourse by proper names but with positional coordinates; it is a coordinate 

language. Thus, the symbol “0” designates the initial position in a one-dimensional series with a 

definite direction; the symbol “ | ” applied to any position designates the next position in this 

series; and “𝑥” is a numerical variable. All these are logical primitive symbols of Language I. 

“nf” is the explicatum of the successor (Nachfolger) which is a function (functor) introduced by 

explicit definition D1: "𝑛𝑓(𝑥) = 𝑥|". The explicative introduction is a conjunction of D1 and 



5 
 

definition D7.1: “"1 = 0|”. Thereby, the criterion of explicative adequacy of the explication 

"𝑛𝑓(0) = 1"  is derived and the explication is deemed successful.     

To examine the relation between the explication 𝐸 of a metaphysical concept to a  scientific 

theory 𝑇, I view the scientific theory as a collection of formulas in the explicatum language 𝐿2(𝐸)  

(Cordes 2017: Df.12). In addition, it is required that the formulas of 𝑇 are not making any use of 

the explicatum, since I purport to obtain a clear idea of what the process of explication adds, in 

terms of content, to theory 𝑇. The concept of background theory to an explication captures this 

desideratum: 𝑇 is a background theory to 𝐸  if and only if 𝐸 is an explication and 𝑇 is a theory in 

𝐿2(𝐸), and for all 𝜓 ∈ 𝑇, the explicatum 𝐸𝑋2(𝐸) is not an atomic subexpression of 𝜓 (Cordes 

2017: Df.13). Finally, to ascertain that the scientific theory has empirical content and it is not just 

a formal scaffold, let me point out that its formulas make claims about the physical world that 

are empirically testable.   

The success of an explication 𝐸 can be relativized to a background scientific theory 𝑇. As a 

consequence, an explication that is not successful simpliciter, i.e. there is a 𝜓 ∈ 𝐶𝐸𝐴(𝐸), 

{𝐸𝐼(𝐸)} ⊬𝐿2(𝐸) 𝜓, can be rendered successful relative to a scientific theory since the theory may 

provide additional premises that enhance the inferential capacity of a given explicative 

introduction 𝐸𝐼(𝐸). Thus, 𝐸 is a successful explication for 𝑇 if and only if  𝑇 is a background 

theory to 𝐸  and for all 𝜓 ∈ 𝐶𝐸𝐴(𝐸), 𝑇 ∪ {𝐸𝐼(𝐸)} ⊢𝐿2(𝐸) 𝜓 (Df.14). Moreover, 𝐸 is a non-trivially 

successful explication for 𝑇 if and only if 𝐸  is a successful explication for 𝑇 , and there is 𝜓 ∈

𝐶𝐸𝐴(𝐸) such that  𝑇 ⊬𝐿2(𝐸) 𝜓. (Df.15). 

Cordes, in (2017), does not restrict the elements of 𝐶𝐸𝐴(𝐸) to sentences which contain the 

explicatum 𝐸𝑋2(𝐸) as an atomic subexpression. This means that a non-trivially successful 

explication may be a creative act, which does not only bind some formulas from the theory’s 

language to the act of making precise an inexact concept, but also produces new theoretical 

content, which can be formulated without using the explicatum although it cannot be inferred 

from 𝑇 without the explicative introduction, 𝐸𝐼(𝐸). Suppes (1957:154) provides an example of a 

creative introduction of a new symbol by means of a “definition”. In his example, the theory 𝑇 



6 
 

consists of all algebraic structures < 𝐺,∘>  , where 𝐺 is a set and ∘ an associative binary 

operation in 𝐺. The new symbol to be introduced as a distinguished element of 𝐺 is the (right) 

identity or unit element 𝑒, which satisfies the condition: ∀𝑥 ∈ 𝐺, 𝑥 ∘ 𝑒 = 𝑥. From this proposition, 

one may infer that ∃𝑦 ∈ 𝐺, ∀𝑥 ∈ 𝐺, 𝑥 ∘ 𝑦 = 𝑥; eliminating, thus, any reference to the newly 

introduced symbol. Moreover, the latter proposition cannot be inferred by   𝑇 alone. Hence, the 

introduction of the new symbol amounts to a creative act producing novel theoretical content. 

Such a “definition”, for Suppes, is inadequate and should not be used for the introduction of a 

new symbol since the act of defining should be non-creative and regulated by the criterion of 

non-creativity. For the discussion in this paper, however, quite the contrary is the case. Namely, 

to test a metaphysical claim, its explication should create more content, testable consequences, 

than the background theory considered.  

Moreover, the account of explication adopted here, allows, in principle, all metaphysical 

concepts to be explicated in the formal language of an empirical theory as long as the latter is 

rich enough in means of expression, i.e. as long as it has the adequate expressive capacity to 

represent the universe of discourse.  Take, for instance, accounts in combinatorial ontology 

which makes a logic the basis of ontology (see Jacquette 2002:51f) and any empirical theory 

formulated in the language of that logic. Then, in principle, all celebrated metaphysical 

concepts, such as “object”, “entity”, “predication”, “existence”, “property” “possibility”, may be 

explicated in the formal language of that empirical theory.  

 

2. Explication and Testability  

Consider an explication 𝐸 of a metaphysical term  𝐸𝑋1(𝐸) and a scientific theory  𝑇 formulated 

in language 𝐿2(𝐸) , which is a background theory to 𝐸. Let 𝜓 be a sentence of 𝐿2(𝐸) that intends 

to express a metaphysical claim.  The intent is to have an explication 𝐸 that would consider 𝜓 a 

condition of explicative adequacy, 𝜓 ∈ 𝐶𝐸𝐴(𝐸), entailed by the explicative introduction 𝐸𝐼(𝐸) 

together with the scientific theory  𝑇, while not entailed by 𝑇, if taken in isolation: 
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𝑇 ∪ {𝐸𝐼(𝐸)} ⊢𝐿2(𝐸) 𝜓  (3a) 

and 𝑇 ⊬𝐿2(𝛦) 𝜓, (3b) 

Notice that a more stringent condition than (3a) and (3b) would be to demand that 𝐸 is a non-

trivially successful explication for 𝑇.  

To test a metaphysical claim 𝜓,  one needs to infer a prediction 𝜓𝑜𝑏𝑠, an observation statement, 

which can be verified or falsified by experiment.4 The premises of this inference, apart from 𝜓, 

stem from the scientific theory 𝑇 and they possibly include further auxiliary assumptions5, 

hence,   

𝑇 ∪ {𝜓} ⊢𝐿2(𝐸) 𝜓𝑜𝑏𝑠.   (4) 

Furthermore, to distribute blame or praise to 𝜓 in terms of the outcome of the test for  𝜓𝑜𝑏𝑠, one 

needs to show that 𝜓 ‘s contribution to the generation of the prediction is indispensable. This 

notion has been discussed in (Psillos 1999:110)6 and it has been used by Hawley to “spot 

involvement” of metaphysical claims in generating empirical success (2006).   In addition to the 

foregoing entailment, along Psillos’ line of reasoning, one would require that 𝑇 alone cannot 

yield 𝜓𝑜𝑏𝑠,   

𝑇 ⊬𝐿2(𝐸) 𝜓𝑜𝑏𝑠  (5) 

and there is no other hypothesis 𝜓′ that together with 𝛵 entails 𝜓𝑜𝑏𝑠, which is consistent with 𝑇 , 

and does not entail 𝜓, if taken together with 𝛵: 

𝑇 ∪ {𝜓′} ⊬𝐿2(𝐸) 𝜓,   (6) 

 
4 Here, I assume, tacitly, that there is a way to circumscribe the observation sentences in 𝐿2(𝛦). 
5 In subsequent discussion, without loss of generality, I suppress reference to auxiliary assumptions.  
6 “Suppose”, writes Psillos, “that 𝐻 together with another set of hypotheses 𝐻′ (and some auxiliaries 𝐴) 

entail a prediction 𝑃. 𝐻 indispensably contributes to the generation of 𝑃 if 𝐻′ and 𝐴 alone cannot yield 𝑃 

and no other available hypothesis 𝐻∗ which is consistent with 𝐻′ and 𝐴 can replace 𝐻 without loss in the 

relevant derivation of 𝑃.” (Psillos 1999:110) 
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𝑇 ∪ {𝜓′} ⊬𝐿2(𝐸) ⊥,   (7) 

𝑇 ∪ {𝜓′} ⊢𝐿2(𝐸) 𝜓𝑜𝑏𝑠.  (8)  

The indispensability of 𝜓 for the generation of 𝜓𝑜𝑏𝑠 would be undermined if (8) were satisfied, 

unless the inference of 𝜓𝑜𝑏𝑠 were trivial, stemming from an inconsistent set of premises that 

entail anything, (7), or it was mediated by 𝜓, (6). In the latter case, 𝜓 is still indispensable for the 

generation of 𝜓𝑜𝑏𝑠 as a minimum requirement, although the inference may use an alternative 

hypothesis as a premise. This condition, (6), deals effectively with the well-known problem of 

producing trivial alternative hypotheses from a given one, simply by “tacking on” it any other 

claim.7  

What would be the source of such an alternative hypothesis, 𝜓′?  One way to understand 𝜓′ 

would be as expressing in the language 𝐿2(𝐸) a different metaphysical claim, couched in terms 

of a different metaphysical concept, explicated in terms of another explication 𝐸′. A second way 

to understand 𝜓′  is in terms of alternative explications of one and the same metaphysical 

expression. According to Cordes, 𝐸 is an explication alternative to 𝐸′ if and only if 𝐸 and 𝐸′ are 

explications, 𝐸 ≠ 𝐸′ , 𝐿1(𝐸) = 𝐿1(𝐸′)  and 𝐸𝑋1(𝐸) = 𝐸𝑋1(𝐸′) (2017: Df. 22). Thus,  𝜓′ may be 

understood as expressing the same metaphysical claim in the language 𝐿2(𝐸) = 𝐿2(𝐸′), in terms 

of a different explication of the same concept.  

Finally, notice that conditions (3a), (4), entail that 

𝑇 ∪ {𝐸𝐼(𝐸)} ⊢𝐿2(𝐸) 𝜓𝑜𝑏𝑠. (9) 

 
7 Conditions (6) and (7) are not required by Psillos, although he discussed the problem of inferring the 

prediction from trivial hypotheses. He notes that “there are senses in which all theoretical assertions are 

eliminable, if, for instance we take the Craig-transform of a theory, or we “cook up” a hypothesis 𝛨∗ [it 

would be 𝜓′ in our discussion] by writing 𝑃 [𝜓𝑜𝑏𝑠] into it. But if we impose some natural epistemic 

constraints on the potential replacement- if, for instance, we require that the replacement be 

independently motivated, non-ad hoc, potentially explanatory, etc.- then it is not certain at all that a 

suitable replacement can always be found” (1999:110)         
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According to what has been already discussed, 𝐸𝐼(𝐸) is not a good candidate for being an 

alternative hypothesis 𝜓′ for the generation of 𝜓𝑜𝑏𝑠, since, given (3a) it violates (6). However, (9) 

together with (5) manifest the creative nature of the act of explication with respect to a given 

theory 𝑇 since I believe that it is not far-fetched or risky to assume that the prediction 𝜓𝑜𝑏𝑠 does 

not contain the explicatum 𝐸𝑋2(𝐸), as an atomic subexpression.  

To sum up, I suggest that a metaphysical claim is testable if and only if there is an admissible 

test associated with that metaphysical claim.  An admissible test for a metaphysical claim is a 

quadruple, 

𝑇𝑒𝑠𝑡 = 〈𝐸, 𝑇, 𝜓, 𝜓𝑜𝑏𝑠〉 , 

that satisfies the following conditions:  

a) 𝐸 is an explication of a metaphysical concept or expression that occurs in that claim, 

𝐸 = 〈𝐿1(𝐸), 𝐿2(𝐸), 𝐸𝑋1(𝐸), 𝐸𝑋2(𝐸), 𝐶𝐸𝐴(𝐸), 𝐸𝐼(𝐸)〉; 

b) 𝑇 is a background theory for 𝐸; 

c) 𝜓 is a formula in  𝐿2(𝐸), corresponding to the metaphysical claim, such that, 

𝜓 ∈ 𝐶𝐸𝐴(𝐸),  

𝑇 ∪ {𝐸𝐼(𝐸)} ⊢𝐿2(𝐸) 𝜓 ,  

and 𝑇 ⊬𝐿2(𝛦) 𝜓. 

d) 𝜓𝑜𝑏𝑠 is a formula in  𝐿2(𝐸), an observation sentence, for the generation of which 𝜓 has an 

indispensable contribution, i.e., 

𝑇 ∪ {𝜓} ⊢𝐿2(𝐸) 𝜓𝑜𝑏𝑠 ,  

and there is no other hypothesis 𝜓′,  such that  
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𝑇 ∪ {𝜓′} ⊬𝐿2(𝐸) 𝜓,  

𝑇 ∪ {𝜓′} ⊬𝐿2(𝐸) ⊥, 

𝑇 ∪ {𝜓′} ⊢𝐿2(𝐸) 𝜓𝑜𝑏𝑠. 

 

3. An Illustration of the Method.  

To illustrate this approach to deriving testable consequences of metaphysical claims explicated 

in the context of a background scientific theory, I am examining the metaphysical concept of 

common cause and the principle of the common cause.  I will present three alternative 

explications of the concept and equinumerous formulations of the principle, while I will 

consider a Bell-type inequality as the observation sentence to be experimentally tested.  

To begin with, consider an explication 𝐸1 of the metaphysical term,  

𝐸𝑋1(𝐸1) = "common cause", 

which occurs in  

𝐿1(𝐸1) = English, 

in a language 𝐿2(𝐸1) rich enough to accommodate the mathematical theory of classical 

probability spaces, 𝑇,   which is the background theory to 𝐸.   

For a probability space < 𝑋, ℒ, 𝑝 >, the explicatum of 𝐸1, is a function 𝐶𝑜𝑚𝑚𝑜𝑛18,  

𝐸𝑋2(𝐸1) = 𝐶𝑜𝑚𝑚𝑜𝑛1:ℒ × ℒ → ℒ  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  (𝐴, 𝐵) ⟼ 𝐶 

where 𝐶 ∈ ℒ is the common cause of 𝐴, 𝐵 ∈ ℒ.  

 
8 I would like to thank the anonymous referee for their suggestion to explicate the common cause in terms 

of a function. 
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The explicative introduction of the common cause,   𝐸𝐼(𝐸1), consists in the conjunction of the 

two following sentences:  

∀𝐴, 𝐵 ∈ ℒ, ∃𝐶 ∈ ℒ,  𝐶𝑜𝑚𝑚𝑜𝑛1(𝐴, 𝐵) = 𝐶  

if and only if 

  𝐶𝑜𝑟𝑟(𝐴, 𝐵) ∧ 𝑅𝑖𝑛𝑑(𝐴, 𝐵) ⟹ (10𝑎) ∧ (10𝑏) ∧ (10𝑐) ∧ (10𝑑)            

 (10) 

𝑝(𝐴 ∩ 𝐵|𝐶) = 𝑝(𝐴|𝐶)𝑝(𝐵|𝐶)       (10a) 

𝑝(𝐴 ∩ 𝐵|𝐶⊥) = 𝑝(𝐴|𝐶⊥)𝑝(𝐵|𝐶⊥)     (10b) 

𝑝(𝐴|𝐶) >  𝑝(𝐴|𝐶⊥)         (10c) 

𝑝(𝐵|𝐶) >  𝑝(𝐵|𝐶⊥)       (10d) 

                                                𝑇 ⊢𝐿2(𝐸)  𝑅𝑖𝑛𝑑(𝐴, 𝐵) ≡  𝐿𝑖𝑛𝑑(𝐴, 𝐵)     (11) 

where 𝑝(𝑌|𝑍) denotes the conditional probability of 𝑌 on condition Z, which is assumed well-

defined, and 𝑌⊥ denotes the complement of a set 𝑌 ∈ ℒ. Moreover, 𝐶𝑜𝑟𝑟(𝐴, 𝐵) = "𝑝(𝐴|𝐵) >

𝑝(𝐴)", and,  𝑅𝑖𝑛𝑑(𝐴, 𝐵) denotes a causal independence condition that should be satisfied by 𝐴, 𝐵 

in order for their common cause to exist. This condition would stipulate that neither 𝐴 is the 

cause of 𝐵 nor 𝐵 the cause of 𝐴. (11) specifies that given the theory of  probability spaces  𝑇, 

 𝑅𝑖𝑛𝑑 is equivalent to the logical independence  𝐿𝑖𝑛𝑑 relation: two events  𝐴, 𝐵 are logically 

independent if and only if  𝐴 ∩ 𝐵 ; 𝐴 ∩ 𝐵⊥; 𝐴⊥ ∩ 𝐵; and 𝐴⊥ ∩ 𝐵⊥ are nonempty sets (Hofer-Szabó 

et al. 1999: 12). In order for the postulation of 𝐶𝑜𝑚𝑚𝑜𝑛1 to be an adequate definition, Suppes 

would demand that the formula that follows the expression “if-and-only-if” in (10) is derivable 

from 𝑇 (1957:158).  However, if this were the case, the explicative introduction would not create 

novel content with respect to the background theory 𝑇. Yet, as we have already explained novel 

content is required for an explication of a metaphysical concept to yield testable consequences 

in combination with 𝑇.  
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Furthermore, 𝜓1 ∈ 𝐶𝐸𝐴(𝐸1) may express in 𝐿2(𝐸1) the following  formulation of the principle of 

the common cause:  “every correlation is either due to a direct logical dependence of the 

correlated events or to an indirect connection via a common cause of the correlated events.”  

∀𝐴, 𝐵 ∈ ℒ, ∃𝐶 ∈ ℒ, such that 𝐶𝑜𝑟𝑟(𝐴, 𝐵) ⟹  ~𝐿𝑖𝑛𝑑(𝐴, 𝐵) ∨ ((10𝑎) ∧ (10𝑏) ∧ (10𝑐) ∧ (10𝑑)).   (12) 

Or, one may weaken the requested criterion of explicative adequacy for 𝐸  by letting 𝜓1′ denote 

the following claim: 

∀𝐴, 𝐵 ∈ ℒ, ∃𝐶 ∈ ℒ, such that 𝐶𝑜𝑟𝑟(𝐴, 𝐵) ⟹ ~𝐿𝑖𝑛𝑑
+ (𝐴, 𝐵) ∨ ((10𝑎) ∧ (10𝑏) ∧ (10𝑐) ∧ (10𝑑)),  (12a) 

where 𝐿𝑖𝑛𝑑
+  is the logical independence modulo measure zero events relation: two events  𝐴, 𝐵 

are logically independent modulo measure zero events if and only if  𝑝(𝐴 ∩ 𝐵) ; 𝑝(𝐴 ∩ 𝐵⊥); 

𝑝(𝐴⊥ ∩ 𝐵); and 𝑝(𝐴⊥ ∩ 𝐵⊥) are positive numbers. Since every pair of events that are logically 

independent modulo measure zero events are logically independent events, (12a) can be 

deduced from (10) and (11) together with the theory of probability spaces 𝑇. (Hofer-Szabó et al. 

2013: 12) 

Explication 𝐸1 of the common cause is just one of the eight possible explications suggested by 

Hofer-Szabó, Rédei and Szabó (2013:147), in terms of which one may provide alternative 

formulations of the principle of the common cause. To show how one can derive an observable 

consequence of the principle of the common cause, in line with (4), I will utilize 𝐸2, an 

explication alternative to 𝐸1, and the respective principle. 

Thus, consider explication 𝐸2 of the metaphysical term,  

𝐸𝑋1(𝐸2) = "common cause", 

which occurs in  

𝐿1(𝐸2) = English, 

in a language 𝐿2(𝐸2 ) rich enough to accommodate the mathematical theory of classical 

probability spaces, 𝑇, which is the background theory to 𝐸2.   
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For a probability space < 𝑋, ℒ, 𝑝 >, the explicatum of 𝐸2, is   

𝐸𝑋2(𝐸2) = 𝐶𝑜𝑚𝑚𝑜𝑛2:ℒ × ℒ → ℒ  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  (𝐴, 𝐵) ⟼ 𝐶, 

where 𝐶 ∈ ℒ is the common cause of 𝐴, 𝐵 ∈ ℒ.  

Analogously to 𝐸𝐼(𝐸1), one may introduce the notion of a common cause by means of 𝐸𝐼(𝐸2), 

defined as the conjunction of the following sentences: 

∀ℱ ⊆ ℒ × ℒ, 1 ≤ |ℱ| < ∞, ∃𝐶 ∈ ℒ ,  ∀(𝐴, 𝐵) ∈ ℱ,   𝐶𝑜𝑚𝑚𝑜𝑛2(𝐴, 𝐵) = 𝐶  

if and only if 

  𝐶𝑜𝑟𝑟(𝐴, 𝐵) ∧ 𝑅𝑖𝑛𝑑(𝐴, 𝐵) ⟹ (10𝑎) ∧ (10𝑏) ∧ (10𝑐) ∧ (10𝑑)   

(13) 

𝑇 ⊢  𝑅𝑖𝑛𝑑(𝐴, 𝐵) ≡  𝐿𝑖𝑛𝑑(𝐴, 𝐵).  (14) 

𝐸𝐼(𝐸2) postulates common causes for finite families ℱ (|ℱ| < ∞), of positively correlated causally 

independent pairs of events and not only for pairs of events, as  𝐸𝐼(𝐸1). The generalization is 

reflected on the reversal  of the order of the universal and the existential quantifier as applied, 

respectively, to the correlated pair and the common cause in 𝐸𝐼(𝐸1), and on the essential 

reference in 𝐸𝐼(𝐸2) to a finite family of positively correlated events ℱ which entails the 

association of a single common cause with that family. 

In this case, the principle of the common cause,  𝜓2 ∈ 𝐶𝐸𝐴(𝐸2), acquires the following form: 

“every correlation in any finite family of events is either due to a direct logical dependence of 

the correlated events or to an indirect connection via a common cause of the correlated events 

associated with that family”, 

∀ℱ ⊆ ℒ × ℒ, ∃𝐶 ∈ ℒ, ∀(𝐴, 𝐵) ∈ ℱ, such that 𝐶𝑜𝑟𝑟(𝐴, 𝐵) ⟹  ~𝐿𝑖𝑛𝑑(𝐴, 𝐵) ∨ ((10𝑎) ∧ (10𝑏) ∧ (10𝑐) ∧

(10𝑑)). 

(15) 
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By applying this principle to a quadruple of positively correlated pairs of logically independent 

events (𝐴1, 𝐵1), (𝐴1, 𝐵2), (𝐴2, 𝐵1), (𝐴2, 𝐵2) ∈ ℱ one may derive the following  Bell-type inequality 

(Hofer-Szabó et al. 1999; Stergiou 2012):  

 
−1 ≤ 𝑝(𝐴1 ∩ 𝐵1) + 𝑝(𝐴1 ∩ 𝐵2) + 𝑝(𝐴2 ∩ 𝐵1) − 𝑝(𝐴2 ∩ 𝐵2) − 𝑝(𝐴1) − 𝑝(𝐵1) ≤ 0      (16) 

Since 1972, Bell-type inequalities have been tested experimentally several times with the most 

recent test to have been performed in 2018 (see, Rauch et al. 2018) and the most notable one, by 

Alain Aspect and his team, in 1982. Hence, the derivation of these inequalities amounts to the 

derivation of observation statement 𝜓𝑜𝑏𝑠 from the theory of probability spaces, 𝑇, along with the 

principle of the common cause 𝜓2, (15), as required by (4).  

What remains to be examined is the indispensability of the principle of the common cause for the 

derivation of the Bell-type inequality, so as to characterize the metaphysical claim testable. 

Things, however, do not always follow our desires!  Bell-type inequalities may be inferred from 

the alternative assumption of the existence of a common cause system for a quadruple of positively 

correlated pairs of events in ℱ.9 A common cause system of size 𝑛 is a generalization of the 

common cause for a finite family ℱ of pairs of events determined in terms of a partition of the 

event space ℒ in 𝑛 parts, with 1 < 𝑛 ≤ ∞. In what follows I refer to finite size common cause 

systems (𝑛 < ∞) only and I consider them to be a third alternative account of common cause 

(Hofer-Szabó et al. 2013:147) introduced by explication 𝐸3:  

𝐸𝑋1(𝐸3) = "common cause", 

which occurs in  

𝐿1(𝐸3) = English, 

in a language 𝐿2(𝐸3) rich enough to accommodate the mathematical theory of classical 

probability spaces, 𝑇, which is the background theory to 𝐸.   

 
9 A common cause system can be defined for a single pair of events (𝐴, 𝐵). In this case, ℱ = {(𝐴, 𝐵)}. 
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For a probability space < 𝑋, ℒ, 𝑝 >, the explicatum of 𝐸3, is   

𝐸𝑋2(𝐸3) = 𝐶𝑜𝑚𝑚𝑜𝑛3:ℒ × ℒ → ℒ × …× ℒ⏞      
𝑛

  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  (𝐴, 𝐵) ⟼ (𝐶1, … , 𝐶𝑛) 

where {𝐶1, … , 𝐶𝑛} ⊆ ℒ is the common cause of 𝐴, 𝐵 ∈ ℒ.  

The explicative introduction of the common cause,   𝐸𝐼(𝐸3), consists in the conjunction of the 

following two sentences:  

∀ℱ ⊆ ℒ × ℒ, 1 ≤ |ℱ| < ∞, ∃𝑛 > 1, ∃{𝐶1, … , 𝐶𝑛} ⊆ ℒ, ∀(𝐴, 𝐵) ∈ ℱ, 

 𝐶𝑜𝑚𝑚𝑜𝑛3(𝐴, 𝐵) = (𝐶1, … , 𝐶𝑛) if and only if  

  𝐶𝑜𝑟𝑟(𝐴, 𝐵) ∧ 𝑅𝑖𝑛𝑑(𝐴, 𝐵) ⟹ (17a) ∧ (17𝑏) ∧ (17𝑐)       (17) 

𝐶𝑖 ∩ 𝐶𝑗 = ∅, 𝑖, 𝑗 = 1,… , 𝑛, 𝑖 ≠ 𝑗 and ⋃ 𝐶𝑖
𝑛
𝑖=1 = 𝑋    (17a) 

𝑝(𝐴 ∩ 𝐵|𝐶𝑖) = 𝑝(𝐴|𝐶𝑖)𝑝(𝐵|𝐶𝑖), 𝑖 = 1,… , 𝑛        (17b) 

[𝑝(𝐴|𝐶𝑖) − 𝑝(𝐴|𝐶𝑗)][𝑝(𝐵|𝐶𝑖) − 𝑝(𝐵|𝐶𝑗)] > 0 , 𝑖, 𝑗 = 1,… , 𝑛, 𝑖 ≠ 𝑗        (17c) 

𝑇 ⊢  𝑅𝑖𝑛𝑑(𝐴, 𝐵) ≡  𝐿𝑖𝑛𝑑(𝐴, 𝐵).  (18) 

 In this case, the alternative metaphysical claim 𝜓3 ∈ 𝐶𝐸𝐴(𝐸3) is the following: “every correlation 

in a finite family of events is either due to a direct logical dependence of the correlated events or 

to an indirect connection via a collection of partial common causes of the correlated events associated 

with that family.”10 

∀ℱ ⊆ ℒ × ℒ, 1 ≤ |𝐹| < ∞, ∃𝑛 > 1, ∃{𝐶1, … , 𝐶𝑛} ⊆ ℒ, ∀(𝐴, 𝐵) ∈ ℱ,  such that 

 
10 In (Hofer-Szabó et al. 2013:80) one may read: “Another natural idea is to suspect that the correlation 

between 𝐴 and 𝐵 is not due to a single factor but may be the cumulative result of a (possibly large) 

number of different ‘partial common causes,’ none of which can in and by itself yield a complete 

common-cause-type explanation of the correlation, all of which, taken together, can however account for 

the entire correlations”.   
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 𝐶𝑜𝑟𝑟(𝐴, 𝐵) ⟹  ~𝐿𝑖𝑛𝑑(𝐴, 𝐵) ∨ ((17𝑎) ∧ (17𝑏) ∧ (17𝑐)) . 

Kitajima (2017) has shown (16), for every quadruple of positively correlated pairs of events in ℱ; 

thus, (8) is satisfied. Moreover, since a common cause system for a finite family of correlated 

pairs of events is not a common cause for that family, the existence of the former does not entail 

the existence of the latter; hence, (6). Thereby,  𝜓3 qualifies as an alternative hypothesis for the 

derivation of Bell-type inequalities, 𝜓𝑜𝑏𝑠; consequently, the principle of the common cause 𝜓 is 

not indispensable for the derivation of  𝜓𝑜𝑏𝑠, and Bell-type inequalities do not qualify as 

evidence for or against that metaphysical claim. 

In this section, I considered 𝐸1, 𝐸2, 𝐸3 to be alternative explications of the concept of common 

cause and 𝜓1, 𝜓2, 𝜓3 to be alternative formulations of the principle of the common cause. This 

view, however, is not unobjectionable. The metaphysical concept explicated by  𝐸2 is also called, 

in the literature, common-common cause of a family of positively correlated pairs of events and 

that introduced by  𝐸3,  a common-common cause system. This fact, however, would not change 

much of our discussion. Instead of considering 𝐸1, 𝐸2, 𝐸3 alternative explications of a single 

concept, one should take them as explications of different concepts and 𝜓1, 𝜓2, 𝜓3, respectively,  

as formulations of different hypotheses.11  

 
11 At this point I would like to comment on a concern raised by an anonymous referee about the 

metaphysical character of the concept of common cause and of the principle of common cause. The 

referee seems to consider common cause, in its various formal versions, a scientific concept and the 

respective formulations of the principle, physical claims. It is commonplace to treat the principle of 

common cause as a general metaphysical claim about the denial of pre-established harmony and in favor 

of causal action by contact with a probabilistic and a spacetime aspect. To examine whether this general 

claim is compatible with, validated or falsified by, a scientific theory, it should be given an exact 

formulation in the logico-mathematical framework of that theory by explicating the concept of common 

cause. Thus, emerged the different probabilistic explications I examined in this paper and not as the result 

of an elaboration on a scientific theory. Moreover, no major currently accepted physical theory uses the 

notion of common cause or the principle of common cause with possible sole exception the discussion of 

foundational issues. Yet, these are pragmatic grounds and the referee is right to raise the issue of an in 

principle justification of the distinction between an explicated metaphysical claim and any other, say, 

physical claim: if both claims are formulated in the logico-mathematical context of a physical theory and 

their consequences are, in principle, empirically testable, as I attempt to argue in this paper, what is the 

justification for their being considered differently?   

 



17 
 

 

4. Multiple Explications, Multiple Tests and Prospects of Verification.  

In this section, I am going to delve into the idea of multiple tests associated with different 

explications of the same metaphysical concept. To begin with, let me define the class of 

admissible tests associated with a given metaphysical claim and a given theory 𝑇 as the 

collection of quadruples, 

TEST =  {𝑇𝑒𝑠𝑡𝑖𝑘 = 〈𝐸𝑖 , 𝑇, 𝜓𝑖, 𝜓𝑜𝑏𝑠 𝑖𝑘〉, 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾}, 

that satisfy the following condition:  

a) For every 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾, 𝑇𝑒𝑠𝑡𝑖𝑘 = 〈𝐸𝑖 , 𝑇, 𝜓𝑖, 𝜓𝑜𝑏𝑠 𝑖𝑘〉 is a test, according to the 

aforementioned conditions. 

b) For every 𝑖, 𝑗 ∈ 𝐼, 𝐿2(𝐸𝑖) = 𝐿2(𝐸𝑗) = 𝐿(𝑇), where 𝐿(𝑇) is the language of 𝑇. 

c) For every 𝑖, 𝑗 ∈ 𝐼, 𝑖 ≠ 𝑗, and 𝑘, 𝑙 ∈ 𝐾, 𝑇𝑒𝑠𝑡𝑖𝑘 = 〈𝐸𝑖 , 𝑇, 𝜓𝑖, 𝜓𝑜𝑏𝑠 𝑖𝑘〉, 𝑇𝑒𝑠𝑡𝑗𝑙 = 〈𝐸𝑗 , 𝑇, 𝜓𝑗 , 𝜓𝑜𝑏𝑠 𝑗𝑙〉, 

𝐸𝑖, 𝐸𝑗 are explication alternatives.  

d) If 𝐸𝑖 = 𝐸𝑗 then 𝜓𝑖 = 𝜓𝑗.  

Condition (a) and (b) demand that all elements of TEST are tests defined in terms of explications 

that share a common explicatum language, which is also the language of 𝑇. Condition (c) 

requires that all explications 𝐸𝑖, are explications of a single metaphysical concept originally 

expressed in the same language. The fourth condition, (d), stipulates that each test, in TEST, 

identifies one explication with one sentence in 𝐿2(𝐸𝑖) which expresses the original metaphysical 

claim. As Cordes commented (personal communication), at this point one needs to be clear that, 

in general, no explication uniquely defines a statement simpliciter; however, the set TEST is 

constructed in such a way that each explication is identified with a single sentence.   
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In terms of a set of admissible tests, TEST,  I suggest conditions for the verification and the 

falsification of a metaphysical claim. Namely, a metaphysical claim associated with a set of 

admissible tests, TEST,  is said to be  

• weakly verified if and only if, there is 𝑖 ∈ 𝐼, such that for every 𝑘 ∈ 𝐾,  𝜓𝑜𝑏𝑠 𝑖𝑘 is verified by 

experiment.  

• strongly verified if and only if, for every 𝑖 ∈ 𝐼, and for every 𝑘 ∈ 𝐾,  𝜓𝑜𝑏𝑠 𝑖𝑘 is verified by 

experiment.  

• falsified if and only if, for every 𝑖 ∈ 𝐼, there is a 𝑘 ∈ 𝐾, such that  𝜓𝑜𝑏𝑠 𝑖𝑘 is falsified by 

experiment. 

Weak verification amounts to rendering a metaphysical claim more likely true, given the 

verification of the observation sentences 𝜓𝑜𝑏𝑠 𝑖𝑘 , 𝑘 ∈ 𝐾, while strong verification verifies the 

metaphysical claim conclusively for a given theory 𝑇.  On the other hand, to falsify a 

metaphysical claim, one needs to find at least one falsification instance 𝜓𝑜𝑏𝑠 𝑖𝑘, for every 

explication 𝐸𝑖 of the metaphysical concept.   Weak verification is contradictory to falsification 

and a necessary, but not sufficient, condition for strong verification; the diagram below 

illustrates these logical relations: 

. _______⏟  
𝑠𝑡𝑟𝑜𝑛𝑔

. _________________.⏞              

𝑣𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛
𝑤𝑒𝑎𝑘

_____________________⏞            
𝑓𝑎𝑙𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

. 

 

The distinction between strong and weak verification alludes to Ayer’s distinction which 

purported to introduce a relaxation of the verifiability principle (1936). Nevertheless, there is an 

important difference between the two pairs of terms employed: for Ayer strong verification is 

an asymptotic condition, satisfied only if an infinite number of verification instances for a 

hypothesis is obtained, while each verification instance weakly verifies that hypothesis. In our 

discussion, weak verification as well may be an asymptotic condition since it may require the 
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examination of an infinite number of observation sentences 𝜓𝑜𝑏𝑠 𝑖𝑘 , 𝑘 ∈ 𝐾, associated with a 

single explication 𝐸𝑖, for some 𝑖 ∈ 𝐼. In particular, the set of indices 𝐾 , which serves to 

particularize the tests for a given explication 𝐸𝑖, may have infinite cardinality, since for a given 

explication 𝐸𝑖 and a corresponding 𝜓𝑖 one may infer in terms of the same scientific theory 𝑇 

different predictions referring, say, to local tests taking place at different spacetime points. Thus, 

weak verification of a metaphysical claim may be considered similar to Ayer’s strong 

verification of a scientific hypothesis. Moreover, strong verification of a metaphysical claim 

builds upon weak verification demanding further the metaphysical claim to be weakly verified 

for every explication  𝐸𝑖 , 𝑖 ∈ 𝐼.12 

Last but not least, Popper’s (1935:19) celebrated asymmetry between verification and falsification 

of scientific hypotheses seems not to be correct, in general, with regard to metaphysical claims. 

It can be traced on the condition that an infinite number of observation instances is required for 

the weak verification of a metaphysical claim while a finite number of observation instances is 

sufficient for its falsification. However, this condition is not trivially satisfied (see note 11). 

 

5. Discussion  

The first point to notice is that testability of a metaphysical claim is relativized to a scientific 

theory. This is expressed in the definition of weak (strong) verifiability and falsifiability of a 

metaphysical claim in association with a set of admissible tests, TEST, defined relative to a single 

theory 𝑇.  For a set of admissible tests, TEST1, defined in terms of a different theory 𝑇1, the same 

 
12 In an earlier version of this paper, I stipulated the set of indices 𝐼 that counts different explications to be 

a finite set. The rationale for this condition was the following: the act of explicating a metaphysical term 

or concept is a work in progress and the number of available explications may become all the greater. No 

matter, however, how big the number may be, it remains always finite, at any given time. However, 

Ruetsche (personal communication) observed that one may consider metaphysical concepts whose 

explications could conceivably associate them with points of space; as an example, she suggested the 

concept “the navel of the earth”. In these cases, explications are as many as points of space, hence, 

infinite. In view of her counterexample I dropped this requirement: available explications of a 

metaphysical concept may be finitely or infinitely many.  
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explication 𝐸 may not yield a statement that indispensably contributes to the generation of an 

observation sentence; hence the metaphysical claim may not be testable. Things can get worse if 

there is no explication alternative 𝐸′ that does the job and the metaphysical claim may not be 

testable in terms of a scientific theory, although it is testable in terms of another. Finally, one 

cannot exclude a priori the worst-case scenario, of a metaphysical claim being verified with 

respect to a theory 𝑇 and falsified with respect to another theory 𝑇1. 

The second remark relates to philosophical practice. Philosophers explicate metaphysical 

concepts to render them precise and to avoid ambiguity. For this reason, the explicatum 

language is taken to be more precise than the explicandum language. A formal language, the 

language of first or second order logic, would certainly be a good example of such a more 

precise language, however, there is no need to think of our scientific theories as formalized 

exclusively in these languages to have a good explicatum language. The mathematical apparatus 

of a scientific theory, be that the theory of groups, the theory of probability spaces or the theory 

of topological algebras, would certainly work quite well as explicatum language and although 

these theories can be formulated in the language of first or second order logic I find no reason to 

restrict my attention to an uninterpreted linguistic system. 

My third remark also concerns the philosophical practice of testing a metaphysical claim. 

Whenever a philosopher explicates a metaphysical concept and formulates a claim in the 

explicatum language, the aim is to examine, firstly, its compatibility with the axioms, or, more 

generally, with well-established statements of the scientific theory; secondly, to examine the 

testability of this claim, i.e. the existence of an admissible test associated with the metaphysical 

claim and defined in terms of the explication under examination;  and thirdly, to see whether 

the claim is verified (weakly) or not, for a subset of admissible tests defined in terms of that 

same explication.  

Let us take for granted the compatibility with the axioms requirement, which constitutes a 

rather obvious demand, and focus on the testability of the metaphysical claim requirement. 

Assume, as previously, that the philosopher works in the framework of a given explication 𝐸𝑖. Is 
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it correct to say that they face the following dilemma: either 𝜓𝑖 ∈ 𝐶𝐸𝐴(𝐸𝑖) induces an extension, 

in terms of  𝜓𝑜𝑏𝑠 𝑖𝑘 , 𝑘 ∈ 𝐾, of the observational content of 𝑇, or the metaphysical claim is devoid 

of factual content and can be deemed honorific? Obviously not! This is a case of a false 

dilemma, since a failure in finding a number of tests associated with a given explication,  

𝑇𝑒𝑠𝑡𝑖𝑘 = 〈𝐸𝑖 , 𝑇, 𝜓𝑖, 𝜓𝑜𝑏𝑠 𝑖𝑘〉, 𝑘 ∈ 𝐾, does not decide for the testability of the metaphysical claim per 

se. It only, forces the philosopher to consider a different explication 𝐸𝑗. Thus, a testability failure 

is ensued by devising a new explication. In a similar vein, assume that the philosopher working 

in the context of a given explication finds the metaphysical claim testable and proceeds with 

testing it. At this stage their dilemma is different: either the metaphysical claim is weakly 

verified, or it is falsified. A failure to verify the metaphysical claim leads to devising a new 

explication. The moral of the foregoing discussion is that if philosophers fail in anyone of the 

three goals set upon explicating a metaphysical concept, they suggest a different explication and 

they start all over again. This is how explications proliferate and explication alternatives are 

produced.13  

To illustrate the practice of producing novel explications of a concept upon reaching a falsifying 

consequence, I consider anew the violation of Bell-type inequalities by experiment and the 

concept of common cause. In an attempt to explain the existence of superluminal correlations 

between spatially distant quantum systems, philosophers sought to employ local causal 

principles, such as the principle of the common cause, and to infer the existence of an 

underlying common cause which would be responsible for the observed correlations. However, 

as Butterfield (1989) and van Fraassen (1989) have shown, the evocation of the principle of the 

common cause would entail the Bell-type inequalities that were experimentally falsified. In 

view of this fact, Hofer-Szabó, Rédei and Szabó (1999) re-explicated the concept of common 

cause so as to avoid the falsified observable consequence and to leave open the possibility of the 

 
13 Notice that in the process of revising an explication so as to produce an alternative, the revised 

explication is not in general independent from the original one. This practice has been conceptually 

grasped by Cordes’ definition of a more demanding explication: for all explication alternatives 𝐸, 𝐸∗, 𝐸 is 

a more demanding explication than 𝐸∗ if and only if for all 𝜓 ∈ 𝐶𝐸𝐴(𝐸∗) it holds that 𝐶𝐸𝐴(𝐸) ⊢𝐿2(𝐸) 𝜓; 

and there is a 𝜓 ∈ 𝐶𝐸𝐴(𝐸) such that 𝐶𝐸𝐴(𝐸∗) ⊬𝐿2(𝐸) 𝜓 (2017: Df.30). 
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common cause explanation of the superluminal correlation. They distinguished between two 

conceptions of the common cause: the Reichenbachian common cause, as presented by 

explication 𝐸1 in section 3, and the common-common cause as introduced by explication 𝐸2 in 

that same section. Only in the second understanding of the common cause one may infer the 

falsified Bell-type inequalities. Hence, by interpreting the common cause principle in terms of 

the first explication provided, (𝐸1), as a Reichenbachian common cause, one renders it safe from 

the violation of the Bell-type inequalities and compatible with the existence of superluminal 

correlations. “In short”, says Rédei, “under the present specification of Bell’s inequality and of 

the concept of Reichenbachian common cause, it is impossible to give meaning to the claim 

“Bell’s inequality is implied by Reichenbach’s common cause principle”; hence, on the present 

interpretation, violation of Bell’s inequality does not imply the impossibility of Reichenbachian 

common causes of superluminal correlations” (1998:224).   

What is the aim of multiplying explications for a given metaphysical concept? Is it to falsify the 

metaphysical claim examined or to evade falsification and safeguard the metaphysical claim 

from its potential falsifiers? Upon yielding a falsifying instance for a given explication, does the 

philosopher produce a new explication to falsify conclusively the metaphysical claim in the 

manner I suggested in section 4 or do they propose an alternative explication to immunize the 

claim against that falsifying instance? Hofer-Szabó, Rédei and Szabó claimed that “[t]he history 

of philosophy teaches us that metaphysical claims of sweeping generality are neither verifiable 

nor conclusively falsifiable. One can only aim at assessing their plausibility on the basis of the 

best available evidence provided by the sciences - both formal and empirical sciences.” (2013: 

173). Since they do not believe that verification or conclusive falsification of a metaphysical 

claim is possible, the best they can do is to examine its conformity with the best available 

evidence. To improve compatibility and avoid contradictions they suggest new explications of 

the metaphysical concepts so as to immunize the respective metaphysical claims against 

falsifying instances. On the contrary, I believe that conclusive falsification or verification of a 

metaphysical claim is an attainable goal, even if it is to be accomplished asymptotically, in the 

limit of empirical research. And the history of philosophy can provide at most a pessimistic 
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inductive argument against this view; however, something being unlikely in philosophical 

realms does not mean that it is false.  Thus, it is not futile to keep on looking for observation 

sentences that are verifying instances of a metaphysical claim associated with an explication or 

to multiply explications so as to attain conclusive falsification in case one bumps into a 

falsifying instance of that claim for a given explication.     

 

6. Summary 

Metaphysical claims are testable! This is the central point of this paper. Testability, however, 

rests on two assumptions: a) the claim to be tested has been expressed in the logico-

mathematical language of a scientific theory; b) the claim plays an indispensable role in 

producing new empirical content along with the theory. Cordes’ account of explication has been 

used to make condition (a) feasible. Elaborating on an idea of Psillos on the indispensable 

contribution of a hypothesis to the production of novel predictions led to the fulfillment of 

condition (b). One important feature of my account is that it makes testability of a metaphysical 

claim not a property of the claim per se but a property which is relative to a language and a 

scientific theory. Further, I illustrated my account of testing a metaphysical claim by means of 

the concept of common cause, the principle of common cause and Bell-type inequalities. I 

contended that testable metaphysical claims can, in principle, be verified and/or falsified, even 

if both verifiability and falsifiability may be attained in the limit of empirical research. Both 

verifiability and falsifiability of a claim depend on explication and on empirical evidence and 

since they apply to testable claims, they are also theory-dependent properties.  Finally, two 

different attitudes towards metaphysical claims that meet falsifying empirical evidence were 

discussed: one that tends to safeguard metaphysical claims by re-explicating them, fueled by 

the idea that metaphysical claims are unverifiable and unfalsifiable; and, the one I suggest 

which tends to produce novel explications of the metaphysical claims with the aim of obtaining 

conclusive falsification. 
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