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Abstract

Deep neural networks (DNNs), a particularly effective type of artificial

intelligence, currently lack a scientific explanation. The philosophy of science is

uniquely equipped to handle this problem. Computer science has attempted,

unsuccessfully, to explain DNNs. I review these contributions, then identify

shortcomings in their approaches. The complexity of DNNs prohibits the

articulation of relevant causal relationships between their parts, and as a result

causal explanations fail. I show that many non-causal accounts, though more

promising, also fail to explain AI. This highlights a problem with existing accounts

of scientific explanation rather than with AI or DNNs.
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1 The Need for Explainable Artificial Intelligence

The use of artificial intelligence (AI) has expanded considerably in the past decade. AI is

increasingly being used to make high-stakes decisions, often under questionable

circumstances that indicate the presence of racial or gender bias, including granting or

denying loan applications (Fuster et al. 2018), deciding which prisoners are eligible for

parole (Khademi and Honavar 2019), and diagnosing mental health disorders (Bennett et

al. 2019). If AI is used to make these decisions — especially if these decisions appear to

have reinforced biases present elsewhere in society — understanding how the algorithm

made the decision is essential. Absent explanation, arbitrary or biased decisions may go

unchecked. Computer scientists have recognized this problem and have begun developing

explainable AI (XAI), but many of their strategies haphazardly employ a mix of causal,

psychological, and counterfactual strategies that fail to generate adequate explanations.

It is impossible to explain AI without first explaining explanation. The philosophy of

science is uniquely positioned to take on this problem and offer solutions by examining

the meaning of scientific explanation and developing an account of explanation which

adequately explains AI.

An explainable algorithm is one for which a true, satisfactory explanation exists. An

interpretable algorithm is one for which a complete account of the relationships between

the steps in the algorithm exists. In many cases, AI decision and classification

algorithms are neither explainable nor interpretable. Many of the AI algorithms used in

these cases are deep neural networks (DNNs), a type of algorithm whose complexity

defies explanation in a particularly striking manner. Because explanation through

merely technological means is lagging behind the complexity of the networks that are in
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need of an explanation, it is reasonable to conclude that the solution to this problem

cannot be technological. If this is the case, a potential solution can be found in the ways

in which explanation is conceptualized within the context of AI. In order to solve the

explainability problem, it is first necessary to articulate an appropriate model of

explanation which can be effectively applied in this context.

I argue that recent attempts by computer scientists to develop XAI fail because they

do not employ a theoretically-grounded concept of explanation. Further, I show that it is

necessary to employ non-causal accounts of explanation in order to solve the problem of

explainability in AI. I begin with a brief overview of the aspects of AI that are relevant

to my argument. Then I discuss two existing methods for developing XAI: one causal,

and one non-causal. I demonstrate why each approach fails to generate a satisfactory

explanation, then I propose alternative non-causal possibilities and explore the viability

of each. I conclude that existing approaches to both causal and non-causal explanation

fail to fit the needs of XAI, though of the two approaches, non-causal accounts hold

greater promise.

1.1 Deep Neural Networks

‘Machine learning,’1 an increasingly common form of AI, is a broad term that describes

programs that can work with unexpected input data without being explicitly

programmed to do so. One of the more common contemporary approaches to machine

learning is the neural network. Neural networks attempt to replicate the behavior of

biological brains by linking input and output together via various intermediary nodes in

1for a more comprehensive overview, see Buckner (2019).
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a network. Each node is called a ‘neuron’, hence ‘neural network’. Neural networks

contain multiple layers including an input layer, an output layer, and one or more

‘hidden layers’ between the input and output. Each layer is made up of a group of

neurons. Neural networks with more than three hidden layers are called deep neural

networks (DNNs). DNNs produce a complex, often non-interpretable model that is used

in decision or classification tasks. In what is called ‘supervised learning,’ a ‘trained

model’ is created by providing labeled datasets to the DNN, which iterates over the

labeled data and builds a model capable of making the correct decision or classification

given novel data. In other words, the deep neural model is built with the deep neural

network. DNNs and the models they produce are both in need of explanation.

2 The Current Landscape: Two Case Studies

Computer scientists have made use of two contrasting strategies in order to develop XAI.

Most researchers attempting to build explainable DNNs appear to prefer causal forms of

explanation,2 however some have attempted to develop non-causally explainable DNNs.

I present instances of each approach and discuss their relationships to the explanation

literature in the philosophy of science.

2.1 Case Study One: “Rationalizations”

One approach to XAI is to develop algorithms that produce patterns of explananda that

imitate human reasoning. This is analogous to chatbots that imitate human texting

2See for example Yang et al. (2016), Jain and Wallace (2019), Khademi and

Honavarand (2019), and Sharma, Henderson, and Ghosh (2020)
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patterns. For instance, Harrison et al. (2017) uses two AIs. The first plays the classic

video game Frogger, and the second explains the actions of the first by translating

internal game state data to natural-language approximations of human-supplied

explanations. In order to accomplish this, the research team recorded human subjects

playing Frogger, then periodically paused the game and asked the subjects to verbally

explain an action that they recently took. The human responses were used as training

data for the “explainer” DNN.

Importantly, the explainer DNN was not generating veridical statements about the

internal state of the game-playing DNN, but was generating a unique natural-language

statement based on data gathered from human players when in similar in-game

situations. This approach generates psychologically satisfying explanations of AI

behavior. Because the generated explanations are only meant to approximate

human-supplied explanations of similar situations, a tradeoff is made between accurately

reporting internal DNN states and psychologically satisfying explanations. The authors

accept this tradeoff in order to obtain quickly-generated and human-like explanations.

The authors write that “rationalization is fast, sacrificing absolute accuracy for real-time

response” (Harrison et al. 2017, 1).

The explainer DNN does not supply a veridical explanation of the decision making

process used by the game-player DNN. Instead it produces statements that approximate

human-generated explanations when faced with similar in-game circumstances. Another

much deeper problem with this model is that, since the explanation of one DNN is itself

generated by a different, independent DNN, there is now a need for an explanation of the

explanation. If one black-box system is explained by appealing to a second black-box

system, nothing has actually been explained. The number of phenomena in need of
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explanation has actually increased.

If humans depend on the use of AI for a critical task, it is important that a sense of

trust in that AI is maintained. One goal of the research of Harrison et al. (2017) is to

provide explanations that reassure human operators of AI that the AI had a good reason

for doing an action that may appear to a human to be questionable. In some cases this

may mean that the AI only needs to be able to communicate that a good reason for a

particular action exists, i.e. to articulate a how-possibly explanation, rather than

communicating the right reason for the action, i.e. a how-actually explanation.

Rationalizations are an attempt to deal with the problems associated with the lack of

XAI without actually solving them. The authors endorse the view that, when it comes

to AI, we must choose between fast, intuitive, human-understandable explanations, and

technically correct explanations. Rationalizations do not attempt to provide

explanations, but instead provide fictional statements that sound like plausible

explanations.

2.2 Why Rationalizations are not Explanations

Rationalizations represent only one attempt to build non-causal XAI, but this attempt

leaves much to be desired from the standpoint of scientific explanation. Rationalizations

are explicitly non-veridical. Fictionalizations often serve a role in scientific explanation.

Many, including Potochnik (2017) and Rice (2018), have argued that fictionalizations

can play a key role in understanding. Rationalizations differ from fictionalizations in

other models. If the understanding that an explanation helps to foster is not in any sense

an understanding of a true state of affairs, then the purported explanation has not
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contributed to epistemic success, and is not actually explanatory. Rationalizations do

not make use of strategic inaccuracies in order to help individuals to come to recognize a

greater truth about the explanandum, rather rationalizations serve to further conceal the

truth behind natural language statements meant to have the appearance of an adequate

explanation with none of its substance. While there may be practical reasons why AI

developers would find it appropriate to make use of rationalizations rather than genuine

explanations, this does not imply that rationalizations have any value as scientific

explanations. Rationalizations are an attempt to articulate “how possibly” explanations

rather than “how actually” explanations. In the case of explanations of high-stakes

automated decisions, “how actually” should be the standard. Rationalizations are not

explanations.

2.3 Case Study Two: Attention Layers in Neural Networks

Attention mechanisms, introduced by Bahdanau et al. (2015), allow the training of a

DNN in such a way as to focus the network’s attention on specific input elements.

Attention mechanisms can be incorporated into neural networks as another layer of the

network as shown in figure 1. The weights of the attention layer are thought to correlate

to measures of feature importance in the input: the input has some features that are

more important than others, and if the attention layer is able to identify which features

of the input are most important, this is thought to generate explanantia by

discriminating between relevant and irrelevant inputs. Allowing the DNN to focus on the

more important parts of the input could increase the accuracy of the output. In the case

of attention as explanation, the explanandum is the output of the DNN, and the
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explanans involves an appeal to the attention layer, which points to specific input

elements. In many cases, it appeared as if the attention layer was explanatory because it

indicated which parts of the input were most important in the creation of the output.

For those evaluating these systems for explanatory value, this appears to be a plausible

explanation, though as I will discuss, there are good reasons for doubting that this is

true.

...

Arbitrary
Deep

Network
AttentionInput Output

Figure 1: Researchers often use attention weights (shown in orange) to generate explanations.
Jain & Wallace scramble attention weights and show that output remains stable; a similar result
is obtained by Serrano & Smith omitting highly-weighted attention nodes entirely.

2.3.1 Critical Responses from Computer Science

Jain and Wallace (2019) argue that the output of the attention layer cannot serve as an

explanation of the underlying DNN because it is possible to intentionally interefere with

the way the weights of the attention layer are set (called “adversarial weighting”) in such

a way that the underlying DNN produces the same output as it did under

non-adversarial weighting while the adversarial attention layer indicates the importance
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of entirely different - and obviously unimportant - elements of the input data. An

example discussed by Jain and Wallace is the use of a DNN to gauge whether a movie

review is positive or negative. The DNN outputs a number between 0 and 1 with 0 being

very negative and 1 being very positive. The attention layer indicates which words in the

movie review (the input) are supposedly more important in determining this output.

Under the non-adversarial case, a word like “waste” would be indicated as important,

whereas under the adversarial weighting, a word like “was” would be indicated as

important. In both the adversarial and non-adversarial cases, the network produced an

identical score for the review.

While the attention weights were set adversarially, they still represent a configuration

that could have occurred during the non-adversarial training of the network. In

developing a neural model under normal conditions, the production of either of the

models (adversarial or non-adversarial) are equally possible. If one expects that the

attention layer can serve as an explantion of the overall model, it must be the result of

the ability of the attention layer to identify the most important features of the input

data, but if selectively randomized attention weightings can produce the same model

output as the actual attention weights, it is difficult to see in what sense the attention

layer could possibly generate an explanation. Jain and Wallace (2019) conclude that it

cannot. Their paper is appropriately titled “Attention is not Explanation.”

Serrano and Smith (2019) make a similar argument, agreeing that attention is not

explanation. Instead of assigning randomized weights to the attention nodes, Serrano

and Smith selectively deleted many of the highest weighted - that is the supposedly most

important - attention nodes. Under these conditions the model still produced the same

output. The experiment demonstrates that if adversarial attention weightings using data
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that should adversely affect the neural model’s accuracy has no such effect, the ability of

the attention layer to discriminate between important and unimportant inputs is called

into question, and so must be any explanations that are derived from attention.

Both of these papers relied on counterfactual analyses of the attention layer in order

to come to thier conclusions: if the attention weights had been different in such and such

a way, the attention layer would have identified a different set of input features, while

the model’s output would have remained unchanged. Implicitly, both are appealing to an

interventionist account of explanation. They are attempting to determine the pattern of

counterfactual dependence among the variables in the DNN. As I show below, due to the

complexity and lack of interpretability of the systems this analysis is being applied to,

the use of the interventionist account here is inappropriate, and is not likely to lead to

the development of XAI.

2.4 Why Attention is not Explanation

Alisa Bokulich (2018) defines ‘causal imperialism’ as the view that “all scientific

explanations are causal explanations” (141). There appears to be a large amount of

causal imperialism in XAI - most attempts at XAI make use of causal explanations

exclusively, assuming that anything other than a causal explanation is a fictionalization

akin to the rationalizations described in section 2.1. Indeed, the bar for explanation

under these conditions is so high that some authors have advocated for abandoning the

project of developing explainable models entirely, opting instead only for models that are

interpretable (Rudin 2019). There are simpler models that exist that are interpretable,

such as decision trees, but they are generally less effective than more complex black box
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models. The tradeoff with these models is that a causal explanation can be more readily

derived when a model is interpretable, because a pattern of counterfactual dependence

within the model is easier to discover.

Given their complexity, a causal account of explanation that successfully explains

DNNs is likely to be impossible because a pattern of counterfactual dependence cannot

be located. The extremely high number of nodes in a DNN, each with an associated

weight, is not human parsable. A complete account of causal relationships among nodes

will also be non-parsable by humans. AI that is non-interpretable will necessarily also be

non-explainable under causal accounts, because to say that a system is non-interpretable

is to say that a pattern of counterfactual dependence cannot be established for that

system. This follows directly from the definition of non-interpretability. A

non-interpretable system is a black box system; when the inner workings of a system are

unknown, the causal relationships between that system’s components cannot be

established. Given the failure of causal accounts in the development of XAI, non-causal

accounts of explanation should be explored instead.

The criticisms of attention as explanation from Jain & Wallace and Serrano & Smith

implicitly make use of an interventionst account of causal explanation similar to that

proposed by Woodward (2003). Because the criticisms of attention as explanation

attempt to establish the existence of empirically verifiable causal patterns that hold

between the explanandum and those factors without which it would not have occurred, it

fits within Woodward’s framework. Woodward explains that “an intervention can be

thought of as an idealized experimental manipulation which changes C ‘surgically’ in

such a way that any change in E, should it occur, will occur only ‘through’ the change in

C and not via some other route” (Woodward 2018, 119).

11



In order to determine the existence of causal relationships between variables in a

system of variables, the relevant variables are subject to manipulation. Successful

explanations, on this account, require that targeted manipulations of relevant system

components cause changes in the output of that system when the system output is the

explanandum. If manipulations of these parts cause changes to the system’s output, the

core elements of an explanation are already present. Because the critics of attention as

explanation were able to modify seemingly relevant variables without changing the

system output, they concluded that deriving an explanation from attention is

inappropriate.

The criticisms of attention as explanation implicitly appealed to a view similar to the

interventionist account of explanation, but one without a requirement that some

variables in the system be held invariant such that the interventions on the system are

surgical. Following this requirement ensures that the explanation which is eventually

generated can’t be superseded by another more plausible explanation related to variables

which were not controlled for. In the social sciences, for example, a study of the effects

of diet on longevity that does not control for income is likely to be tainted by many

spurrious connections between variables that are better explained by the relationship

between income and longevity than between diet and longevity. Without holding the

extraneous variables invariant, the appropriate pattern of counterfactual dependence

cannot be established. The absence of this requirement in the criticisms of attention as

explanation may account for the results of these experiments: the discovery of

nonsensical alternative explanations derived through the same means, which allowed the

researchers to cast doubt on both sets of explanations. The situation does not improve

significantly when surgical intervention is used; the problem with applying this approach
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to a DNN is that the number of interconnected nodes is so great that engaging in a

surgical intervention on any one particular node is likely to be impossible as its value

cannot be disentangled from the values of each other node. When making this explicit

and taking this requirement into consideration, the outcome is the same - attention is

not explanation - but for a different reason. In this case attention is not explanation

because under the interventionist framework, it is impossible to engage in surgical

intervention on a DNN, and it is thus impossible to find a pattern of counterfactual

dependence among the relevant variables within the DNN.

Under the manipulability account of causal explanation, surgical intervention is a

method of testing counterfactual conditionals of the form, “if I were to change X in such

and such a way, the result would be Y.” Actually manipulating the value of X tests the

truth of this conditional. Attention is only one part of a larger system of variables. The

relevant system in this case is not attention alone, but attention in addition to the DNN

itself. While both Jain and Wallace and Serrano and Smith demonstrate the possibility

of engaging in surgical intervention on the attention configuration, similar interventions

of the remainder of the system are not possible. When surgical intervention is

impossible, all counterfactuals are rendered unintelligible since surgical intervention is in

one sense merely the testing of a counterfactual conditional. To say that surgical

intervention on a given system is impossible is to say that we cannot know the truth of

certain counterfactual conditionals about that system.

Of the two case studies explored in section 2.1 and section 2.3, what initially

appeared to be the more plausible approach (the use of causal explanations through

attention mechanisms in DNNs) now appears as if it may be a dead end. While the use

of rationalizations explored in section 2.1 has clear flaws, a factor motivating the
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approach, the desire to avoid the messy business of attempting to build causal

explanations of DNNs, may have been correct. In the following section I will explore the

possibility of applying non-causal explanations to DNNs.

3 Applying Non-Causal Accounts of Explanation to

XAI

Both the causal and rationalization approaches to XAI have so far failed to yield good

explanations of the decision process happening inside DNNs. The use of rationalizations

was an attempt to build psychologically satisfying rather than veridical explanations.

The attention example did appear to come closer to an acceptable conclusion. Even if

the conclusion was that attention is not explanatory, the discovery of this fact advances

the discussion and sets up the possibility for the discovery of other causal explanations in

the future. For reasons I discuss below, the use of non-causal explanations is more

appropriate for XAI.

The counterfactual theory of explanation (CTE) has causal and non-causal variants.

Computer scientists have previously used causal CTE in attempts to build XAI. See, for

instance, Wachter et al. (2017) and Sharma et al. (2020) These approaches suffer from

many of the same problems identified by computer scientists as discussed in section 2.3.1

and by philosophers as discussed in section 2.4. Alexander Reutlinger (2018) proposes a

pluralist extension of the CTE which would allow for both causal and non-causal

explanations under the CTE. If it is possible to use a non-causal variant of the CTE to

explain DNNs, it might be possible to overcome the objections described in sections 2.3.1
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and 2.4.

Mathematical explanation, another candidate category of non-causal explanation of

AI, comes, according to Colyvan et al. (2018), in two varieties: intra-mathematical and

extra-mathematical. Intra-mathematical explanation is “the explanation of one

mathematical fact in terms of other mathematical facts,” while extra-mathematical

explanation is “the explanation of some physical phenomenon via appeal to

mathematical facts” (Colyvan et al. 2018, 232). Extra-mathematical explanation holds

great promise for XAI because all DNNs are mathematical. One possible problem is that

the relationship between the math used to build AI models and the world is more

complicated than, e.g. the relationship between the mathematics used for graph theory

when representing the bridges in the city of Königsburg as a graph and the actual city of

Königsburg. If an AI classifier is putting images in categories, it can be described and

explained in mathematical terms, but the relevant question we seem to want answered

isn’t about the math, but about the connection between the math and the world. The

question of how an AI knows the difference between strawberries and bananas isn’t a

question limited to its internal mathematical operations because it is also appealing -

even if implicitly - to the actual difference between strawberries and bananas. The Seven

Bridges of Königsburg problem can be solved with graph theory, but the explanation is

still recognizable as representing the actual city of Königsburg. The connection between

mathematics and the world in this case is clear, but it is not clear in the case of

extra-mathematical explanations of AI.

The potential for the use of models as explanations has been disccused by Bokulich

(2011), Batterman & Rice (2014), Morrison (2015), and Potochnik (2017) among others.

Model explanations are an exciting possibility for DNNs because DNNs produce models
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which are used in decision and classification tasks. If models can serve as explanations,

the explanation for deep DNNs could be found in the models they produce (referred to

as deep neural models). One major problem with this approach is that with the types of

explanatory models discussed in the philosophy of science literature, the model and the

phenomena being modeled are different, but in the case of DNNs, the model is the

phenomenon that needs to be explained. It is clear from the literature how a model

could be explanatory of some external phenomenon, but it is not clear how a model

could explain itself. It may be the case that the deep neural model explains the DNN

rather than explaining itself, but then the problem of how to explain the model still

remains. An explanation of the network that does not also explain the model (which is

ultimately responsible for decision and classification tasks) is not enough. It isn’t just

the DNN which requires an explanation, but the DNN and the model it produces.

4 Conclusion

Because of the high stakes of AI-based decision and classification tasks, explanations of

DNNs, deep neural models, and the decisions and classifications they produce are

necessary. Computer scientists have attempted to develop explanations of these systems,

but their efforts are inadequately grounded in theories of explanation. The study of

scientific explanation by the philosophy of science is well suited to this task. non-causal

accounts appear to have greater potential to explain DNNs than causal accounts.

Non-causal variants of the CTE, extra-mathematical explanations, and model

explanations all have potential to provide explanations of DNNs in the future, though

more work needs to be done before this is possible. The persistent problems surrounding
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explanations of DNNs point to problems with existing accounts of scientific explanation

and indicate the necessity for the extension of existing accounts of scientific explanation

or the development of new accounts.
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