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2 Russell A. Poldrack

Abstract The concept of “representation” is used broadly and uncontroversially
throughout neuroscience, in contrast to its highly controversial status within the
philosophy of mind and cognitive science. In this paper I first discuss the way that
the term is used within neuroscience, in particular describing the strategies by
which representations are characterized empirically. I then relate the concept of
representation within neuroscience to one that has developed within the field of
machine learning (in particular through recent work in deep learning or “represen-
tation learning”). I argue that the recent success of artificial neural networks on
certain tasks such as visual object recognition reflects the degree to which those
systems (like biological brains) exhibit inherent inductive biases that reflect on
the structure of the physical world. I further argue that any system that is going
to behave intelligently in the world must contain representations that reflect the
structure of the world; otherwise, the system must perform unconstrained function
approximation which is destined to fail due to the curse of dimensionality, in which
the number of possible states of the world grows exponentially with the number
of dimensions in the space of possible inputs. An analysis of these concepts in
light of philosophical debates regarding the ontological status of representations
suggests that the representations identified within both biological and artificial
neural networks qualify as first-class representations.

1 Introduction

The ontological status and epistemic utility of mental representations are topics
of enduring debate within the philosophy of mind. Neuroscientists have forged
ahead largely unaware of these debates, using the term widely to describe the
systematic empirical relationships that are often found to exist between neural
activity and features of the external world. Recent work in computer science has
also begun to use the term in the context of structured relationships within a
machine learning system’s input and/or output features. My goal in this paper is
to argue that this empirical and computational work provides important insights
regarding philosophical questions about the ontological status of representations
in the brain.

I will first lay out how the concept of representation is used within neuro-
science, highlighting the degree to which the term is applied across multiple scales
of brain activity. I will then argue that we can gain substantial traction in under-
standing representations from work in machine learning that has focused on the
learning of representations (also known as “deep learning”), using the particular
example of the recognition of visual objects. I will focus on the fact that these
networks are able to learn very difficult problems with relatively few parameters
compared to the complexity of the input, and argue that this reflects an induc-
tive bias that arises from the particular architecture of the networks, which was
inspired by biological visual systems. I argue that the representations observed in
both natural and artificial neural networks do real representational work, meeting
Ramsey’s “job description” and qualifying them as first-class examples of subper-
sonal representations under at least some philosophical schemes. Based on a set
of additional insights from machine learning theory, I will argue that any system
that behaves adaptively in the world must contain internal states that bear sys-
tematic causal, informational, and structural relationships with aspects of the the
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world. Any system that does not contain such representations is destined to fail
due to the fact that there are simply too many possible combinations of features to
effectively memorize, known in computer science as the “curse of dimensionality”.

Representation in neuroscience

The use of the term “representation” in neuroscience generally refers to a sys-
tematic relationship between features of the natural world and the activity of
neurons in the brain. The presence of neural responses that are organized in a
way that is structurally isomorphic with the external world has been known for
more than a century, since the first discoveries in the nineteenth century that the
somatosensory cortex (which responds to physical stimulation of the skin) is ar-
ranged in in the brain in a way that maintains some of the spatial organization
of the physical body (Wilson and Moore, 2015). By “structurally isomorphic” I
mean here that there is a systematic relationship between the activity of neurons
and the structural (usually spatiotemporal) features of the world, such that the
larger-scale organization of neural activity maps onto the structure of the world at
the relevant scale. In particular, one of the foundational findings in neuroscience
is that most of the brain’s primary cortices are organized in a topographic man-
ner representing the spatial (visual, somatosensory, motor) or temporal (auditory)
structure of the physical body or external world. The discovery of systematically
organized patterns of activity that are isomorphic with the external world has also
extended well beyond primary cortices. Well-known examples include the spatial
organization of cortical columns in area MT (Albright et al., 1984), in which ad-
jacent columns respond to visual motion in systematically related directions; the
“salience maps” of the parietal cortex that topographically reflect the intention to
make an eye movement to a particular location in space (Goldberg et al., 2006);
and the delay-sensitive neurons of the prefrontal cortex that reflect the intention
to make a future eye movement in a particular direction (Goldman-Rakic, 1995).
Perhaps the most famous example is the “place cell” of the hippocampus (O’Keefe
and Dostrovsky, 1971), each of which responds most strongly when the animal is
in a particular location in extrapersonal space.

In each of these examples, the use of “representation” is commissioned by the
fact that there is a systematic relationship between the structure of the world
and the pattern of neural activity. In some cases the macroscopic spatial organi-
zation of neural responses is isomporphic with the structure the world, such as
the retinotopic organization of neural responses in the visual cortex, the tono-
topic organization of the auditory cortex, and the somatotopic organization of
the somatosensory cortex; in these systems, adjacent neurons respond to adja-
cent portions of the relevant stimulus space. In other cases, such as place cells in
the hippocampus, the macroscopic spatial organization of neuronal responses is
not isomorphic with the external world (i.e. nearby place cells do not necessarily
code for nearby regions of space), but the firing patterns of neurons nonetheless
exhibit a systematic relationship with the organism’s experiences in the spatial
world. Regardless of the lack of macroscopic isomorphism, most neuroscientists
are comfortable stating that these neurons “represent” the particular features of
the external world to which those neurons respond.



4 Russell A. Poldrack

The content of neural representation is often identified with a neuron’s “re-
ceptive field”, a concept generalized from the study of early sensory cortices that
refers to the specific features that cause a neuron to fire most vigorously and selec-
tively. The work that establishes this kind of knowledge assumes that the degree to
which a neuron represents a feature of the world can be inferred from its pattern
of activity, such that higher levels of firing occur when the stimulus is closer in
the relevant feature space to that neuron’s ideal stimulus. Further definition of
function is sought by identifying the boundary conditions for increased activity,
seeking to establish selectivity for particular features. However, there is some de-
gree of functional indeterminacy inherent in any ascription of function to a neural
system based on this approach, directly analogous to that noted in the philosophi-
cal literature on representations (e.g. in the context of teleosemantic theories that
posit selection for a particular function; Neander, 1995). For example, presenting
an image of a natural scene on computer screen causes strong activation in primary
visual cortical area V1. Knowing only this, it would be impossible to determine
the fundamental function of V1: Is it an “images on computer screens detector”,
a “scene detector”, a “complex visual stimulus” detector, or a detector of simple
features such as edges or color patches? The classic approach to this problem is to
systematically decompose the stimulus (based on a priori knowledge of the stim-
ulus domain), through a cycle of abductive and hypothetico-deductive reasoning.
For example, the early understanding of the receptive fields of the visual system
by Hubel and Wiesel was initially spurred by an accidental finding that led to
experiments that reduced the stimulus to its most basic elements (lines of various
widths and orientations, moving in various directions) and examined the responses
of individual neurons to those elemental stimuli.

A more recent example comes from the study of high-level visual perception,
in which a debate has raged regarding the functional description of a particular
region in the fusiform gyrus that runs along the bottom of the temporal lobe.
Early research had demonstrated that this area was active in response to human
faces, and in 1997 Kanwisher et al. proposed that the region was specialized for
the processing of faces, naming it the “fusiform face area” (FFA). This ascription
was made based on the relatively strong response of this area to faces compared
to other classes of objects; note, however, that the region is also responsive to
those other object classes, simply more so to faces. This strong claim of functional
specialization was subsequently criticized from two distinct directions. One set of
studies claimed that the region was not in fact specialized for face processing, but
instead for the expert processing of stimuli at a subordinate level of categorization,
which encompasses faces but could also encompass other non-face stimuli for which
the individual has expertise. Gauthier et al. (1999), for example, showed that this
area was activated when car experts or bird-watchers viewed objects from their
area of expertise, but not other objects, leading to an alternative description of
the area as the “flexible fusiform area” (since the “FFA” moniker had become
common parlance following the original Kanwisher paper). Another critique was
based on the use of pattern analysis methods (to be described in more detail in
the following section), which showed that objects from non-face categories (such as
cats, scissors, and chairs) could be distinguished with high accuracy based on fMRI
signals in the supposedly “face-selective” region (Haxby et al., 2001), suggesting
that at the regional level there may be a blending of these functions.
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A related approach uses statistical models known as “encoding models” to more
directly assess the relationship between stimulus features and neural activity. In
this case, a statistical model is developed that includes factors that describe each
feature of interest, allowing the researcher to determine statistically the degree to
which any particular feature is uniquely associated with neural activity. This ap-
proach helps address a challenge with many cases of functional ascription, which is
that there are often multiple possible explanatory features that are are correlated
with one another; for example, humans are inherently expert at the recognition of
human faces, such that faceness and expertise are necessarily correlated. In order
to disentangle multiple possible explanatory features, one must identify the degree
to which they uniquely explain the signal of interest. The encoding model approach
takes advantage of the fact that when multiple correlated features are combined
within a standard linear statistical model, the model will identify the degree to
which each feature accounts for unique variability within the signal, thus providing
statistical evidence for or against a particular functional ascription. As an exam-
ple, Engelhard et al. (2019) recorded the activity of dopamine neurons in mice
while the animals navigated a virtual-reality maze. The investigators developed a
statistical model that included many different aspects of the mouse’s experience,
from visual features to motor activity to expected and received reward, and fit
this model to the activity of each individual dopamine neuron. The advantage of
this approach is that the linear model estimates the unique contribution of each
variable to the neuron’s behavior, effectively discounting correlated contributions
and thus resolving functional indeterminacy that would arise if the contributions
were being assessed independently. In this particular instance, the results from the
encoding model demonstrated that dopamine neurons represent a much broader
set of features than had been expected based on previous theories. Importantly,
the scope of inference from this approach is limited to features that are included
in the model; it is always possible that the true functional ascription relates to
some correlated feature that is not included in the model.

Representational spaces

In recent years, neuroscientists have moved towards a conceptualization of “rep-
resentational spaces”, driven in particular by work that has used pattern analysis
methods to understand the larger-scale organization of neuronal responses (e.g.
Davis and Poldrack, 2013). In this approach, high-dimensional patterns of neural
activity (such as functional magnetic resonance imaging [fMRI] data or simultane-
ous recordings from large numbers of neurons) are examined across a range of stim-
uli, and the similarity of the neural responses is used to identify a low-dimensional
projection of the responses across stimuli that is often referred to as a “represen-
tational space”. A classic example of this approach comes from Kriegeskorte et al.
(2008), who examined the response of the inferior temporal cortex to a diverse
set of visual images in both humans (using fMRI) and macaque monkeys (using
electrophysiological recordings). In each case, a clustering algorithm was applied
to the response to a large number of simultaneously recorded neurons/voxels in
order to visualize a low-dimensional embedding of neural responses to specific im-
ages. Across species there was a highly similar clustering of visual images, with
a distinction between living and non-living objects at the top level, followed by
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subcategories within those larger categories (such as faces versus body parts, or
natural scenes versus objects). In fact, analysis procedures of this sort are now
commonly referred to by the general name of “representational similarity analy-
sis”, which implies that the patterns of activity being measured in the brain (and
whose similarity is being assessed) are the representations.

One challenge with the analysis of similarity spaces is that they are funda-
mentally indeterminate: There is no single “correct” similarity space within which
to compare patterns of activity, just as in general there is no single “correct” de-
composition of a dataset into lower dimensionality. As just one example, one can
perform a matrix decomposition that either allows all values or only non-negative
values, each of which is perfectly legitimate. The most common uses of represen-
tational similarity analysis attempt to sidestep this issue, by comparing similarity
spaces computed according to a common similarity metric. For example, we might
compute the similarity between patterns of neural activity for different stimuli
using a particular similarity measure, and then further compare the second-order
similarity of these similarity patterns across species or experimental conditions.
This does not absolve the approach of indeterminacy; it simply pushes that in-
determinacy down to a level below the inferences that are being made. However,
neuroscientists are generally comfortable endorsing claims about the similarity of
representational spaces, despite the fact that there is no unique underlying space
in which they can be defined.

Representation in computer science

Classically, the concept of “representation” has been used in computer science to
refer to the format of stored information; for example, in a digital computer in-
tegers are “represented” using a binary system. However, the term is increasingly
used to refer to structured informational systems that bear substantial resem-
blance to the representations discussed in neuroscience, particularly within the
study of deep artificial neural networks, known as “deep learning” (LeCun et al.,
2015). Few readers outside of that field are probably familiar with the fact that
the field of deep learning also goes by the name of “representation learning”, to
which an entire conference is dedicated (the International Conference on Learning
Representations). Here too the concept refers to the format of the information, but
the goal in representation learning is not a lossless transformation (for example
between the decimal 8 and its binary representation 1000). Instead, the structure
of the information is changed in service of some task. For example, given some
grayscale image of an object (like my cat in Figure 1), the most natural format
for the image is a two-dimensional matrix of gray levels. For some operations this
format might be useful (for example, if we wanted to compute the average bright-
ness of the image), but for other operations there are likely to be different formats
that could be more useful. For example, if we want to find different objects in
the image, it might be useful to know where the edges are located in the image,
in order to find the boundaries of the different objects. On the other hand, if we
specifically want to know whether there is a cat in the image, it would be useful to
directly apply a “cat detector”, returning an image that provides the probability
of a cat being present at each location in the image. The goal of representation
learning in this context is to find ways to transform the original features that will
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Fig. 1 A grayscale image of my cat Coco wearing a hat. This image contains 1434 X 1076 ∼
1.5 million pixels. With 256 possible gray levels in each pixel, there are more than 2561542984

possible images of this size that could be generated — far more than the estimated number of
atoms in the universe. Creating each of these images, one per nanosecond, would take many
orders of magnitude longer than the time elapsed since the Big Bang.

result in optimal performance on a some particular task, such as classification or
prediction.

Many in the philosophy literature will be familiar with the “connectionist”
neural network models that became popular in the 1980s. These models were
the source of substantial discussion and controversy regarding the degree to which
they could instantiate symbolic representations (Fodor and Pylyshyn, 1988; Pinker
and Prince, 1988; Smolensky, 1988). The deep learning approach borrows funda-
mentally from these models, but takes advantage of several advances that have
allowed these models to greatly outperform classical connectionist models, some-
times achieving human-level performance on difficult tasks such as object recog-
nition or speech recognition. The underlying structure of deep learning models is
very similar to those original models, comprising units loosely inspired by neurons,
with learning occurring through changes in the strength of connections between
units. The primary advance is evident in the name: these new models are much
deeper, in terms of the number of hidden layers, compared to classical connection-
ist models, which often only had a single hidden layer. Perhaps most importantly
in the present context, deep neural networks rely upon input representations that
are learned directly from data through training rather than being hand-crafted as
they often were in the classical connectionist approach. The ability to effectively
train deep neural networks has been afforded by a number of theoretical advances
as well as improvements in computing hardware and the availability of massive
training datasets such as ImageNet (Deng et al., 2009).
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An artficial neural network is characterized by three features (Richards et al.,
2019): Its architecture, an objective function that it aims to maximize (i.e. a formal
measure of accuracy of the task to be performed), and a learning rule by which it
is trained to maximize that objective. Here I will focus particularly on a class of
network architectures that has gained prominence for the identification of visual
images, the hierarchical convolutional neural network (which I will abbreviate
as HCNN ), a schematic example of which is shown in Figure 2. This class of
network architectures is characterized by a set of layers that can perform various
simple mathematical functions on inputs (either from the world, or from another
layer); what makes it “deep” is the presence of a large number of such layers. The
“convolutional” aspect of the HCNN refers to a particular aspect of its architecture,
in which units at one layer perform a weighted average (or “convolution”) over a
subset of units from an earlier layer; this particular feature (along with a number
of others described in Figure 2) has been strongly inspired by the structure of
biological visual systems. An HCNN is trained to perform a particular task (which
is embodied in the objective function) through a learning algorithm that aims to
optimize this objective by changing the parameters of the model. The objective
function quantifies the degree to which the network’s output matches the goal state
of the task; for example, if the task is to identify the category of an object out of
1000 possible categories, then the objective might be some function of the distance
between the actual probability of each class for a particular image (which will be
1 for its true category and zero for all others) and the estimated probabilities
for each category generated by the model. Each layer has parameters that are
learned, which include the kernels used for convolution as well as the weights on
the connections between layers. These parameters are modified on the basis of the
error for each image during training using an error-correcting learning mechanism
such as backpropagation, in which the errors at the output layer of the network
are propagated backward and used to to adjust weights at each lower layer.

Over the last decade there has been rapid progress in the ability of HCNNs
to perform object recognition tasks. For example, when the image of my cat from
Figure 1 is presented to the VGG19 neural network (which was the state of the
art in 2014), the model estimates a 19% probability that the picture is a Siamese
cat, and a 10% probability that it is a bath towel. The state of the art in 2019,
implemented in the Clarifai image recognition tool1 classifies the image as a “cat”
with 99.5% probability, even though the system has almost certainly never seen
an example of a cat wearing a hat before.

Further insight into the nature of the representations that are learned by HC-
NNs can be obtained using an in silico analogue to the neurophysiological record-
ings long used by neuroscientists to understand the receptive fields of neurons —
essentially identifying the patterns that are learned by units at various levels of
the network. Panel A of Figure 3 shows examples of the representations learned
by the units in an HCNN that are particularly responsive to different portions
of a natural image (Olah et al., 2018). This particular network (GoogLeNet) was
trained to recognize objects (including dogs and cats) based on a large set of
training examples, and from that training it appears to have developed units that
appear to serve as “detectors” for features such as dog faces, cat faces, floppy ears,
and furry legs — though these natural language descriptions necessarily fail to

1 https://www.clarifai.com/demo
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Fig. 2 Example of a convolutional neural network architecture. Individual layers perform sim-
ple computations, such as convolution with a kernel (effectively a weighted average), imposing
a nonlinearity (e.g., by setting all values below some threshold to zero), and pooling across sets
of lower units. Other layers are fully connected to one another, as in a standard connectionist
network. A deep HCNN would stack many sets of these layers between input and output.

Fig. 3 Panel A: Examples of images that maximally stimulate units within a HCNN, reprinted
under CC-BY from (Olah et al., 2018). Panel B: Examples of images that maximally stimulate
individual temporal lobe neurons, generated by the deep image synthesis approach of (Bashivan
et al., 2019). PERMISSION TO BE OBTAINED PRIOR TO SUBMISSION

capture the fundamental function of those detectors, which are ultimately defined
by the numeric values of the convolutional kernels and weights in the network. It
is nonetheless difficult to resist the natural tendency to view these putative repre-
sentations as having interpretable semantics falling at levels intermediate between
the raw input and the final object category decision.

A striking aspect of the success of deep learning is how these systems are able to
perform so well with so relatively few parameters. Imagine a very simple learning
system that would simply record the correct category for any particular image
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in a lookup table; this would require as many parameters as there are possible
images. Current deep learning systems have tens of millions of free parameters;
this may seem quite high, but it is immensely smaller than the dimensionality of
the space of possible images that are being recognized (cf. Figure 1). To understand
how this is possible, it is useful to view the job of a learning machine (such as a
neural network or a biological organism) in terms of function approximation —
that is, approximating the function that relates the state of the world to the most
appropriate actions in a way that maximizes some objective (such as the long-run
value of the outcomes of those actions). For example, the appropriate function
approximation for the image of my cat in Figure 1 given the task of describing the
image might be: f(image) = speak(“That’s Coco the cat, wearing a hat.”). Artificial
neural networks are known to be able to approximate any continuous function
(under a set of assumptions and network features)(Hornik et al., 1989), though
it is not guaranteed that an effective approximation can be learned in reasonable
time. How is it that HCNN’s are apparently so successful at learning effective
approximations in such a relatively short amount of time?

An emerging answer to this question is that there is a set of inductive biases
that are built into the architecture, which are well-matched to the underlying
function that relates visual images of objects to their category membership. As
discussed in Figure 1, the space of possible images is very large, even when con-
straining the image to a relatively small pixel array represented as gray scale
values. However, the space of possible images that could be produced by the world
is exceedingly smaller than the space of all possible images, a large majority of
which would simply look like “noise” to the human observer. This limitation arises
from the fundamental physics of our universe. Lin et al. (2017) outlined a set of
fundamental features of the laws that govern the evolution of physical systems in
our world, which are low-dimensional, local, and invariant to various transforms
(i.e. exhibiting physical symmetries). They argued that these constraints on the
effective dimensionality of the observed world are the reason that both brains and
HCNNs are able to effectively operate in the world despite having many fewer pa-
rameters than the dimensionality of the space of possible inputs. For example, the
use of convolution over small image patches in artificial neural networks, and the
relative small spatial receptive fields of the early visual cortex in primates, both
leverage the locality of the physical world. They further argued that the hierar-
chical structure of the world (reflecting the compositional nature of the multiscale
physical processes that give rise to the observed world) provides insight into the
particular effectiveness of hierarchical neural networks (both natural and artificial)
for solving these problems. Because the neural network composes a large number
of relatively simple and encapsulated operations, the number of parameters in the
model grows relatively slowly; as Lin et al. put it, this structure enables a “com-
putational swindle” in which the number of required parameters grows linearly,
rather than exponentially, with the number of relevant dimensions in the world.

Linking artificial and natural representations

As deep learning systems have become increasingly powerful, neuroscientists have
begun to investigate the parallels between those models and the biological brains.
This work has very clearly established the similarity in functional organization
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between artificial and natural neural networks; here I will focus on a set of studies
by Dan Yamins and James DiCarlo on the primate visual system (Yamins and
DiCarlo, 2016). In their work, a large number of HCNNs (varying in the specific
details of their architecture such as the number and organization of layers) are
trained to perform an image recognition task that involves labeling a large num-
ber of images according to their object categories, and the best-performing model
is selected; this is roughly akin to an evolutionary process, selecting for the ar-
chitecture that best performs the task. The HCNN class of model architectures is
loosely inspired by the structure of the primate visual system (LeCun et al., 2015),
but no neural data are used in training the network on the task. Independently, a
monkey is presented with the same images while activity is recorded from a large
number of neurons in its visual system. The researchers tested whether the organi-
zation of the task-optimized neural network model is similar to neural activity in
the monkey, defined as the degree to which activity of neurons in each brain region
can be predicted using a simple (linear) readout of the activity patterns within
each layer of the HCNN. The hierarchy of the visual system was replicated within
the neural network, such that earlier visual regions were best predicted by earlier
layers in the network, and later regions were best predicted by later layers in the
network. The investigators further examined the degree to which the similarity
structure of patterns of activity across the different images (i.e. their “represen-
tational similarity”) was similar between the the monkey neural activity and the
model’s activity. In fact, the similarity structure of the neural network model was
able to explain nearly all of the explainable variance in neural responses across
stimuli in the monkey, demonstrating a remarkable match between the representa-
tions in these two systems. Similar results have been obtained using neuroimaging
in humans, in both the visual and auditory systems (Kell et al., 2018; Khaligh-
Razavi and Kriegeskorte, 2014).

Above I discussed the nature of the internal representations that are learned by
HCNNs, which were obtained through a process akin to in silico electrophysiology.
Recently this approach for understanding the representations within an artificial
neural network has been extended to better understand the representations within
the primate brain. Bashivan et al. (2019) developed an approach called “deep image
synthesis”, which uses a closed-loop system involving a HCNN to generate patterns
of visual stimulation that maximally activate individual neurons in the monkey’s
visual area V4. The model was able to generate stimuli (see Panel B of Figure 3)
that resulted in rates of neural firing in these neurons that were far greater than
those evoked by any available natural image stimulus. Thus, the intermediate
representations learned by an HCNN not only allow it to perform well at object
recognition tasks, but are likely to be very similar to the representations present
in biological neurons; otherwise it is highly unlikely that the images generated
by maximizing the activity of those units would so strongly activate individual
neurons in the primate brain.

Do neural representations meet the job description?

Despite the profligacy with which both neuroscientists and machine learning re-
searchers use the term “representation”, their widespread usage of the term does
not necessarily legitimize its use in the philosophical sense. Rather, we must
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demonstrate that these posited representations fulfill the “job description” for
doing real representational work (Ramsey, 2007). There are, of course, nearly as
many different conceptions of this job description as there are philosophers of
mind. My approach here follows the outline of Shea’s (2013) proposed pluralistic
approach to the naturalization of representational content, which offers a relatively
clear set of criteria for representational explanation:

the strategy I am advocating is to examine a variety of representational
explanations, and for each to identify:
(a) An explanandum concerning how the system operates or behaves in
relation to its environment.
(b) A putative explanation of (a) that relies in part on attributing repre-
sentational properties to the system (e.g. keeping track of p, aiming at q,
etc.).
(c) An account of how the explanation in (b) succeeds (remaining open to
there being no such account).
(d) If there is a positive answer to (c), a characterisation of the kind of
properties the representational properties of the system would have to be
for the explanation in (b) to succeed in explaining (a) in accordance with
the account (c).

Another way of phrasing Shea’s criterion (d) was expressed by Ramsey (2007).

Are there mindless systems in which an internal element is performing a
role that is most naturally (or intuitively, or justifiably, or beneficially)
viewed as representational in nature?

Neither of the these definitions is as precise as one might like, but they nonetheless
provide a starting point for an assessment of the representations identified in both
natural and artificial neural networks.

As an example, we can apply these criteria to the primate inferior temporal
cortex in the context of its role in visual object recognition. The explanandum in
this case is the behavioral ability to recognize and name a particular object given
a particular pattern of visual stimulation (such as the image in Figure 1). Theories
of visual processing (which are implemented within the HCNN models described
above) propose that the visual cortex builds increasingly complex representations
of the visual world, with early regions representing relatively simple features such
as edges, and later regions representing more complex features. Thus, the represen-
tational work performed by these regions is the hierarchical decomposition of the
visual world in a way that allows the kind of flexible object recognition behavior
observed in primates. As argued above, this decomposition is successful by virtue
of its match to the structure of the world; in this case, the hierarchical convolu-
tional architecture of the primate visual system that is mimicked in HCNN models
reflects the compositional and hierarchical structure of the macroscopic world that
gives rise to visual images. Evidence for the success of this account comes from the
empirical success of HCNN models, both at performing object recognition tasks
and at predicting the activity of neurons in the primate visual cortex, as well as
the primate’s ability to perform the very same task using similar representations.
The state-of-the-art HCNN models can now approach human performance on a
number of visual tasks. Perhaps, more surprisingly, HCNN models (which were
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trained to perform an object recognition task) can predict the activity of neurons
in the primate visual cortex as well as, and sometimes better than, models that
were trained on neural data (Cadena et al., 2019). HCNNs can also be used pre-
dictively to generate synthetic visual images that can drive activity in neurons
that is greater than the activity evoked by any of a large number of natural visual
images (Bashivan et al., 2019). These results demonstrate the empirical success of
the explanation of object recognition in terms of a hierarchy of representation.

Shea’s criterion (d) encapsulates the “job description” question: What kinds
of properties would our representations have to have in order for the theory to
succeed? First, these representations must be reliably triggered when the the rele-
vant feature is present in the visual scene, reflecting a causal relation between the
relevant feature in the world and its representation within the system. However,
causal dependency is not sufficient to warrant representational status, as there are
cases of causal dependency that at least some readers would not take as being
truly representational. For example, beta-cells in the pancreas respond reliably to
changes in the level of blood sugar, with electrophysiological responses that are
striking similar to neurons in the brain, but few philosophers would accept the
claim that they are “representing” the blood sugar level in the same way that
brains represent the contents of thought; they are simply “receptors”.

A stronger argument is based on the structural relationships between the con-
tent of representations in visual cortex and the structure of the visual world. The
specific hierarchical architecture of both artificial HCNNs and the primate visual
system gives rise to a set of representations that reflect the hierarchical and com-
positional structure of the visual world. Mathematically, one can view the work
of these representations as projecting the high-dimensional visual input onto a
low-dimensional manifold in which natural images live; there are many versions of
the image in Figure 1 that could be created by adding particular forms of noise,
but which would be nonetheless perceived as the same object, because of this pro-
jection. It is only through the lens of representation that the function of these
systems, and their fundamental functional isomorphisms, make any sense at all.

Another important aspect of neural representations is the ability for them to
perform their representational role in the absence of the triggering stimulus (“de-
couplability”: Chemero, 2009; Clark, 1997). It has long been known that stimula-
tion of specific sets of neurons could change an animal’s behavior, and the recent
advent of optogenetic technologies allowing the precise control of neural responses
has provided striking demonstrations of the ability of patterns of neural activity to
trigger relevant behaviors. A particularly compelling demonstration of this comes
from recent work that has used optogenetic stimulation to “implant” a visual per-
cept in the visual cortex of a mouse (Marshel et al., 2019), causing the animal
to behave as if the percept existed even in the face of no actual visual stimula-
tion. Similarly, electrical stimulation of face-sensitive brain areas in humans can
result in the apparent perception of illusory faces superimposed on the visual world
(Schalk et al., 2017). Other work has shown the ability to reactivate specific mem-
ories by optogenetically activating specific sets of cells in the mouse hippocampus,
evoking fear-related behaviors in a new context (Liu et al., 2012) It is difficult to
explain this behavior without reference to representations that are triggered by
this stimulation, thus evoking the mechanisms of visual perception or memory in
the absence of direct causal influence from the world.
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The necessity of representation for effective behavior

The insights gained from computational analysis of machine learning systems al-
low one to go beyond the claim that representations do exist, to argue that rep-
resentations must exist in order for any organism (natural or artificial) to behave
intelligently in the world. To establish this argument, I return to the notion of func-
tion approximation as the goal of an adaptive organism or system. A generic way
to learn such an approximation would be through trial-and-error combined with
memorization. The organism would simply try various possible actions in various
states and update the value of each state-action pair according to the results, in
essence performing exhaustive search and memorizing the most appropriate action
for any particular state. For example, in the case of naming an object in an image,
the system could simply try possible names for each particular image until it found
the correct name, or remember the name that it was directly taught. The prob-
lem for any such model-free learner is that the space of state-action combinations
grows exponentially with the number of variables that are involved. This is known
as the “curse of dimensionality”, first noted by Richard Bellman in the context
of optimization for controlling a dynamical system. As the number of dimensions
grows, the number of samples needed to cover the entire space of possible inputs
grows exponentially. In the case of our photo, for a single pixel we would need 256
samples to entirely cover the space of possible values. For two pixels, we need 2562

(or more than 65,000) samples; and so on. For toy problems like learning which of
several slot machines to play in a casino, it is possible for a model-free machine
learning system to accurately perform the task — but only if it is provided with
the correct representation of the inputs and outputs by the researcher. For any
problem in the real world, the number of dimensions of the state and action vari-
ables will ensure that one never has enough experience to accurately determine
any more than a miniscule number of possible state-action values. The lack of any
knowledge about the relationships between states also prevents the organism from
generalizing from one state to another based on their similarity.2

A solution to the curse of dimensionality is to impose some structure on the
function approximation, allowing the system to learn a smaller set of parameters
than the exponentially-growing space of possible state-action values. This imposes
an inductive bias on the system, such that system will generalize well to the degree
that the bias imposed by the model structure accords with the structure of the
world. For example, take the image shown in Figure 1. There is a large number
of versions of this image that could be generated (e.g. by rotating the image 3
degrees and shifting it three pixels down) that would still be recognizable as my
cat Coco wearing a hat; it is only by making some assumptions about the visual
world (in this case regarding symmetries of visual images) that the primate visual
system is able to easily recognize them all as the same cat. Recognizing the cat in
this photo is also no problem for state-of-the-art image recognition tools that are
based on artificial neural networks. The only way that an artificial neural network
with millions of parameters can so effectively generalize its behavior to a new
image with such a huge possible dimensionality is that it has learned a projection

2 This is not to say that organisms don’t sometimes use model-free learning. In fact, there is
reason to think that some habits may rely on exactly this kind of learning.(Dolan and Dayan,
2013)
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of the high-dimensional data in a lower-dimensional space in which natural images
reside; for example, learning that object identity is invariant to transformations
such as small rotations or translations in the image.

One might argue that the notion of dimensionality is relative — that is, that
there is no “natural” scheme under which to quantify the dimensionality of a
particular stimulus. While this is true in principle, in reality any sensory scheme
that is going to be successful in the world must necessarily have inputs of high
enough dimensionality to invoke concerns about the curse of dimensionality. For
example, the human retina has well over 100 million photoreceptors; but even for
the lowly fruit fly Drosophila melanogaster, which has about 5600 photoreceptors
(Hardie, 1985), the dimensionality of the resulting signal space requires a struc-
tured representation of the visual world in order to successfully skirt the curse of
dimensionality. It is also important to note that this representation could arise ei-
ther through evolutionary effects on the nature of the neural architecture (as seen
in the structure of the primate visual system) or from plasticity mechanisms that
adapt to the world. For example, animals deprived of particular forms of visual
input (such as horizontal lines) will fail to develop neural representations of those
features (Blakemore and Cooper, 1970); whereas evolution has provided the archi-
tecture and learning mechanisms that give rise to structured representations, those
representations develop by virtue of an interaction between these mechanisms and
the organism’s experience.

The foregoing arguments are meant to establish the metaphysical status of
representations; their epistemic utility is another question (cf. Chemero, 2009).
Within the visual system, the representational approach has been highly success-
ful (as argued above), whereas in the study of the motor system, dynamical sys-
tems approaches have led to greater insights (Shenoy et al., 2013). Increasingly
the representationalist and dynamical systems approaches are being brought to
bear in conjunction. A prime example was seen in a study by Mante et al. (2013),
which examined how the prefrontal cortex switches its decision based on context.
Monkeys were trained to perform either a motion detection or color detection
task, based on a contextual cue, while responses from individual neurons in the
prefrontal cortex were recorded. The responses of individual neurons in the pre-
frontal cortex reflected many different aspects of the task, but an analysis of the
low-dimensional dynamics of the entire population of neurons provided substan-
tially greater insight into how the region coded information about the task, with
different dimensions in the state space coding for different aspects of the task.
The authors conclude: “In light of our results, these mixtures of signals can be
interpreted as separable representations at the level of the neural population. A
fundamental function of PFC may be to generate such separable representations,
and to flexibly link them through appropriate recurrent dynamics to generate the
desired behavioural outputs.” This fluid combination of representationalist and
dynamicist thinking highlights the degree to which conceptual dichotomies may
be useful for advancing the careers of theorists but are generally abandoned in
favor of synthetic approaches in the hands of scientists (cf. the entire history of
cognitive psychology).
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Conclusion

The concept of representation is fundamental to the explanatory practices of neu-
roscientists, and increasingly important to machine learning researchers as well. I
have argued here that a particular type of representation, referring to patterns of
activity that bear a systematic relationship to the structure of the external world
and play a causal role in behavior, is fundamentally necessary for any intelligent
organism. These representations provide the organism with an inductive bias that
is matched to the structure of the world, without which the organism will be
quickly overcome by the curse of dimensionality. More generally, the arguments
here provide a proof of concept for the utility of both empirical and computational
results from neuroscience in the analysis of fundamental philosophical questions.
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