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Abstract
We discuss the case against Factorism, which is the standard assumption in quantum 
mechanics that the labels of the ⊗-factor Hilbert-spaces in direct-product Hilbert-spaces of 
composite physical systems of similar particles refer to particles, either directly or descrip-
tively. We distinguish different versions of Factorism and argue for their truth or falsehood. 
In particular, by introducing the concepts of snapshot Hilbert-space and Schrödinger-
movie, we demonstrate that there are Hilbert-spaces and ⊗-factorisations where the labels 
do refer, even descriptively, to similar particles, which renders them probabilistically abso-
lutely discernible.

Keywords  Elementary particles · Identical particles · Similar particles · Discernibility · 
Quantum mechanics · Factorism · Distinguishability

1 � Factorism and Part States

Consider N ∈ ℕ+ particles, labelled by numerals ‘1’,‘2’, …,‘N’. In quantum mechanics 
(QM), every possible pure state of particle j ∈ {1, 2,… ,N} is mathematically represented 
by a Hilbert-vector of norm equal to 1, up to a global phase factor ( ei� , � ∈ [0, 2�) ), belong-
ing to Hilbert-space Hj . The Hilbert-space H of a composite system �N of N particles is (a 
subspace of) the direct-product Hilbert-space of the N ⊗-factor Hilbert-spaces:

A vector in HN is symmetric iff it is invariant under every permutation of the labels, and 
anti-symmetric iff it is invariant under every even permutation, and invariant up to a 

(1)H ⊑ H
N = H1 ⊗H2 ⊗⋯⊗HN .

 *	 F. A. Muller 
	 f.a.muller@esphil.eur.nl
	 http://www.staff.science.uu.nl/muller106/

	 Gijs Leegwater 
	 g.leegwater@esphil.eur.nl

1	 Erasmus School of Philosophy, Erasmus University Rotterdam, Woudestein, 3062 PA Rotterdam, 
The Netherlands

2	 Descartes Centre for the History and Philosopy of Science, Faculty of Science, Utrecht University, 
Utrecht, The Netherlands

http://orcid.org/0000-0002-7343-4649
http://crossmark.crossref.org/dialog/?doi=10.1007/s10838-020-09514-6&domain=pdf


	 F. A. Muller, G. Leegwater 

1 3

factor −1 for every odd permutation; and similarly for statistical (or density) operators in 
S(H) , which represent mixed states. According to the Symmetrisation Postulate of QM, 
for composite systems of similar fermions (i.e. having the same super-selected, or state-
independent, properties, like mass, charge, spin magnitude and baryon number), H is the 
anti-symmetric subspace of HN , denoted by H− , and for similar bosons, H is the symmet-
ric subspace of HN , denoted by H+ . All ⊗-factor Hilbert-spaces must then be chosen the 
same: Hj = Hk for every j, k ∈ {1, 2,… ,N}.1

The permutation-operators act by definition on the labels of the ⊗-factor Hilbert-spaces, 
e.g. for N = 3 and permutation 321 of 123:

One can suppress the labels in the vectors in (2) and let the typographical order do the 
labelling:

Since �u⟩1, �w⟩1 ∈ H1 , �v⟩2,∈ H2 , and �w⟩3, �u⟩3 ∈ H3 , and Hilbert-space H1 is associated 
with particle 1, etc., what could be more natural than to assume that the labels also refer 
to the particles? Indeed, nothing could be more natural. In fact, we opened this article by 
introducing the labels as names of particles and then used them too as labels of the ⊗
-factor Hilbert-spaces.2 This assumption seems to have been first unearthed explicitly and 
turned into a subject of serious thought by Lubberdink in her ms-thesis of 1998, parts 
of which were published 13 years later with her supervisor Dieks; independently it was 
implicitly unearthed by Huggett and Imbo (2009), and essentially by Saunders in 2006; 
the assumption has been baptised insipidly Factorism by Caulton, first in his PhD-thesis of 
2011.3 Insipidly, we follow suit:

Factorism.   Given a Hilbert-space H of a composite system �N of N given similar 
parts, representing the possible physical states of �N , and given a direct-product fac-
torisation of H into other Hilbert-spaces. Then the labels of these given ⊗-factor 
Hilbert-spaces refer to the N parts either directly (Direct Factorism) or descrip-
tively (Descriptive Factorism).

A number of systematic remarks on Factorism follow next.
First, we must realise that Factorism can only be judged true or false until and unless H 

has been specified and a ⊗-factorisation of H has been specified. When one uses symbols 
like ‘ H ’ and ‘ Hj ’, then nothing has been specified, because these are variables ranging over 

(2)�Π321�u⟩1 ⊗ �v⟩2 ⊗ �w⟩3 = �w⟩1 ⊗ �v⟩2 ⊗ �u⟩3.

(3)�Π321�u⟩⊗ �v⟩⊗ �w⟩ = �w⟩⊗ �v⟩⊗ �u⟩.

1  Stricto sensu isomorphic: Hj ≃ Hk , for the ⊗-factors being isomorphic will also do, even when they are 
not identical; since all complex (separable) Hilbert-spaces of the same dimension are isomorphic, it is thus 
stricto sensu sufficient to require that the ⊗-factor Hilbert-spaces have the same dimension.
2  Standard in every textbook on QM and the overwhelming majority of papers on the subject of ‘identical’ 
(similar) particles. See e.g. Cohen-Tannoudji et al. (1978), Butterfield (1993), French and Redhead (1988), 
Redhead and Teller (1992), French and Krause (2006), Saunders (2006a, b), Muller and Saunders (2008), 
Muller and Seevinck (2009), Ladyman et al. (2012).
3  Lubberdink (1998), Saunders (2006b), Huggett and Imbo (2009), Dieks and Lubberdink (2011), Caulton 
(2018b). Caulton currently prefers to call Direct Factorism “transcendental individuation”, harking back to 
a terminology of Redhead c.s. Caulton (2018a), Redhead and Teller (1992), French and Redhead (1988). 
The terminology of ‘transcendental individuation’ should not lead us to believe that a metaphysical issue is 
at stake here: the interpretation of the ×-factor labels is a semantic issue.
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the class of all and only Hilbert-spaces. Then Factorism does not express a proposition that 
can be true or false. Factorism can be made independent of such specifications and then 
expressing a proposition, by quantifying the two-fold dependence away universally ( ∀-Fac-
torism) or existentially ( ∃-Factorism), as follows:

∀-Factorism.  For every Hilbert-space H of a composite system �N of N given simi-
lar parts and for every direct-product factorisation of H into other Hilbert-spaces, 
the labels of these given ⊗-factor Hilbert-spaces refer to the N parts either directly 
(Direct ∀-Factorism) or descriptively (Descriptive ∀-Factorism).
∃-Factorism.  For some Hilbert-space H of a composite system �N of N given simi-
lar parts and for some direct-product factorisation of H into other Hilbert-spaces, 
the labels of these given ⊗-factor Hilbert-spaces refer to the N parts either directly 
(Direct ∃-Factorism) or descriptively (Descriptive ∃-Factorism).

It will be useful to define even a fourth thesis:4:

Anti-Factorism.   For every Hilbert-space H of a composite system �N of N given 
similar parts and every direct-product factorisation of H into other Hilbert-spaces, 
the labels of these given ⊗-factor Hilbert-spaces neither refer to the N parts directly 
(Direct Factorism) nor descriptively (Descriptive Factorism).

These three theses express distinct propositions, which are logically related. If ∀-Factor-
ism is true, then ∃-Factorism is true, and Anti-Factorism is false. If ∃-Factorism is true, 
then nothing follows about ∀-Factorism, it can be true and it can be false; but then Anti-
Factorism again is false. If ∀-Factorism is false, then both ∃-Factorism and Anti-Factorism 
can be true or can be false. If Anti-Factorism is true, then both ∀-Factorism and ∃-Factor-
ism are false. If Anti-Factorism is false, then ∃-Factorism is true and ∀-Factorism can be 
true or false. It will transpire that ∃-Factorism is true, ∀-Factorism is false, and hence Anti-
Factorism is also false.

Notice that for composite systems of dissimilar parts, the labels of the ⊗-factors do refer 
unproblematically to these dissimilar parts. Which is why all versions of Factorism men-
tion explicitly that the parts must be similar.

Secondly, it is rarely clear which version of Factorism is criticised by the authors listed 
above. Their generic use of symbols like ‘ H ’ and ‘ H′

j
 suggest they talk about an arbitrary 

Hilbert-space, which makes it logically equivalent to talking about all Hilbert-space (by 
the introduction-rule of ‘ ∀’). This would be Anti-Factorism and therefore they seemed 
to believe to have established the truth of Anti-Factorism. The context however usually 
reveals they have been considering a specific Hilbert-space, notably Dieks and Lubberdink 
(2011), and a specific ⊗-factorisation, which means that all they have established is that 
there is a Hilbert-space and there is a ⊗-factorisation of which the labels do not refer to 
the particles, in other words, they have established that ∀-Factorism is false by produc-
ing a counter-example. This leaves the truth of both ∃-Factorism and Anti-Factorism wide 
open. Again, we shall conclude the falsehood of Anti-Factorism and thereby the truth of ∃
-Factorism.

4  The name of which has also been introduced by Caulton (2012, § 2.2): “Anti-factorism is the doctrine that 
factor Hilbert-space indices are a gauge quantity.” These labels “do not represent anything physical”. When 
Caulton means here the ⊗-factor Hilbert-spaces of all ⊗-factorisations of all Hilbert-spaces, then this doc-
trine is the same as our Anti-Factorism.
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Thirdly, we must also realise that every version of Factorism is an assumption, because 
it does not follow from ‘the mathematics’ or the Von Neumann postulates of QM. Like 
postulating that certain Hilbert-vectors represent physical states and certain operators rep-
resent physical magnitudes, Factorism is an assumption that tells us that certain mathemat-
ical entities, the labels (for which standardly positive natural numbers are used), besides 
naming ⊗-factor Hilbert-spaces and naming operators acting in them (generically operator 
Aj acting in Hj ), are also names of the particles. Physical significance is attributed to these 
labels—and explicity denied by Anti-Factorism.

Fourthly, as Friebe has pointed out, connecting Factorism to the philosophy of lan-
guage, that standardly the labels refer directly to the particles, they are senseless names, 
in contrast to descriptive names, which refer descriptively by Russellian definite descrip-
tions.5 Whence the difference between Direct and Descriptive Factorism. In order to refer 
descriptively to a constituent particle of a physical system, the particle must be absolutely 
discerned from the other constituent particles, which means it must possess at least one 
property that all other particles lack. In the case under consideration, of physical systems 
composed of similar particles, descriptive reference seems impossible because all constitu-
ent particles share all their properties and seem therefore absolutely indiscernible; direct 
reference is then the only available option to refer. Of course, one can discern the parti-
cles absolutely by means of labels (the particle having label ‘1’), but since these senseless 
labels lack any physical significance, such discernment is physically insignificant. The par-
ticles remain physically, or empirically, absolutely indiscernible. (In fact, what is permit-
ted to discern and what is forbidden to discern in the context of QM—and beyond—has 
recently been scrutinised.6) When probability measures occur in the relations, one speaks 
of probabilistic discernment.

Do the constituent parts of a composite physical system generally also have states? Call 
the answer in the affirmative:

Part States.  All parts of a composite physical system have states.

As soon as an answer in the affirmative has been given, the next question is: what is the 
state of the parts, and how does it relate to the state of the composite system? Are the states 
of similar particles different? Before we address these questions, let us first see what argu-
ments are around in favour of adopting Part States.

The most general conception of a physical state is the mixed one, as Von Neumann pro-
posed, and mixed states are represented by statistical operators in the convex set S(H±) 
(positive, self-adjoint, trace class1 ); the expectation-value of a physical magnitude repre-
sented by symmetric operator A when the physical system is in state W is provided by the 
celebrated trace-formula:

By choosing for A the members of its spectral resolution, formula (4) yields a probability-
measure for A-measurement outcomes.

1. One reason in favour of Part States is that Part States needs no reason in QM because 
in QM it follows from the State Postulate of QM: (i) the members of S(H) represent the 
possible physical states of a physical system with which H is associated, and (ii) the 

(4)⟨A⟩W = Tr(AW).

6  Muller and Saunders (2008), Muller and Seevinck (2009), Muller (2015).

5  See Friebe (2014). To wit, Friebe defends descriptivism but not Descriptive Factorism.
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members of S(H1 ⊗H2 ⊗⋯HN) represent those of a composite system of N parts. Since 
the parts of the last-mentioned physical system are physical systems too, with which the 
⊗-factor Hilbert-spaces are associated, it follows from (i) that the possible states of part j 
are represented by members of S(Hj) . Yet one may weaken the State Postulate to (ii), and 
leave it open whether parts have states too, or even deny that parts have states. In that case, 
Part States does not follow from the State Postulate, and we may now legitimately request 
a reason for Part States.

2. The standard reason for Part States goes as follows. In principle we can perform a 
measurement of any physical magnitude pertaining to a part, viz. the position of a single 
particle, represented by a symmetrised one-particle position-operator. Repeated measure-
ments test a single-particle probability-measure. Since probability-measures of physical 
magnitudes pertaining to the composite system are generated by some statistical opera-
tor W ∈ S(H±) and some symmetric operator A acting in H± (W is guaranteed to exist by 
Gleason’s Theorem), we also want single-particle probability-measures to be generated by 
some statistical operator Wj ∈ S(Hj) and some operator Aj acting in Hj ( Wj is also guar-
anteed to exist by Gleason’s Theorem). But which one? As Van Fraassen has pointed out, 
all we need to obtain Von Neumann’s choice that Wj is the partial trace of W is to endorse 
the eminently reasonable requirement that the expectation-value of Aj acting in Hj when 
particle j is in state Wj equals the one of the trivially extended Aj to act symmetrically in H± 
when the composite system is in state W ∈ S(H±):7

For two particles, A is 1
2
(A1 ⊗ 12 + 11 ⊗ A2) , etc.

Notice that in both reasons, ∀-Factorism seems to have been taken for granted.
Next it is elementary to show that the partial traces of similar fermions are identical, 

and for similar bosons too, so that the single-particle states cannot be used to discern the 
particles absolutely, and hence cannot be used to refer to the particles descriptively in 
what would have been a physically significant manner.8 For fermions, the states are always 
improper mixtures; for bosons, pure states and improper mixtures are possible, never 
proper mixtures. Thus the similar particles remain absolutely indiscernible, even after Part 
States has been embraced. They cannot be individuated and therefore are not individuals; 
they are indiscernibles. The adoption of Part States has brought no change in the situation 
that according to QM, similar particles are indiscernibles. Moreover, Direct Factorism is 
the name of the reference game of similar particles in QM. Descriptive Factorism is out.

In order to prevent that an operator representing a physical magnitude takes Hilbert-
vectors outside H± , it must be symmetric, which is to say that it must commute with every 
permutation operator. This is known as the Indistinguishability Postulate, which is not a 
postulate because it follows from the Symmetrisation Postulate.9 That symmetrised opera-
tors must be used when considering similar particles is well-known. Less well-known is 
that when we want to measure a physical magnitude pertaining to a single particle, one 
must distinguish, in case of two particles, between (i) whether a single particle has a 

(5)Tr(AjWj) = Tr(AW).

7  Fraassen (1991, 199).
8  Fraassen (1992, 386), QM-Exclusion Corollary.
9  But notoriously not conversely. See Fraassen (1992, 381 ff), Huggett and Imbo (2009, § 3).
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property and the other does not have it, and (ii) whether at least one particle has it. Bigaj 
(2015b, 193–195) explains how and why.

Some have argued that the similar particles can be discerned by relations in physically 
significant ways, which turns the similar particles into relationals, in contrast to indiscerni-
bles and individuals.10 The first criticism against this relational discernment was that it 
is circular; this criticism has not stood up to scrutiny.11 The second criticism is that the 
discerning relations in some instances employ operators that do not obey the Indistinguish-
ability Postulate; hence no physical significance is bestowed on the discerning relations by 
the operators employed in defining these relations.12 Repair jobs of relational discernment 
have been mounted; some repair jobs have been succesful for some but not all classes of 
states, another repair job has been succesful for all states but is probabilistic in nature.13 
Leibniz’s Principle of the Identity of Indiscernibles is a metaphysical principle that is at 
stake in this debate. The proponents of relational discernibility have argued that the suf-
ficient condition for identity of sharing all properties must be extended to include also rela-
tions, in which case the principle is obeyed rather than violated by QM. The debate about 
relational discernibility and Leibniz’s principle continues but we park it here. For even if 
similar particles are relationals, they are not individuals, not absolutely discernible, and 
Direct Factorism then seems the only manner to refer to the particles.

We next turn to the arguments against Factorism (Sects. 2, 5), which we shall counter 
(Sects. 3, 5). Further, we mention a few things that are just non-trivial enough to be wor-
thy to be pointed out at all (Sect. 4, which can be omitted) and we end with concluding 
remarks (Sect. 6).

2 � Factorisable, Tangled and Entangled States

Consider a composite system of a proton and an electron with Hilbert-spaces H1 = L2(ℝ3) 
and H2 = ℂ

2 (which is admittedly a peculiar combination). This system can be in some 
product-state:

The particle labelled ‘1’ can now be descriptively referred to as ‘the particle having state-
independent properties mass mp , charge +1 and spin-magnitude 1/2’, and mutatis mutan-
dis for ‘2’. The particles can also be descriptively referred to by their states: particle1 is 
the particle in the state represented by wave-function   � , and particle2 is the particle in 
the state represented by the column-vector in (6). In superpositions, which prohibit the 
ascription of properties corresponding to magnitudes whose eigenvectors are members of 
the basis in which the superposition is expressed, neither state-dependent properties nor 
states of parts can be used for descriptive reference. But the state-independent properties 
can always be used to do the job of descriptive reference. These particles are absolutely 
discernible, they can be discerned in physically significant ways, they are individuals, and 

(6)�𝜓⟩⊗ �↑z⟩ = 𝜓 ⊗

�
1

0

�
∈ L2(ℝ3)⊗ ℂ

2.

10  Saunders (2006a, b), Muller and Saunders (2008), Muller and Seevinck (2009), Saunders (2013).
11  French and Krause (2006), Hawley (2009), Muller (2015).
12  Huggett and Norton (2014), Caulton (2013), Bigaj (2015a).
13  See references in the previous footnote, and Friebe (2014).
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they can be individuated by their state-independent properties, which they always possess. 
For composite systems of dissimilar particles, Descriptive Factorism holds good. Direct 
Factorism holds good too, but has become otiose.

There are three arguments against Factorism around, which all pertain to composite sys-
tems of similar particles:

•	 The Argument from Tangled States (current section).
•	 The Argument from Entangled States (current section).
•	 The Argument from Measurement (Sect. 5).

Before we exposition these arguments, first some preparations.
Since similar particles cannot be discerned by: their state-independent properties, by 

their physically insignificant senseless labels, or by their states if they have them (their 
states are all the same), the only way to discern them is by means of their state-dependent 
properties (or relations). Here the troubles begin. Product-states, like �u⟩1 ⊗ �v⟩2 , cannot 
be anti-symmetric, so turning the directly referring labels into descriptive ones by means 
of the states is not on.14 Product-states can be symmetric, but only when the ⊗-factors are 
alike, as in: �u⟩1 ⊗ �u⟩2 , which means that both particles are in exactly the same state �u⟩ 
and hence discernment by means of the states is not on.

The inquiries into entanglement by Ghirardi  et al. (2002) c.s. has however led to the 
view that there are non-factorisable states in which particles can be discerned by means of 
descriptive reference.15 They call non-factorisable states that result from anti-symmetrising 
a product-state ‘not entangled’; we shall call them tangled. Call a non-factorisable state 
that does not result from (anti-)symmetrising some product-state entangled. The non-fac-
torisable vectors then subdivide in tangled and entangled ones. One good reason to draw 
this distinction in the non-factorisable states is that only entangled states, when considering 
spin and position, lead to a breach of a Bell-inequality, whereas tangled states do not lead 
to a breach.16 When in 1935, Schrödinger famously wrote about what he called ‘entangle-
ment’: “I would not call that one but rather the characteristic trait of quantum mechanics, 
the one that enforces its entire departure from classical lines of thought”, one can only 
endorse this when by ‘entanglement’ is meant how Girardi et  al. characterised it, to the 
exclusion of the non-factorisable tangled states, which do not warrant a departure from 
classical lines of thought. (But see the Envoi in Sect. 7.)

For the sake of clarity and future reference, here are three running examples of Hilbert-
vectors of each type, for two similar spin 1/2-fermions, with Pauli-spinor Hilbert-space 
L2(ℝ2)2 as the single-particle state-space (thus including all degrees of freedom: position, 
momentum, spin):

14  If �u⟩
1
⊗ �v⟩

2
= Π

12
�u⟩

1
⊗ �v⟩

2
= −�v⟩

1
⊗ �u⟩

2
 , then �v⟩ or �u⟩ , or both, must be the zero vector; but the 

zero vector does never represent a physical state.
15  Ghirardi et al. (2002), Ghirardi and Marinatto (2004), Ladyman et al. (2013), Friebe (2014).
16  Gisin (1991) proved that all non-factorisable states of two dissimilar particles give rise to a breach of 
Bell’s inequality. For the different case of similar particles, see e.g. Caulton (2018a), Theorem 3.4, Corol-
lary 4.4.
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Wave functions �L; t⟩, �R; t⟩ ∈ L2(ℝ3) are wave-packets moving in opposite directions 
(called ‘Left’ and ‘Right’) in configuration space ℝ3:

and

with dispersion function 𝜔(k) = ℏk2∕2m , wave-vector � = �∕ℏ = m�∕ℏ , and length 
k = ‖�‖ . Velocity � is the velocity of the peak of the wave-packet in configuration-space—
not the velocity of the particle. Here are the Pauli-spinors:

and mutatis mutandis for �R,↑z ;t⟩ and �R,↓z ;t⟩.
The Argument against Descriptive Factorism from Tangled States. As we mentioned 

above, factorisable vectors like �Φ(t)⟩ do not represent possible physical states of a similar 
particles system. Ghirardi c.s. submit that the tangled vector �Θ(t)⟩ represents a state such 
that one particle has z-spin up and is moving to the left (Left-zUp) and the other particle 
has z-spin down and is moving to the right (Right-zDown).17 For dissimilar particles, such 
a state is represented by �Φ(t)⟩ , but the Symmetrisation Postulate forbids this and makes us 
anti-symmetrise �Φ(t)⟩ , which yields �Θ(t)⟩ . This interpretation of �Θ(t)⟩ contravenes the 
standard Strong Property Postulate (aka under the somewhat misleading name ‘Eigenstate-
Eigenvalue Link’18), according to which a physical system in pure state ��⟩ has quantita-
tive property ⟨A, a⟩ iff A��⟩ = a��⟩.19 Hilbert-vector �Θ(t)⟩ is neither in an eigenstate of 
any spectral projector of the position-operator (wave-packets have infinite tails) nor in an 
eigenstate of �z , and then can neither be localised in any spatial region nor possess a z-spin 
property ⟨�z,±1⟩ . Particles can have quantitative properties even when not in eigenstates, 
say Ghirardi et al., provided their non-factorisable state is tangled. Descriptive reference 
becomes a viable option again.20

(7)

factorisable ∶ �Φ(t)⟩ = �L,↑z ;t⟩⊗ �R,↓z ;t⟩.
tangled ∶ �Θ(t)⟩ =

1√
2

�
�L,↑z ;t⟩⊗ �R,↓z ;t⟩ − �R,↓z ;t⟩⊗ �L,↑z ;t⟩

�
.

entangled ∶ �Ψ(t)⟩ =
1

2

�
�L,↑z ;t⟩⊗ �R,↓z ;t⟩ − �L,↓z ;t⟩⊗ �R,↑z ;t⟩

+ �R,↑z ;t⟩⊗ �L,↓z ;t⟩ − �R,↓z ;t⟩⊗ �L,↑z ;t⟩
�
.

(8)R(�;t) =
1

(2�)3∕2 ∫ℝ3

A(�, 0) exp
(
i(� ⋅ � − �(k)t)

)
d � ∈ L2(ℝ3),

(9)L(�;t) =
1

(2�)3∕2 ∫ℝ3

A(�, 0) exp
(
i(� ⋅ � + �(k)t)

)
d � ∈ L2(ℝ3),

(10)�L,↑z ;t⟩ =

�
L(t)

0

�
and �L,↓z ;t⟩ =

�
0

L(t)

�
,

17  Ghirardi et al. (2002, 86).
18  Misleading, because the eigenvalue-eq. connects eigenstates to eigenvalues, which is a mathematical 
connexion that does not involve properties. The Strong Poperty Postulate states a strong connexion between 
a physical system possessing quantitative properties and having a particular type of state.
19  Formulations encompassing continuous spectra and mixed states are available but glossed over.
20  About 25 years ago, Van Fraassen also presented, in the context of the modal interpretation of QM 
(which also renounces the Strong Property Postulate), a model of a composite system of fermions with 
individuation, that is, with descriptive reference, turning the fermions into absolutely discernible objects. 
Fraassen (1992, 427 ff.)
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For the Factorist who wants to endorse this interpretation, the following problem arises. 
Was the particle initially directly referred to by label ‘1’ Left-zUp or Right-zDown? The 
Factorist cannot answer: it has to be one of them, because we all agree there are two parti-
cles. The descriptions Left-zUp and Right-zDown are in the tangled state associated to two 
vectors, each one in a different Hilbert-space, and therefore associated to both labels ‘1’ 
and 2’.

So it seems there is strong case that for tangled states, the Hilbert-space labels do not 
refer to particles, and for those states, Direct as well as Descriptive Factorism fails.

The Argument against Factorism from Entangled States. The move to descriptive 
reference is unavailable for the entangled state �Ψ(t)⟩ (7), which is empirically distin-
guishable from the tangled state �Θ(t)⟩ , for there is no correlation anymore in the terms 
between spin and space. Both Alice (at the left wing of the celebrated Einstein–Podol-
sky–Rosen–Bohm–Bell experiment) and Bob (at the right wing) have a probability of 1/2 
to find z-spin up and to find z-spin down, whereas in the tangled state �Θ(t)⟩ , Alice has 
nearly probability equal to 1 to find spin up (Left-zUp) and equally Bob to find spin down 
(Right-zDown).21 Spin and space now have become entangled. Direct reference returns. 
One can maintain that the Hilbert-space labels refer to the particles and that these sense-
less names cannot be filled with physical significance by means of physically significant 
descriptions as in the tangled case. Descriptive Factorism is not on. Yet this implies that 
Direct Factorism with its senseless, referring labels remains the only live option to refer.

But perhaps descriptive reference is on after all. When in the tangled state �Θ(t)⟩ we can 
have Left-zUp and Right-zDown, why can we not have in the entangled state �Ψ(t)⟩ Left-
and-no-z-spin-property and Right-and-no-z-spin-property? We can have that.

We can calculate the probability that Alice and Bob find a particle in their detector, 
while not measuring its spin; they then perform a position measurement. Here are the Born 
position-probability densities, which ‘move’ in ordinary space (represented by ℝ3 ); one is 
moving towards Alice:

and the other one is moving towards Bob:

where 1{�} is the characteristic function of singleton-set {�} , so that 1{�}(�) = 1 if � = � , 
and 1{�}(�) = 0 if � ≠ �.22 We have again two absolutely discernible particles, discerned 
by their distinct position-probability densities, �L and �R , respectively. The particles have 
become individuals.

Dieks and Lubberdink (2011) have indicated that this way of looking at entangled 
states—and tangled states, if not all states whenever warranted—is needed for the clas-
sical limit of QM. The peaks of the position-probabilities in space, provided we end up 
with N single-peaked position-probabilities in space for N-particle systems, follow classi-
cal trajectories according to Ehrenfest’s Theorem, because the peaks move with a velocity 
in space equal the expectation-value of the velocity-operator in such cases.

(11)�L(�, t) ≡ 1{�}(�1) |L(�1;t)|2 + 1{�}(�2) |L(�2;t)|2 = 2|L(�, t)|2,

(12)�R(�, t) ≡ 1{�}(�1) |R(�1, t)|2 + 1{�}(�2) |R(�2, t)|2 = 2|R(�, t)|2,

21  Nearly, because the position probabilities have infinite tails.
22  These position-probability densities can also be obtained from the ones in configuration space by means 
of delta-distributions: �(�

1
− �) and �(�

2
− �).
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The situation with the entangled state thus has become the same as with the tangled 
state. Both position probabililty-densities involve both labels, manifest in (11) and in (12) 
by ‘ �1 ’ and ‘ �2 ’. So just as in the tangled case, the Hilbert-space labels do not refer to parti-
cles. Direct as well as Descriptive Factorism fails.

There is however one caveat. The wave-packets of non-interacting particles, as in the 
EPRB-case, spread rather quickly. Within no time, the position-probability densities are 
nearly uniform. For example, when we consider electrons and a Gaussian wave-packet hav-
ing a width equal to the Bohr radius (the size of an H-atom in its ground state: 10−11m), 
then after one second, the width has become:

which is about three times the Lunar distance. The probability to find the electron at 1 sec-
ond beyond the moon is 1/3. The situation of absolute discernment is over in the wink of 
an eye.

Cold comfort for the Factorist, because a situation of nearly uniform wave-packets is 
not going to help Factorism to regain its long reign of dominance, albeit shifting Hilbert-
spaces. So Factorism rest in peace after all? Not so quick. All considerations above are 
about a specified Hilbert-space, the anti-symmetric subspace of infinite-dimensional Pauli-
spinor Hilbert-space:

But what if we specify a different Hilbert-space? We shall see what then happens in the 
next section.

3 � Snapshot Hilbert‑Space and Schrödinger‑Movies

We can bury ∀-Factorism with appropriate honours, that much should be evident by now. 
But how about ∃-Factorism?

We now construct a 4-dimensional proper subspace of Pauli-spinor space (14) with 
descriptively referring ⊗-factor Hilbert-space labels. During the short time-interval 
where the criticism of Factorism has bite, the pairs of wave-functions are approximately 
orthogonal:

Now we consider the direct-product Hilbert-space spanned by the following tangled 
vectors:23

(13)Δx(t) =
a

2

√
1 +

4ℏ2

m2
e
a4

t2 ≈ 10−11

√

1 +
(10−34)2

(10−30)2(10−11)4
≈ 106 km,

(14)
(
L2(ℝ3)2 ⊗ L2(ℝ3)2

)
−
.

(15)⟨L;t�R;t⟩ = ∫
ℝ3

L∗(�;t)R(�;t) d� ≈ 0.

23  A similar contruction is alluded to by Huggett and Imbo (2009), Section 2, eq. (3). Caulton (2018a) also 
takes heed, below Corollary 4.4.
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We ⊗-factorise this snapshot Hilbert-space H(t) into Hl(t) and Hr(t) such that:

where �↑z ;t⟩l ∈ Hl(t) and �↑z ;t⟩r ∈ Hr(t) . Then we have:

The history of the two-fermion system is some curve in L2(ℝ6)4 . The continuous 
sequence of 4-dimensional snapshot Hilbert-spaces t ↦ Hl(t)⊗Hr(t) , which we call the 
Schrödinger-movie, envelops this history.24 In this movie, the single-particle labels ‘ l ’ and 
‘ r ’ can be taken as descriptive names: particle l is the particle moving to the left in space 
(Left) and r is the particle moving to the right in space (Right), but neither particle pos-
sesses a z-spin property ⟨�z,±⟩.25 So when it said that we are dealing with ‘two particles in 
the singlet state moving in opposite directions’, then this description does not fit the Bohm 
singlet state:

because the spatial degrees of freedom are absent from (19), but these words do fit the 
spin-space entangled state �Ψ(t)⟩ (7) in the snapshot basis:

When we watch the tangled �Θ(t)⟩ in the Schrödinger-movie, it factorises:

which has single-particle Hilbert-space labels that we take to refer descriptively: l is Left-
zUp and r is Right-zDown.

So neither the argument against Factorism from Tangled States nor the one from Eng-
tangled States is as decisive as their proponents believe: they wound ∀-Factorism lethally, 
but leave ∃-Factorism scatheless. In fact, for the case of two spin-1/2 fermions, we have 
proved ∃-Factorism.

Before we turn to the third and last argument against Factorism, we first want to make a 
few remarks inspired by our Schrödinger-movie.

(16)

�↑z↑z ; t⟩ ≡ 1√
2

�
�L,↑z ; t⟩⊗ �R,↑z ; t⟩ − �R,↑z ; t⟩⊗ �L,↑z ; t⟩

�
,

�↑z↓z ; t⟩ ≡ 1√
2

�
�L,↑z ; t⟩⊗ �R,↓z ; t⟩ − �R,↓z ; t⟩⊗ �L,↑z ; t⟩

�
,

�↓z↑z ; t⟩ ≡ 1√
2

�
�L,↓z ; t⟩⊗ �R,↑z ; t⟩ − �R,↑z ; t⟩⊗ �L,↓z ; t⟩

�
,

�↓z↓z ; t⟩ ≡ 1√
2

�
�L,↓z ; t⟩⊗ �R,↓z ; t⟩ − �R,↓z ; t⟩⊗ �L,↓z ; t⟩

�
.

(17)�↑z↑z ;t⟩ = �↑z ;t⟩l ⊗ �↑z ;t⟩r, �↑z↓z ;t⟩ = �↑z ;t⟩l ⊗ �↓z ;t⟩r, etc.,

(18)H(t) = Hl(t)⊗Hr(t) ⊏ L2(ℝ6)4.

(19)
1√
2

�
�↑z⟩⊗ �↓z⟩ − �↓z⟩⊗ �↑z⟩

�
∈ ℂ

2 ⊗ ℂ
2 = ℂ

4,

(20)

�Ψ(t)⟩ =
1√
2

�
�↑z↓z ;t⟩ − �↓z↑z ;t⟩

�
=

1√
2

�
�↑z ;t⟩l ⊗ �↓z ;t⟩r − �↓z ;t⟩l ⊗ �↑z ;t⟩r

�
.

(21)�Θ(t)⟩ = = �↑z↓z ;t⟩ = �↑z ;t⟩l ⊗ �↓z ;t⟩r,

24  This history is a solution of Schrödinger’s equation, whence the name.
25  The spatial meaning of the labels makes this come close to Friebe’s (2014) Kantian irreducible demon-
stratives.
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4 � Intermezzo: Parts and Degrees of Freedom

This section contains a few explanatory remarks about QM in general, which can be passed 
over. An arbitrary vector in the Pauli-spinor Hilbert-space of one electron can be expanded 
based on basis-vectors �j ∈ L2(ℝ3) ( j ∈ ℕ+):

When we now write:

it is obvious that we can write Pauli-spinor space as the direct product L2(ℝ2)⊗ ℂ
2 . This 

shows that the physical significance of ‘ ⊗ ’ is ambiguous. Usually it marks the combination 
of Hilbert-spaces pertaining to the different subsystems of a composite system. But here 
we have a single electron, which has no parts. In this case, ‘ ⊗ ’ marks a separation of (spa-
tial and spin) degrees of freedom.

For two spin-1/2 particles, we then can write (the anti-symmetric subspace of) Pauli-
spinor Hilbert-space (14) as follows:

The physical significance of ‘ ⊗ ’ in the left expression is one of different composing parts, 
in the right expression one of separation of different degrees of freedom, and in the middle 
expression both kinds of physical significance occur.

Another thing to notice about ‘ ⊗ ’ is that ⊗-factorisations are not unique, which has 
as a consequence that by staring at a ⊗-factorised Hilbert-space, we will not get a clue 
what the modelled physical system is and even not about how many particles compose 
it. For example, we have:

which is a state space of two particles in 3 spatial dimensions, and of three particles in the 
plane ( ℝ ), and of six particles on a line ( ℝ)—and even of one particle in a 6-dimensional 
Euclidean space ( ℝ6 ). Moreover, all these Hilbert-spaces are also isomorphic to L2(ℝ) , 
pertaining to a single particle on a line. Moral: to specify a Hilbert-space, which represents 
the set of all possible physical states of a physical system, does next to nothing to specify 
that physical system.

The ⊗-factorisation of spin and space in (24) does not mean that spin and space also 
⊗-factorise in every state. But in the case of the anti-symmetric subspace they do. Here 
is again the space-spin singlet (7), in degree-of-freedom-factorised state:

(22)
�
�

�

�
=

∞�

j=1

�
⟨�j��⟩

�
�j
0

�
+ ⟨�j��⟩

�
0

�j

��
.

(23)
(
𝛼j
0

)
= 𝛼j ⊗

(
1

0

)
and

(
0

𝛼j

)
= 𝛼j ⊗

(
0

1

)
,

(24)

(
L2(ℝ3)2 ⊗ L2(ℝ3)2

)
−
≃

(
L2(ℝ3)⊗ L2(ℝ3)⊗ ℂ

2 ⊗ ℂ
2
)
−
≃

(
L2(ℝ6)⊗ ℂ

4
)
−
.

(25)
L2(ℝ6) ≃ L2(ℝ3)⊗ L2(ℝ3)

≃ L2(ℝ2)⊗ L2(ℝ2)⊗ L2(ℝ2)

≃ L2(ℝ)⊗ L2(ℝ)⊗ L2(ℝ)⊗ L2(ℝ)⊗ L2(ℝ)⊗ L2(ℝ),

(26)

�Ψ(t)⟩ =
1√
2

�
�L;t⟩⊗ �R;t⟩ + �R;t⟩⊗ �L;t⟩

�
⊗

1√
2

�
�↑z⟩⊗ �↓z⟩ − �↓z⟩⊗ �↑z⟩

�
.
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A vector slightly deviating from anti-symmetry, and therefore not a member of the anti-
symmetric state-space, is the following one in snapshot Hilbert-space, which deviates 
slightly from �Ψ(t)⟩ (20):

This vector represents a state of two dissimilar particles. The vector does not ⊗-factorise in 
a spin and a spatial part. In the grand Hilbert-space (24), this vector looks as follows:

Hence no snapshot Hilbert-space for dissimilar particles ensues—which is not bad news 
for Factorists because for dissimilar particles, even ∀-Factorism rules.

5 � Measurement and Locality

Friebe (2014) considers the tangled state �Θ(t)⟩ (7). Bob performs a joint measurememt on 
one particle of y-spin and of a projector in the spectral resolution of the position-operator, 
that projects on the volume in space occupied by the y-spin detector of Bob ( VR ⊂ ℝ

3 ). 
(This joint measurement of spin and position is possible because the corresponding opera-
tors commute.) Alice does not perform any measurement. The symmetric operator that rep-
resents Bob’s measurement is this one:

We further assume that Bob measures at a time t = � when the bulk of the position-propa-
bility of �R;�⟩ is at VR , so that P��R;�⟩ ≈ �R;�⟩ , which implies that the probability to detect 
one particle at t = � at VR is nearly 1. Since the eigenstate of y-spin down is a superposition 
of eigenstates of z-spin up and z-spin down, the probability to find y-spin down at VR equals 
1/2.

Suppose Bob finds y-spin down and detects one particle at VR . State �Θ(t)⟩ then collapses 
to:

where �R,↓y ;�⟩ is the Pauli-spinor localised at VR and being an eigenvector of y-spin with 
eigenvalue −1 . The collapsed state �Θ(�)⟩ (30) remains a tangled state. There was a particle 
Left-zUp before the measurement and there remains one after the measurement. The par-
ticle Right-zDown, on which Bob has performed the measurement, is now Right-yDown.

Next Friebe points out that if Factorism is correct (and Part States is assumed), then the 
post-measurement states of both particles are the partial traces of (30), and they are the 
same. Furthermore, their state is different from their pre-measurement state. The change 
of state of one particle is due to Bob’s measurement of y-spin and location in VR of this 

(27)
√
0.49

�
�↑z ;t⟩l ⊗ �↓z ;t⟩r

�
−
√
0.51

�
�↓z ;t⟩l ⊗ �↑z ;t⟩r

�
.

(28)

√
0.49 �L,↑z ;t⟩⊗ �R,↓z ;t⟩ −

√
0.51 �L,↓z ;t⟩⊗ �R,↑z ;t⟩

−
√
0.49 �R,↓z ;t⟩⊗ �L,↑z ;t⟩ +

√
0.51 �R,↑z ;t⟩⊗ �L,↓z ;t⟩.

(29)
1

2

(
P�(VR)𝜎y ⊗ 1 + 1 ⊗ P�(VR)𝜎y

)
.

(30)�Θ(𝜏)⟩ =
1√
2

�
�L,↑z ;𝜏⟩⊗ �R,↓y ;𝜏⟩ − �R,↓y ;𝜏⟩⊗ �L,↑z ;𝜏⟩

�
,
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particle (labeled ‘1’ or ‘2’ but one cannot know which), whereas Alice has left the other 
particle alone. Then why has its state changed? In case of an entangled state, we would, 
versed in QM as we are, have expected this, but �Θ(�)⟩ is a tangled state.26

Give up direct reference, and thereby Direct Factorism, embrace Ghirardi’s interpreta-
tion of tangled states, which entails giving up Descriptive Factorism too, and the problem 
evaporates.

When we move to snapshot Hilbert-space (see Sect. 3), the tangled state �Θ(�)⟩ (30) ⊗
-factorises and the labels of the ⊗-factor Hilbert-spaces can be provided with descriptions. 
Descriptive Factorism with specified snapshot Hilbert-space has been vindicated, and this 
proves ∃-Factorism.

6 � Concluding Remarks

When we enter the noisy movie theatre of the grand Hilbert-space with its infinitely many 
dimensions (14), (24), Factorism plays the part of the whipping boy in the movie Compos-
ite Physical Systems of Similar Particles, for the tangled as well as the entangled cases. 
But when we watch the Schrödinger-movie in a continuous sequence of snap-shot Hilbert-
subspaces of four cosy dimensions, Factorism is the indomitable hero: the labels of the 
⊗-factor Hilbert-spaces of snapshot Hilbert-space can be taken to play descriptive roles. 
Descriptive reference and ∃-Factorism vindicated. In both Hilbert-spaces we can calculate 
the relevant probabilities of the position and spin degrees of freedom.

Finally, after having kissed Factorism goodbye, Caulton (2012; 2018a, b) devised the 
following construction. For the sake of simplicity, we stick to a composite system of two 
similar particles, with Hilbert-space

Let E� ,E� ∈ L(H) be two orthogonal projectors (members of the lattice), which will indi-
viduate the two particles—thus the particles will become absolutely discernible. Consider 
the following subspace:

obtained by letting a symmetric operator act on H2
±
 , thus guaranteeing that its range lies 

inside H2
±
 . One particle always has a state in subspace H𝛼 ≡ E𝛼[H] ⊏ H and the other par-

ticle H𝛽 ≡ E𝛽[H] ⊏ H.
The state of the composite two-particle system then is in H𝛼 ⊗H𝛽 . The labels of these 

⊗-factor Hilbert-spaces then can be taken as descriptive names of the particles: the particle 
with state in H� and the particle with state in H� . Caulton ends up with nothing less than 
two absolutely discernible particles—and even Leibniz’s Principle of the Identity of Abso-
lute Indiscernibles is vindicated uno tenore.

Ironically, Caulton began by rejecting Factorism (in fact ∀-Factorism) and intended to 
devise an ‘anti-factorist’ alternative ⊗-factorisation of the Hilbert-space of the composite 
system, only to end up with a rigorous proof of ∃-Factorism and a refutation of Anti-Fac-
torism. Smile, please.

(31)H
2
±
= (H⊗H)±.

(32)H±(𝛼, 𝛽) ≡ (E𝛼 ⊗ E𝛽 + E𝛽 ⊗ E𝛼)[H
2
±
] ⊏ H

2
±
,

26  To aggravate the problem, one can easily argue that we have a breach of EPR-Locality here. Exercise.
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7 � Envoi

We baptised non-factorisable states that result from anti-symmetrising a product-state as 
tangled (p. 8). Ghirardi et al. claimed that only entangled states lead to violations of Bell’s 
inequality, and thus that tangled states do not.27 Yet take this product state:

Anti-symmetrising this state yields:

This state then must be tangled, not entangled, according to Ghirardi et al., and therefore 
should not violate any Bell inquality. But �Ξ(t)⟩ (34) does violate a Bell inequality and is 
very entangled. Were Ghirardi et al. mistaken to propound that, contra communis opinio, 
tangled states do not deserve to be called ‘entangled’ because they do not lead to a viola-
tion of some Bell inequality?
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