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This is a draft that has not been through peer review, so unlimited deniability of all 
embarrassing falsehoods, misrepresentations, and mistakes is reserved. Please send 
comments, corrections, criticisms, etc., to dw473@cam.ac.uk.  

Is the Brain an Organ for Prediction Error Minimization? 

Abstract. An influential body of research in neuroscience and the 
philosophy of mind asserts that the brain is an organ for prediction error 
minimization. I clarify how this hypothesis should be understood, and I 
consider a prominent attempt to justify it, according to which prediction 
error minimization in the brain is a manifestation of a more fundamental 
imperative in all self-organizing systems to minimize (variational) free 
energy. I argue that this justification fails. The sense in which all self-
organizing systems can be said to minimize free energy according to the 
free energy principle is fundamentally different from the alleged sense in 
which brains minimize prediction error. Thus, even if the free energy 
principle is true, it provides no support for a theory of the brain as an 
organ for prediction error minimization – or any other substantive theory of 
brain function. 

Keywords: predictive processing; prediction error minimization; predictive 

coding; free energy principle 

1. Introduction 

A large number of neuroscientists and philosophers endorse the claim that the brain 

obeys an overarching imperative to minimize prediction error (Clark 2013; 2016; 

Friston 2019a; Hohwy 2013; 2016; Seth 2014). Jakob Hohwy, for example, asserts 

that “the brain is an organ for prediction error minimization” (2016, p.259), that 

“prediction error minimization is the only principle for the activity of the brain” (2016, 

p.260), and that “the only processing aim of the… [brain] is simply to minimise 

prediction error” (Hohwy et al. 2008, p.689). Similarly, Andy Clark claims that brains 

“are fundamentally prediction-error minimizing devices” (2017a, p.727), that 

“cognition… is always and everywhere a matter of minimizing prediction errors 

concerning the evolving flow of sensory information” (2017b, p.115), and that 

“perception, cognition, and action are manifestations of a single adaptive regime 

geared to the reduction of organism-salient prediction error” (2016, p.138). I will 
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henceforth refer to this hypothesis as Prediction Error Minimization (PEM), which as 

a first approximation I will state as follows:  

Prediction Error Minimization: The only function of the brain is to minimize 

prediction error. 

PEM is an extraordinary claim. Prima facie, the brain performs a multiplicity of 

distinct social and ecological functions, many of which appear to have nothing to do 

with prediction or minimizing prediction error. Extraordinary claims require 

extraordinary evidence and arguments. Have proponents of PEM met this 

justificatory burden?  

Strangely, most existing critiques of PEM do not ask this question. Instead, they 

pursue two different strategies. The first points to behaviours that appear to be 

directed at outcomes either orthogonal to or at odds with minimizing prediction error. 

The “dark room problem,” for example, centres on the objection that an imperative to 

minimize prediction error mistakenly implies that agents will seek out maximally 

predictable environments such as dark rooms and stay there (see Friston et al. 

2012). The standard responses to this objection point to the timescale over which 

prediction error minimization occurs and the kinds of predictions that drive the 

behaviour of evolved biological agents (Friston 2013a; Hohwy 2013). This leads to a 

second persistent criticism of PEM, however: namely, that anything can – with 

sufficient ingenuity – be described in terms of its contribution to minimizing long-term 

prediction error, which makes PEM untestable and thus unscientific (Sun and 

Firestone 2020). 

The argument that I advance in what follows is very different from these two 

critiques. I agree with critics of PEM that it is likely sufficiently flexible to 
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accommodate any observable behaviour, but I also agree with proponents of PEM 

that this is not itself a reason for rejecting it (Hohwy 2015). Crucially, however, it is 

obviously not a reason for endorsing it, either. The important question is thus 

whether there are independent reasons for endorsing PEM. Proponents of PEM 

contend that there are. If they are right, its flexibility is irrelevant. If they are not, we 

have been given no reason to consider it in the first place. It is far better to evaluate 

these arguments directly, then. At least with respect to one prominent argument for 

PEM, this is the strategy that I pursue here. Of course, before such issues can be 

dealt with at all, we first need to know how to understand PEM. Widespread claims 

to the effect that prediction error minimization constitutes the brain’s only imperative, 

function, processing aim, or goal are not easy to understand. What do such claims 

mean? How should they be evaluated?  

I have two principal aims in this article. The first is to clarify PEM and thus attempt to 

address the foregoing questions. I take up this task in Section 2. The second is to 

consider a prominent attempt to justify PEM, according to which prediction error 

minimization in the brain is a manifestation of a more fundamental imperative in all 

self-organizing systems to minimize (variational) free energy (Friston 2010; 2019a; 

Hohwy 2013; 2015; Seth 2014). I outline this argument in Section 3, and I argue that 

it is unsuccessful in Section 4. Specifically, I argue that the sense in which all self-

organizing systems can be said to minimize free energy according to the free energy 

principle is fundamentally different from the sense in which the brain is alleged to 

minimize prediction error according to PEM. Thus, even if the FEP is true, it provides 

no independent support for PEM. Indeed, it provides no independent support for any 

causal theory of brain function. I conclude in Section 5 by considering the 

implications of this lesson for the epistemic status of both PEM and the FEP.  
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2. Understanding Prediction Error Minimization 

Before clarifying how PEM should be understood, it will be useful to provide a brief 

overview of predictive processing, the broader framework within which it is typically 

embedded. Predictive processing has been reviewed numerous times in both 

neuroscience and philosophy (see Clark 2016; Hohwy 2020b; Seth 2014). Thus, 

here I will restrict myself to just those aspects of the framework that are relevant to 

my arguments in what follows.  

2.1. Predictive Processing 

What does it mean to minimize prediction error? In the most basic case, at least, 

“prediction error” names the divergence between the sensory information generated 

by the body and environment and the brain’s attempts to predict that sensory 

information from a hierarchical probabilistic generative model of its bodily and 

environmental causes. A generative model captures the process by which data are 

generated. A hierarchical generative model decomposes this generative process into 

a hierarchy, such that each successive level of the generative model represents the 

elements and properties responsible for generating the phenomena represented at 

the level below it. A probabilistic generative model captures statistical relationships 

that connect the elements of the modelled system and defines probability 

distributions or densities over its states. 

According to predictive processing, the brain’s attempts to minimize the error in its 

predictions of proximal sensory inputs both installs and updates a hierarchical 

probabilistic generative model of the bodily and environmental causes of those 

inputs. Crucially, this process of prediction error minimization is thought to be 

“precision-weighted,” such that the degree to which the brain’s predictions are 
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updated in light of prediction errors is constantly adjusted according to their 

estimated precision or certainty: the more precise predictions are (i.e. the more 

confidence associated with them) relative to incoming sensory information, the less 

they are updated in light of prediction errors, and vice versa. Precision-weighting 

thus plays an important role in modulating the relative influence of different bodies of 

information throughout the brain, and it connects prediction error minimization to an 

approximate form of Bayesian inference. It is widely held by proponents of predictive 

processing that this process of precision-weighted prediction error minimization is 

implemented in cortical circuitry through predictive coding, a message-passing 

scheme in which top-down connections in cortical hierarchies carry predictions about 

activities at lower levels and bottom-up connections carry information about the 

errors in those predictions (Friston 2005; Rao and Ballard 1999).  

So far, of course, this story of brain function is highly passive. According to predictive 

processing, however, action also emerges from the overarching imperative to 

minimize prediction error, except that rather than updating predictions to bring them 

into alignment with incoming evidence, action involves intervening on the 

environment to bring sensory information into alignment with the brain’s predictions, 

a process often described as active inference (Friston 2013a). Of course, for this to 

work an organism’s goals must be encoded as predictions and some goals must be 

encoded as inviolable predictions. It is typically held that the most fundamental of 

these action-guiding predictions are endowed by evolution (Friston 2010).  

This extremely minimal overview of predictive processing will suffice for my purposes 

in what follows. Needless to say, it neglects many important complexities, nuances, 

and theoretical extensions of the framework. For example, I have largely glossed 

over the important temporal dimension of prediction error minimization. As 
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proponents of predictive processing stress, however, the imperative to minimize 

prediction error is best understood in terms of the imperative to minimize long-term, 

average prediction error, which can sometimes be facilitated by short-term increases 

in prediction error (Hohwy 2013). For expository convenience, I will ignore this 

complication in what follows. 

More generally, the basic framework of uncertainty-weighted prediction error 

minimization within hierarchical probabilistic generative models has been extended 

to accommodate different forms of content and structure in generative models, the 

difference between pragmatic and epistemic motivations, complex computations 

involving not just actual but expected prediction error, and more (see Friston et al. 

2017; Hohwy 2020b; Parr and Friston 2019). Such elaborations demonstrate both 

that the overarching imperative to minimize prediction error can be decomposed into 

myriad constitutive functions, and that – when suitably elaborated – prediction error 

minimization can generate many different capacities captured in a higher-level 

psychological vocabulary, such as perception, learning, decision-making, planning, 

and so on. What unites such developments under the same framework, however, is 

the view that this complexity ultimately exists in the service of minimizing (long-term, 

average) prediction error (see Clark 2016; Hohwy 2013; 2020b). As Hohwy (2015, 

p.2) puts it, PEM 

“claims that the brain has one overarching function. There is one thing the brain 

does, which translates convincingly to the numerous other functions the brain is 

engaged in” (my emphasis).   

2.2. Understanding Prediction Error Minimization  

Variants of PEM are expressed in many different ways in the philosophical and 

scientific literature. We are told, for example, not just that prediction error 
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minimization constitutes the brain’s overarching “function” (Hohwy 2015), but that it 

is the brain’s sole “imperative” (Friston 2018), “processing aim” (Hohwy et al. 2008), 

and the thing that all brain activity is “geared to” (Clark 2016). What unites such 

varied articulations of PEM is the assumption that prediction error minimization in 

some sense constitutes the exclusive telos of the brain. This is the claim that I intend 

to focus on in what follows. Thus, I am not concerned with the claim that prediction 

error minimization constitutes one important function of the brain, or with the claim 

that some form of generative model-based probabilistic inference plays a central role 

in neural information processing. I find both such claims highly plausible (see Section 

5). Both claims are much weaker than PEM, however.  

Nevertheless, it is not clear how to interpret PEM. What does it mean to say that 

prediction error minimization constitutes the brain’s only function or imperative? 

What is such a claim committed to? The most natural interpretation is that we should 

understand it in the way that we understand the attribution of functions to biological 

structures more generally. Regarding PEM, for example, Hohwy (2014, p.1) writes 

that “there is one main function of the brain, on a par with the heart’s pumping of 

blood.” 

Of course, there are deep philosophical controversies concerning how to understand 

functional hypotheses in biology and cognitive science. The two most influential 

approaches are etiological (Wright 1973) and systemic (Cummins 1975) theories. 

Roughly, etiological theories hold that the function of a structure is the effect that 

explains how it came into existence, either through intentional design or through 

natural feedback processes such as evolution and reinforcement learning. According 

to systemic or causal role theories of functions, by contrast, functional hypotheses do 
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not explain the presence of a trait or structure. Rather, they identify the causal 

contribution of a component or mechanism to a capacity of a broader system.  

I do not want to take a stand on which of these interpretations of functions best 

applies to PEM. Indeed, I want to allow for the possibility that a wholly different – 

perhaps sui generis – functional interpretation is intended. Instead, I want to focus on 

what both theories of functions share in common, and what is widely regarded to be 

a necessary feature of any such theory: functional hypotheses are subject to a 

causal constraint. In the case of etiological-evolutionary theories, for example, 

functional hypotheses identify the feature or effect of a structure that caused it to be 

selected (Wright 1973). In the case of systemic theories, functional hypotheses 

specify the causal contribution of a structure or mechanism to the exercise of 

particular capacities (Cummins 1975). In the case of PEM, then, it must be the case 

that prediction error minimization causally explains either why the brain evolved, or 

its contribution to “perception and action and everything mental in between” (Hohwy 

2013, p.1). Of course, the brief overview of predictive processing outlined above 

shows that PEM is widely understood as a causal-explanatory hypothesis of this 

kind. That is, predictive processing views “prediction-error minimization as the driving 

force behind learning, action-selection, recognition, and inference” (Clark 2013, 

p.191; my emphasis). Thus, any argument or evidence for PEM must bear on the 

causal relevance of prediction error minimization. I will henceforth call this the causal 

constraint.  

On any interpretation, PEM is extremely radical. As Hohwy (2014, p.1) 

acknowledges, “Most would agree that it would be controversial or even 

preposterous to claim that there is one main function of the brain, on a par with the 

heart’s pumping of blood.” Of course, it is possible that the apparent multiplicity of 
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functions and capacities produced by the brain is consistent with – indeed, explained 

by – an overarching function to minimize prediction error. Nevertheless, radical 

hypotheses require powerful evidence and arguments. In the next two sections I 

consider one such argument, according to which PEM receives justificatory support 

from the free energy principle (FEP) (Friston 2010; 2019a; Hohwy 2013; 2015; Seth 

2014). As I will return to in Section 5, this is not the only justification of PEM that has 

been advanced, and some proponents of PEM are explicitly agnostic about the FEP 

(e.g. Clark 2013; 2016). Nevertheless, it is one of the most prominent justifications of 

PEM found in the literature, its scope and ambition are consonant with PEM’s 

radicalism, and – as will become clear – its character as a justification is 

independently interesting from the perspective of epistemology, psychology, and the 

philosophy of science.  

3. The Free Energy Principle and Prediction Error Minimization 

The FEP developed primarily by Karl Friston (2009; 2010; Friston et al. 2006) is 

highly controversial, with debates raging in philosophy and the cognitive sciences 

concerning how to understand its justification, content, epistemic status, and 

implications (see Colombo and Wright 2018; Hohwy 2020b). Nevertheless, two ideas 

in this burgeoning literature appear to be widely shared among proponents of the 

FEP. The first is that the FEP is supported by a transcendental argument aimed at 

establishing from first principles the claim that all self-organizing systems obey an 

imperative to minimize (variational) free energy (see Friston 2009; 2010 2019). The 

second is that prediction error minimization in the brain can be viewed as a 

manifestation of this fundamental imperative of self-organization (Buckley et al. 

2017; Friston 2019a; Hohwy 2020a; Seth 2014). In this section I review both ideas, 

postponing any evaluation of them until Section 4.  
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3.1. The Transcendental Argument 

The attempt to establish the FEP from first principles is widely understood as a 

transcendental argument (Colombo and Wright 2018; Friston and Stephan 2007; 

Hohwy 2020b). Thus, Friston (2019a, p.175) writes that the argument “starts by 

asking fundamental questions about the necessary properties thing must possess, if 

they exist.” In this section I outline just those aspects of the argument that are 

relevant for understanding and evaluating the position that I defend in Section 4.  

Applied to biological systems,1 the transcendental argument involves three core 

ideas that I have highlighted in Buckley et al’s (2017, p.56) succinct summary:  

“[1] …[A]ll (viable) biological organisms resist a tendency to disorder as shown by 

their homoeostatic properties… [2] [They] must therefore minimise the occurrence of 

events which are atypical (‘surprising’) in their habitable environment… [3] Because 

the distribution of ‘surprising’ events is in general unknown and unknowable, 

organisms must instead minimise a tractable proxy, which according to the FEP turns 

out to be ‘free energy’.” 

First, then, the transcendental argument begins with the tautology that a necessary 

condition for survival is that biological systems maintain themselves in those states 

consistent with their survival. Thus, for any biological system one can define a state 

space characterising the range of possible states it could be in, with each dimension 

of this space corresponding to the range of possible values that variables 

representing the system could take. In order to preserve its structure and 

organisation, a biological system must limit itself to a highly constrained subset of 

 
1 In more recent formulations, the FEP subsumes all things that persist as distinctive systems over 
time (Friston 2019a; 2019b; see Section 4.2.2 below).    
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such states, which constitute the system’s attracting set (Friston 2013b). The 

transcendental argument thus purports to address  

 

“how a biological system, exposed to random and unpredictable fluctuations in its 

external milieu, can restrict itself to occupying a limited number of states, and 

therefore survive in some recognisable form” (Friston 2012, p.2100).  

 

This first stage of the transcendental argument is often framed in terms of 

homeostasis and the second law of thermodynamics (Friston 2009; 2010; 2012). The 

second of law of thermodynamics states that closed systems tend towards a state of 

thermodynamic equilibrium or maximum entropy (i.e. disorder). “Homeostasis” refers 

to the process by which organisms exchange matter and energy with their 

environments to maintain their structure and organisation in the face of this tendency 

towards disorder. In doing so, they maintain a steady state far from thermodynamic 

equilibrium – or, equivalently, a nonequilibrium steady state (Friston 2013b). 

Because the impact of the environment is mediated through a biological system’s 

sensory transducers, understood broadly to include all features of a system’s 

boundary through which external states influence its internal states, the “system’s 

‘states’ can… be understood in terms of its sensations, which mediate the influence 

of the external world upon the system” (Hohwy 2020b, pp.3-4; see also Friston 2010; 

2019a).  

 

According to the first stage of the transcendental argument, then, biological systems 

must maintain themselves within those sensory states consistent with their survival. 

Thus, if we observe such systems when they are alive, we will find that there is a 

high probability that they will be in such survival-consistent states and a low 
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probability that they will be in states inconsistent with their survival (Friston 2010; 

Hohwy 2015). For any self-organizing system, one can therefore define a probability 

distribution over all of its possible states that captures this fact, referred to as a 

nonequilibrium steady state distribution or density.2 Given this probability distribution 

or model, survival can now be described in terms of the avoidance of improbable 

states relative to this probability distribution. The negative logarithm of the probability 

a state, S, given a model or probability distribution M, P(S|M), is known in 

information theory as surprisal or self-information, the long-term average of which is 

Shannon entropy (Friston 2010). Thus, surprisal is large if the probability of the 

observed data given the model is low.  This implies that “existence entails minimizing 

surprise,” such that “any self-organizing system that is at nonequilibrium steady-state 

with its environment must minimize surprise, given a model” (Hohwy 2020b, p.4). 

Equivalently, minimizing surprising sensory states can be thought of as “maximizing 

the sensory evidence for the agent’s existence, if we regard the agent as a model of 

its world” (Friston 2010, p.128; my emphasis).  

 

Summarising the first two stages of the transcendental argument, Friston (2010, 

p.128) writes, “So far, all we have said is that biological agents must avoid surprises 

to ensure that their states remain within physiological bounds. But how do they do 

this?” The third stage of the transcendental argument answers this question. It 

involves two central claims: first, that evaluating surprisal directly is impossible; 

second, that systems can approximate the minimization of surprisal by minimizing 

 
2 I will use “distribution” to subsume both probability distributions over discrete states and density 
functions over continuous states throughout.   
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variational free energy, a quantity that places an upper bound on surprisal. As 

Friston (2010, p.128) writes,  

 

“A system cannot know whether its sensations are surprising and could not avoid 

them even if it did know. This is where free energy comes in: free energy is an upper 

bound on surprise, which means that if agents minimize free energy, they implicitly 

minimize surprise.”  

 

“Free energy” here (and henceforth) refers to variational free energy, an information-

theoretic quantity that roughly captures the improbability of an observational 

conditional on a model of its causes (Friston 2010). For understanding my argument 

in what follows, all one strictly needs to know is that variational free energy 

minimization provides a computationally tractable means of minimizing surprisal. 

Thus, readers exclusively concerned with my argument can skip the rest of this sub-

section. To get an intuition for this part of Friston’s argument, however, it is useful to 

approach this topic from the perspective of Bayesian inference (see Buckley et al. 

2017; Gershman 2019).  

 

(Bayes’ Theorem)  

 

𝑝(𝐻|𝐸) =  
𝑝(𝐻)𝑝(𝐸|𝐻)

𝑝(𝐸)
 

 

If {E} is the set of sensory states encountered by a system and {H} is the set of 

possible hypotheses about its environmental causes, Bayes’ theorem specifies the 

optimal procedure for updating the probabilities assigned to such hypotheses in light 
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of novel sensory states. To calculate this posterior, however, one must evaluate the 

denominator p(E), known as the marginal likelihood or model evidence, which is 

equal to a summation (for discrete states) or integration (for continuous states) over 

the product of the priors p(H) and likelihoods p(E|H) for all possible hypotheses. 

When dealing with large discrete hypothesis spaces, this is often practically 

infeasible. When dealing with continuous states, it can be analytically intractable. 

Thus, when Friston (2009, p.294) claims that biological systems cannot evaluate 

surprisal directly because “this would entail knowing all the hidden states of the world 

causing sensory input,” this is because of the connection that he draws between 

surprisal and the (negative) model evidence in Bayesian inference, which requires 

knowledge of the probability of E conditional on all possible hypotheses (see Friston 

2010; 2019a). This equivalence enables him to draw on the mathematics of 

variational inference, which provides methods for replacing exact Bayesian inference 

with optimization techniques for approximating its results without having to compute 

the model evidence directly (Bishop 2007). As Gershman (2019, p.1) puts it, “The 

basic idea of the FEP is to convert Bayesian inference into an optimization problem.” 

 

The technical details here are not relevant to my argument (see Buckley et al. 2017 

and Gershman 2019 for an overview). The underlying intuition is relatively 

straightforward, however. Assume that a biological system encodes a generative 

model (or G-density) in its internal states capturing the joint probability of sensory 

states and environmental causes p(E, H), factored into the prior p(H) and likelihood 

p(E|H) distributions in Bayesian inference. Rather than trying to compute the exact 

Bayesian posterior directly, p(H|E), variational inference involves optimizing a 

recognition model (or R-density), q(H), in such a way as to minimize its divergence 
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from p(H|E). The smaller this divergence, the better the recognition model 

approximates the true posterior. Crucially, variational free energy is a quantity that 

enables a system to evaluate this divergence without knowing the true posterior 

because it is dependent on three things which a system can access: (1) data (i.e. 

sensory states), (2) the aforementioned generative model p(E, H), and (3) the 

approximate recognition model q(H) over the parameters of this generative model 

that it is free to optimize (Friston 2010).3 As Buckley et al. (2017, p.57) point out, 

variational free energy therefore “has two functional consequences”:  

 

“First it provides an upper bound on sensory surprisal. This allows organisms to 

estimate the dispersion of their constituent states and is central to the interpretation 

of FEP as an account of life processes. However, VFE [i.e. variational free energy] 

also plays a central role in a Bayesian approximation method.”  

 

The upshot is that the impossible task of minimizing surprisal directly can be 

replaced with the tractable task of minimizing variational free energy, which is 

mathematically constructed to place an upper bound on surprisal. This establishes 

the FEP itself: “Any self-organizing system that is at nonequilibrium steady-state with 

its environment must minimize its free energy” (Hohwy 2020, p.1).  

 
3 The distance between q(H) and p(H|E) is given by the Kullback-Leibler (KL) divergence:  

𝐷𝐾𝐿(𝑞(𝐻) || 𝑝(𝐻|𝐸))  =  ∫ 𝑑𝐻  𝑞(𝐻) ln 
𝑞(𝐻)

𝑝(𝐻|𝐸)
 

The denominator in the right-hand side of equation requires knowledge of p(H|E), however. 
Nevertheless, it is well-established in statistics that one can rewrite this equation as,  

𝐷𝐾𝐿(𝑞(𝐻) || 𝑝(𝐻|𝐸))  = 𝐹 +  ln 𝑝(𝐸) 
Here, F is known as variational free energy or (more commonly) the negative of the evidence lower 
bound (see Bishop 2007):  

𝐹 = 𝑑𝐻 𝑞(𝐻)ln 
𝑞(𝐻)

𝑝(𝐸, 𝐻)
 

As this equation shows, F can be computed solely from the recognition and generative models (see 
Buckley et al. 2017 for a review).  
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3.2. Connecting PEM to the FEP 

The FEP does not say anything specifically about the brain. Nevertheless, it is widely 

held by proponents of the FEP and PEM that the imperative to minimize prediction 

error in the brain emerges “as a consequence of a more fundamental imperative 

towards the avoidance of “surprising” events” established by the FEP (Seth 2014, 

p.5). Thus, Friston (2009, p.293) claims that “the free-energy principle is an attempt 

to explain the structure and function of the brain, starting from the very fact that we 

exist” (my emphasis), and Hohwy (2020b, p.1) claims that the FEP can be regarded 

as “a grand unifying principle for cognitive science and biology.”  

Friston’s remark about the structure and function of the brain suggests that the FEP 

has two interrelated implications for neuroscience. The first concerns the brain’s 

function. As Friston (2009, p.300) puts it, the FEP provides a “mathematical 

specification of ‘what’ the brain is doing.” Specifically, it implies that “everything we 

do serves to minimise surprising exchanges with the environment” (Friston and 

Stephan 2007, p.417; my emphasis), such that “all neuronal processing (and action 

selection) can be explained by maximizing Bayesian model evidence – or minimizing 

variational free energy…” (Friston et al. 2017, p.1; my emphasis). 

The second implication concerns the brain’s structure or causal organization. We 

have seen that minimizing variational free energy implicates a distinctive 

computational architecture involving probabilistic generative and recognition models 

and free energy minimization. Thus, the FEP implies that the brain and its 

constituent parts and operations implement this abstract computational scheme and 

the architecture that it involves. Specifically, it is widely held that the FEP specifies a 

space of so-called process theories that describe “concrete algorithmic 
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implementations of the overall computational scheme set out by FEP’s use of 

variational Bayes, often given various assumptions” (Hohwy 2018, p.164; see Clark 

2017b; Friston 2019a).  

The reference to assumptions here is crucial. Although free energy minimization 

involves a distinctive computational architecture, this overarching architecture is 

consistent with multiple “different generative models, different algorithmic 

approximations, and different neural implementations” (Gershman 2019, p.4). PEM 

can be understood as a way of applying the FEP to the brain by making specific 

assumptions about these features. Specifically, PEM assumes that the generative 

model is hierarchically structured, that probability distributions are Gaussian and thus 

encoded by their sufficient statistics (i.e. their mean and precision), and that the 

approximate posterior factorizes across hidden states both within and between levels 

of the model, such that non-adjacent levels of the hierarchy are conditionally 

independent (Friston 2005; Hohwy 2020b). Further, it is associated with an evolving 

implementational theory in which this process of hierarchical precision-weighted 

prediction error minimization involves (among other things) canonical cortical 

microcircuits, cortical hierarchies, and the role of various neuromodulators in 

realising precision-weighting (Bastos et al. 2012; Friston 2005).   

Stepping back, then, the FEP does not logically imply any specific process theory. 

Rather, it demarcates a space of process theories consistent with the overall 

computational scheme and objective function that it describes (see Allen and Friston 

2016; Clark 2017b; Friston 2019a; Hohwy 2018). This nuanced relationship between 

PEM and the FEP is succinctly expressed by Hohwy (2020a; p.5): 

“FEP fundamentally analyses existence in terms of the probability of finding the 

system in certain states and the corresponding surprise of finding it in others. This 
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leads to the imperative to minimise surprise, for which free energy minimisation is 

required. Free energy connects to PP [predictive processing] as the long-term 

average of prediction error (given some assumptions…)” 

In this way, “PP [predictive processing] can be considered a special case of the free 

energy principle” (Seth 2014, p.5), with the transcendental argument in conjunction 

with certain assumptions  

“used to display the prediction error minimization strategy as itself a manifestation of 

a more fundamental mandate to minimize… free energy in a system’s exchanges 

with the environment” (Clark 2016, p.305).  

3.3. Summarising the High Road 

To summarise, proponents of the FEP advance a transcendental argument aimed at 

establishing from first principles that all self-organizing systems must minimize 

variational free energy. PEM can then be understood as a way of applying this 

principle to neuroscience through certain assumptions about how the brain 

minimizes variational free energy and how this minimization is implemented in neural 

circuitry. Friston (2019a) calls this the “high road” justification of predictive 

processing. “The high road,” he writes,  

“stands in for a top-down approach that starts by asking fundamental questions about 

the necessary properties things must possess, if they exist. Using mathematical 

(variational) principles, one can then show that existence is an embodied exchange 

of a creature with its environment – that necessarily entails predictive processing as 

one aspect of a self-evidencing mechanics” (Friston 2019a, p.175; my emphasis).  

In this way the high road allegedly “takes us on a top-down journey from near 

existential nihilism to the riches of predictive processing” (Friston 2019a, p.175).  

4. Evaluating the link between PEM and the FEP  
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In this section I argue that the high road justification described in the previous 

section fails as a justification of PEM. Specifically, I argue that it provides no 

independent support for PEM – or indeed any causal-explanatory theory of brain 

function. To be as explicit as possible, I do not argue that PEM is false or that the 

FEP is false. Rather, I argue that the sense in which all self-organizing systems can 

be said to minimize free energy according to the FEP is fundamentally different from 

the sense in which brains minimize prediction error according to PEM. Thus, even if 

one accepts the FEP, it offers no independent support for PEM. Further, appealing to 

auxiliary assumptions about how free energy minimization is implemented in the 

brain does not address this problem.  

4.1. The FEP and the Causal Constraint 

My argument is straightforward:  

P1. Any justification of PEM must bear on the causal relevance of prediction 

error minimization.  

P2. The FEP has no causal implications.   

C1. Therefore, the FEP does not provide any justification of PEM. 

I first clarify and lay out the case for P1 and P2 in this sub-section, before 

considering several responses to this argument in Section 4.2.  

First, any argument for PEM must satisfy what I called the “causal constraint”. That 

is, it must provide reason to believe that prediction error minimization plays a causal 

role in brain functioning. Indeed, given the extreme scope of PEM and the 

transcendental argument outlined above, PEM appears to assign prediction error 

minimization an extremely important causal role: it is viewed as the “driving force” 

(Clark 2013, p.191) behind “perception and action and everything mental in between” 
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(Hohwy 2013, p.1), and it is ultimately responsible for the capacity of an organism to 

maintain a nonequilibrium steady state within its “window of viability” (Clark 2016, 

p.269).  

Second, the FEP does not advance a causal hypothesis. Specifically, it provides no 

information about how self-organization is causally generated and sustained in the 

systems that it applies to. Instead, it provides a formal re-description of the dynamics 

of self-organizing systems, demonstrating that all such systems can be described as 

if they involve the minimization of variational free energy. This might be true, and it 

might be pregnant with profound theoretical and philosophical implications. It cannot 

provide any support for a causal hypothesis about how self-organization – or 

anything else – is achieved, however. Thus, it cannot provide any support for PEM, 

which constitutes such a hypothesis.  

It is difficult to see how Premise 2 could be denied. First, the transcendental 

argument outlined above – and thus the FEP established by it – are wholly a priori. 

Consider the three stages of the transcendental argument outlined in Section 3: the 

first draws on dynamical systems theory and statistics to formalise a necessary 

condition for survival; the second draws on information theory to formalise what is 

required for the satisfaction of this condition; and the third draws on the mathematics 

of variational calculus to clarify how this condition can be satisfied in a way that is 

computationally tractable. As Hohwy (2020b, p.8) puts it, the transcendental 

argument thus “moves a priori – via conceptual analysis and mathematics – from 

existence to notions of rationality (Bayesian inference) and epistemology (self-

evidencing).”  

There are principled epistemological reasons for thinking that one could not derive 

information about how things work – specifically, the causal structure underlying the 
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capacities of a contingent biological system such as the human brain – from a priori 

reflection of this kind. Debates continue to rage in contemporary philosophy 

concerning the scope of a priori knowledge, with positions ranging from empiricists 

who deny its existence or seek to reduce it to analytic knowledge to modern 

rationalists who defend synthetic a priori knowledge of the sort allegedly found in 

mathematics and certain parts of metaphysics. Even among staunch rationalist 

metaphysicians, however, I am aware of no contemporary epistemological 

framework that would countenance a priori knowledge of contingent truths about 

biological mechanisms. The reason is obvious: There is no way that we could 

evaluate such hypotheses without observing how our world – out of the vast space of 

possible worlds that we could inhabit but do not – is causally structured.  

Second, consider the scope of the FEP. It applies not just to all biological systems 

that do exist but to all biological systems that could exist. Indeed, in more recent 

formulations it subsumes all possible systems that conserve a boundary that 

distinguishes them from their environment and that preserve their structure and 

organisation over time, which includes inanimate objects such as rocks and drops of 

oil (Friston 2019a). Thus, the FEP can place no constraints on the space of possible 

causal mechanisms over and above those generated by existence itself. Further, 

when we examine the mechanisms by which existing self-organising systems persist 

over time, not only do we encounter enormous variation; we also encounter many 

whose causal structure clearly does not involve the implementation of variational 

inference and the representations and algorithms that this minimally implicates. 

Consider simple regulatory mechanisms to which the FEP is supposed to apply, for 

example, such as thermostats and the Watt governor. Our knowledge of how such 

mechanisms work is sufficiently detailed that we can build them. In the case of the 
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Watt governor, for example, a simple homeostatic mechanism involving interactions 

among a handful of parts and operations (e.g. the angle of the spindle arms, the 

rotation of the flywheel, the engine output, etc.) enables it to regulate the output of 

steam from a steam engine (see Van Gelder 1995). 4 Nowhere in this simple 

mechanism is there anything resembling the implementation of variational Bayesian 

inference (Baltieri et al. 2020). Similarly, we easily can – and often do – build artificial 

intelligence systems that persist over time without implementing algorithms involving 

variational Bayesian inference of any kind. To say that such systems nevertheless 

“implicitly” encode probabilistic models (e.g. Friston 2013; 2019a) or behave “as if” 

they minimize variational free energy (e.g. Friston 2019a) is simply to concede this 

point: variational inference is not part of the causal mechanism by which they work. 

In fact, when one examines the FEP, it is clear that it concerns merely how it is 

possible to describe the dynamics of systems that satisfy certain formal conditions, 

not how the dynamics of such systems are causally generated and sustained. This 

interpretation makes sense of the FEP’s a priori character: Even though one cannot 

discover the causal structure of contingent biological structures a priori, one can 

derive facts about how it possible to describe the dynamics of systems that satisfy 

certain formal conditions a priori. Insofar as the brain satisfies such formal 

conditions, the FEP thus tells us that its dynamics can be described in a particular 

way. Similarly, this interpretation also makes the scope of the FEP intelligible: To the 

extent that the FEP merely specifies how it is possible to describe the dynamics of 

systems that satisfy certain formal conditions, the massive variation in the 

mechanisms by which systems generate and sustain such dynamics – and the fact 

 
4 Note that the set of differential equations that describe the dependencies between the Watt 
governor’s variables in a way that abstracts away from concrete implementation also contains no 
probabilities (see Van Gelder 1995).  
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that many of these mechanisms evidently do not work by minimizing free energy – 

are irrelevant.  

Most importantly, this interpretation receives substantial support from the literature. 

Thus, Friston (2012, p.2101) writes that the FEP “connects probabilistic descriptions 

of the states occupied by biological systems to probabilistic modelling or inference as 

described by Bayesian probability and information theory.” Probabilistic descriptions 

of biological systems are an artifact of a contingent decision about how to describe 

such systems, however, and not – or at least not necessarily – a feature of biological 

systems themselves. Thus, any connection between such probabilistic descriptions 

and variational approximations to Bayesian inference does not have any logical 

implications for our understanding of the systems themselves. To assume that it 

does is to confuse properties of a possible representation of a system with properties 

of the system being represented, a tendency sometimes called Pygmalion syndrome 

after the mythological sculptor who fell in love with a statue (Sharvy 1985).  

Which features of a representation map onto its target is always an open empirical 

question that cannot be decided a priori. Thus, even if one can describe self-

organization in terms of a probability distribution defined over an abstract state 

space, there is no justification for assuming that the properties, constraints, and 

implications relevant to this description will map onto the causal structure of the self-

organizing systems being described (Chater and Oaksford 2000; Colombo and 

Wright 2018, p.12). Specifically, the fact that one can describe the dynamics of a 

system in terms of free energy minimization does not imply that there is a meaningful 

mapping between this description and the concrete parts and operations that 

constitute the causal mechanism by which such dynamics are generated (Kaplan 

and Craver 2011). Whether this is so is always an a posteriori matter. Thus, claims 
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to the effect that the “adaptive exchange” involved in self-organization “can be 

formalised in terms of free-energy minimisation” (Friston and Stephan 2007, p.451; 

my emphasis) and that the FEP implies that “you will appear to sample your world as 

if you were trying to maximize the evidence for your own existence” (Friston 2019a, 

p.179; my emphasis) are irrelevant to our understanding of the causal structure of 

the world.  

To summarise, then, any justification of PEM must satisfy a causal constraint. The 

FEP does not satisfy this constraint. Indeed, it has no implications for our 

understanding of how the systems that it applies to are causally structured. This fact 

is manifest in its epistemic status, its scope, and in its explicit commitment to the “as 

if” nature of its application. Thus, the FEP provides no justificatory support of any 

kind for PEM – or any other causal-explanatory theory of brain function.  

4.2. Responses  

In articulating the foregoing argument, I have encountered four recurring responses 

by proponents of PEM and the FEP. In this section I outline each response and I 

argue that it is unsuccessful.  

4.2.1. Rejecting the Causal Constraint 

One might respond to my argument by abandoning the idea that PEM constitutes a 

causal hypothesis. That is, perhaps claims to the effect that prediction error 

minimization constitutes the brain’s overarching function or imperative should – 

contra my claim in Section 2 above – not be understood as hypotheses about how 

the brain works. If true, the fact that the FEP has no causal implications would not 

stop it from providing justificatory support for PEM. Friston (2013a, p.212-3) seems 

to endorse this idea in the following passage:  
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“The imperative to minimise surprise rests on the need to resist a natural tendency to 

disorder – to minimise sensory entropy. The Bayesian brain and predictive coding 

are then seen as a consequence of, or requirement for, this fundamental imperative – 

not as a causal explanation for how our brains work” (my emphasis).  

This response is deeply unattractive, however. First, is unclear why we should care 

about PEM or predictive processing more generally if they do not constitute a 

purported causal explanation for how our brains work. Such an interpretation is 

certainly at odds with the extraordinary amount of excitement surrounding PEM and 

the growing attention paid to it within cognitive science and philosophy. Second, and 

more importantly, PEM does in fact constitute a causal hypothesis about brain 

function as it is typically presented in the literature (Clark 2013, p.235). Thus, my 

argument is that PEM as it is typically presented receives no justificatory support 

from the FEP. Of course, one can stipulate a distinct interpretation of PEM – call it 

PEM2 – according to which brains can merely be described as if they seek to 

minimize prediction error (see, e.g., Baltieri et al. 2020). In conjunction with certain 

auxiliary assumptions (e.g. about the parameterization and factorization of probability 

distributions), the FEP does imply PEM2. However, PEM2 is theoretically 

uninteresting, inconsistent with standard presentations of PEM in the literature, and 

irrelevant to neuroscience.  

4.2.2. An Alternative Interpretation of the FEP?  

I have interpreted the “as if” phrase central to presentations of the FEP in the same 

way that this phrase is understood in the biological and social sciences more 

generally: namely, to indicate that although a system can be described as 

maximizing (or minimizing) some objective, the mechanism underlying the system’s 

behaviour need not work by maximizing (or minimizing) the objective. For example, 
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the individual-as-maximizing agent principle in evolutionary biology holds that 

organism can be described as if they seek to maximize expected fitness, where “as 

if” indicates that calculations and representations of fitness need not play any causal 

role in the mechanisms underlying their behaviour (Del Giudice 2018; p.50). 

Similarly, rational choice models in the social sciences typically describe agents only 

as if they seek to maximize expected utility, where, again, “as if” is used to indicate 

that such models are silent on the causal mechanisms by which actions are 

generated (Chater and Oaksford 2000).  

I have argued that the fact that systems can merely be described as if they minimize 

free energy should be interpreted in the same way: namely, as a purely descriptive 

analysis of a system’s behaviour that is silent on the mechanism by which that 

behaviour is generated. In a recent article, however, Ramstead et al. (2020, p.17) 

appear to push back against this interpretation and its apparent implication that the 

FEP should be interpreted purely instrumentally (see Van Es 2020):   

“[A] system equipped with such a partition that exists at nonequilibrium steady state 

will act in a way that looks as if it has an intentional relation with some features of its 

environment. We now know what this “as if” character amounts to: it refers to the 

duality of information geometries and thereby the duality of possible descriptions (in 

terms of a flow towards nonequilibrium steady state and in terms of belief updating 

under a generative model)” (my emphasis).  

The reference to “information geometries” here touches on more recent formulations 

of the FEP, in which Friston (2019b) has sought to demonstrate that any self-

organizing system at nonequilibrium steady state equipped with a boundary 

(technically, a Markov blanket) that statistically separates it from its environment is 

amenable to two mathematically conjugate descriptions couched in the vocabulary of 
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information geometry. Roughly, information geometry provides a formalism for 

describing the distance between probability distributions in an abstract space, where 

each point in the space represents a possible probability distribution. According to 

Friston (2019b), all random dynamical systems that satisfy certain formal conditions 

(i.e. that possess a Markov blanket and a nonequilibrium steady state distribution) 

can be described in terms of both an intrinsic (or state-based) and extrinsic (or belief-

based) information geometry, where the former describes the probabilistic evolution 

of its internal states and the latter describes the distance among probability 

distributions defined over external states, which are assumed to be parameterized by 

its internal states (see Friston et al. 2020). It is this extrinsic information geometry 

that can then be couched in terms variational free energy minimization (Friston 

2019b).  

Setting the technical details of this work aside, can it help to address the argument of 

this article? It is difficult to see how. A “duality of possible descriptions” still concerns 

possible descriptions, and this formulation of the FEP is equally vulnerable to the 

points made about its epistemic status and scope above. This point is effectively 

acknowledged by Friston et al. (2020, p.17), who note that  

“the existence of an extrinsic information geometry only means that one can map 

internal states to conditional probability distributions (over external states, given 

blanket states). It does not mean that the resulting descriptions refer to entities that 

actually exist (just as we can ascribe to a lectern the propositional belief that the best 

way to persist is to do nothing…)” (my emphasis). 

More generally, formalism and a priori mathematical reasoning do not in themselves 

carry causal implications (see S4.2.4 below).  

4.2.3. The Role of Auxiliary Assumptions  
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The most compelling response to my argument is that it neglects the crucial role of 

auxiliary assumptions in connecting the FEP to PEM. Specifically, recall that PEM is 

not a logical implication of the FEP, but rather the FEP in conjunction with 

assumptions about how free energy is minimized (e.g. how probability distributions 

are parameterized and factorized) and how this process is implemented in neural 

circuitry. Thus, one might argue that the foregoing argument is irrelevant: Nobody 

believes that the FEP implies the truth of PEM anyway.  

This response rests on a subtle confusion. To see this, it is crucial to distinguish 

between what I will call the free energy hypothesis about brain function from the 

FEP. The free energy hypothesis alleges that the brain is an organ for free energy 

minimization in the sense that free energy minimization provides a schematic 

mechanism sketch for how the brain works (see, e.g., Clark 2013; Friston 2005). 

Given this distinction, the following conditional is true: If the free energy hypothesis 

about brain function is true, then this hypothesis in conjunction with auxiliary 

assumptions implies the truth of PEM. My thesis can now be stated differently: The 

FEP – that is, the thesis that all self-organizing systems can be described as if they 

minimize free energy – provides no support for the free energy hypothesis. Thus, the 

fact that one can derive PEM from the free energy hypothesis in combination with 

certain auxiliary assumptions provides no support for PEM in itself, because we have 

been given no reason to endorse this hypothesis in the first place. Interestingly, this 

distinction is acknowledged by Friston et al. (2006, p.71) in an early article on the 

FEP, commenting on the evolution of work from models of free energy minimization 

as a purported causal explanation of perception to the all-encompassing framework 

of the FEP itself:  
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“Previous treatments of free energy in inference (e.g., predictive coding) have been 

framed as explanations or mechanistic descriptions. In this work, we try to go a step 

further by suggesting that free energy minimisation is mandatory in biological 

systems and therefore has a more fundamental status” (my emphasis).  

Whether or not the FEP has a more “fundamental” status than the free energy 

hypothesis about brain function, it certainly has a different epistemic status. For this 

reason, the FEP provides no justificatory support for the free energy hypothesis – 

and thus for PEM. It is worth noting that this situation is not unique. For example, the 

fact that an agent can be described as if it seeks to maximize expected utility 

provides no support for the claim that expected utility maximization forms part of the 

causal mechanism underlying its behaviour (Chater and Oaksford 2000).  

This helps to address a related response that I often encounter in presenting the 

foregoing argument: namely, that my analysis of the FEP must be wrong because 

the FEP “has its roots” in explicitly causal-mechanistic work on the structure of 

cortical mechanisms (Friston 2005) and the development of neural networks in 

artificial intelligence (Dayan et al. 1995). Although the FEP draws on the same 

formal apparatus underlying much of this work, however, it has a fundamentally 

different epistemic status. Thus, the fact that there is a historical continuity and 

formal connection between free energy hypotheses about specific causal 

mechanisms and the FEP does not imply that the latter has causal implications, any 

more than the fact that contemporary rational choice theory has its historical roots in 

nineteenth and eighteenth century work that treated utility maximization as a 

psychological process entails that contemporary applications of rational choice 

models in economics should be interpreted in this way.  

4.2.4. The Formalism 
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Finally, by far the most common response that I encounter in presenting my 

argument is that it fails to properly engage with the complex and evolving formal 

apparatus surrounding the FEP. For example, my treatment has ignored the subtle 

statistical properties of Markov blankets, the mathematical framework of information 

geometry, and more generally the complex equations, equivalences, and derivations 

that saturate the work of Friston and colleagues. According to this final response, my 

failure to deal with this technical material invalidates the argument that I have 

advanced.  

There are two ways of understanding this response. The first is roughly 

methodological. It states that any argument concerning the FEP and its epistemic 

status and implications must deal exhaustively with the formal apparatus surrounding 

the FEP, whatever the value of that argument. This methodological stricture on any 

criticism of the FEP is difficult to understand, however. My focus in this article has 

been on the epistemic link between the FEP and neuroscience. In advancing my 

argument, I have granted the validity and soundness of the mathematical work that 

underlies Friston’s derivation of the FEP on the grounds that such details are 

irrelevant to the truth of my conclusion. It is unclear what methodological rationale 

could prohibit arguments of this kind if it rests on reasons independent of the 

soundness of such arguments.  

The second and more plausible interpretation of this response is substantive. It 

states that some specific aspect of the formal apparatus surrounding the FEP that I 

have neglected undermines my argument. If true, one would have to show that a 

feature of this formal apparatus is capable of demonstrating that the FEP does in fact 

carry causal implications. For reasons outlined above, I am sceptical that any kind of 

a priori mathematical reasoning can carry substantive causal implications of this 
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kind. It would be foolish to rule out this possibility with any certainty, however. Thus, I 

welcome proponents of the FEP to identify technical features of the FEP and its 

derivation that carry these implications.  

5. Conclusion 

The argument of this article is simple: Given that PEM has causal implications, and 

the FEP does not, the FEP provides no justificatory support for PEM – or any other 

causal theory of brain function. Rather than elaborating on the positive implications 

of this argument, I will conclude by being as explicit as possible about what it does 

not imply.  

First, as I have already stressed, the argument does not imply that the FEP is false 

or theoretically unimportant. The fact – if it is a fact – that all systems that conserve a 

boundary and persist over time can be described as engaging in variational 

Bayesian inference is fascinating and likely rich in mathematical and philosophical 

implications. Further, there is no doubt that the evolving formal apparatus 

surrounding the FEP has been extraordinarily fecund in developing models of how 

the brain and specific neurocognitive mechanisms work. My claim is simply that the 

FEP itself provides no justificatory support for such models. Here it might be useful 

to draw on the classic distinction between the psychological context of discovery and 

the epistemic context of justification (Reichenbach 1938). Whereas the theoretical 

fecundity of the FEP and the formal apparatus surrounding it attests to its fruitfulness 

in the construction and development of causal models of brain functioning, my claim 

is that the FEP itself cannot play any role in justifying such models.  

Second, I have not argued or implied that PEM is false. As already noted, some 

proponents of PEM are explicitly agnostic regarding the FEP (Clark 2013; 2016), and 
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proponents of PEM have offered independent arguments and evidence in its 

defence. Here, however, it is crucial to distinguish the claim that one important 

function of the brain is prediction error minimization from the much more radical 

claim that the only function of the brain is prediction error minimization. The FEP is 

important precisely because its scope and ambition are consistent with this much 

more radical hypothesis. Once we abandon this justification of PEM, it becomes 

unclear what grounds there could be for assigning even a moderate degree of 

confidence to such a radical claim about brain function given our current state of 

understanding in neuroscience and psychology. Even focusing just on the domain of 

perception, for example, the evidence for predictive processing remains controversial 

(see Walsh et al. 2020).  

Of course, adjudicating such complex empirical issues falls far beyond the scope of 

the article. I hope that this article demonstrates that this is the domain in which the 

truth of PEM must be adjudicated, however. Contra Friston (2019a, p.175), there is 

no alternative “high road” justification that “takes us on a top-down journey from near 

existential nihilism to the riches of predictive processing,” at least if predictive 

processing is viewed as a causal explanation of how our brains work.  
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