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Abstract: 
When someone masters a skill, their performance looks to us like second nature: it looks as if 
their actions are performed smoothly without explicit, knowledge-driven, online monitoring of 
their performance. Contemporary computational models in motor control theory, however, are 
instructionist: that is, they cast skillful performance as a knowledge-driven process, one that is 
driven by explicit motor representations of the action to be performed skillfully, which harness 
instructions for performance. Optimal control theory, a popular representative of such 
approaches, casts skillful performance as the execution of motor commands, the deliverances 
of a motor control system implemented by separable forward and inverse models that work in 
tandem with a state estimator to control the motor plant. These models rest on the principle that 
motor control is realized by the concerted action of separate modular subsystems, which 
transform an explicit motor representation into a sequence of physical movements. This paper 
aims to show the limitations of such instructionist approaches to skillful performance. More 
specifically, we address the question of whether the assumption of modular knowledge-driven 
motor control in optimal control theory (based on motor commands computed by separable 
state estimators, forward models, and inverse models) is warranted. The first section of this 
paper examines the instructionist assumption, according to which skillful performance consists 
in the execution of instructions invested in motor representations. The second and third sections 
characterize the implementation of motor representations as motor commands, with a special 
focus on formulations from optimal control theory. The final sections of this paper examine 
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predictive coding and active inference – behavioral modeling frameworks that descend, but are 
distinct, from optimal control theory – and argue that the instructionist assumption is ill-
motivated in light of new developments in motor control theory, which cast motor control and 
motor planning as a form of (active) inference.  
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1. Introduction 
 

Expert performance dazzles us. The performance of a dance, of a musical piece, or of 
martial arts brings before us a display of human skills that, from a cognitive perspective, can 
only result from extensive practice. As opposed to bare movements, such as breathing and 
blinking, skillful performances are intelligent bodily activities, which harness knowledge about 
how to perform certain movements expertly. This knowledge, however, is not always ready-
to-hand in an explicit fashion, if at all; and indeed, explicit conscious appraisal of one’s 
performance while it is still ongoing often leads to ‘choking’ (Cappuccio et al., 2019). Thus, 
whatever kind of knowledge drives action cannot be of the explicit sort.  

This action-driving form of knowledge is not limited to that which would inform the 
practical performance itself; skillful action is accountable to the practices within which these 
skills are cultivated. That is to say, the norms that govern specific cultures of practice also 
determine whether a skill is truly mastered and enter into the guidance and execution of the 
skillful performance. Accordingly, beyond merely accomplishing the physical act entailed by 
skillful performance, mastering a skill requires a bodily doing that is culturally embedded, 
situated, and intelligible within a meaningfully structured social context (Hasselberger, 2018; 
Hutto, 2005; Veissière et al., 2020; Hutto et al., in press).  

What makes skillful performance so challenging to study – in cognitive science – is that 
skillful performances, as fine-grained bodily responses to salient features of a dynamically 
changing situation, can be described in terms of norms, knowledge, and expertise. Creatures 
interact with their context via intelligent behavioral adjustments, which entails varied acts of 
cognition, such as intending, perceiving, engaging with others in the social world, but also 
attending to this or that, deliberating, speaking, and so on. All of these actions are performed 
relative to sets of culturally sanctioned standards of practice, which must be enacted to a large 
extent through extensive training. This, combined with the expertise embodied in the smooth 
and skillful execution of a motor task, suggests peculiar knowledge in the generation of skillful 
performance.  

Skillful performance thus stands in a seemingly paradoxical relation to knowledge: it 
both requires it and is confounded by it. Given its exquisite sensitivity to norms and context, 
and given the expertise that it requires, skillful performance is (or at least seems to be) guided 
by knowledge that becomes internalized through practice. However, explicit use of knowledge 
also seems to hamper expert performance. What is the relation between knowledge of skillful 
performance? What kind of knowledge, if any, guides skillful performance?  

To address the epistemic and normative aspects of skillful performance, the position in 
the study of motor control that we will label instructionism (Wheeler & Clark 1999) casts 
skillful performance in terms of explicit instructions, that is, forms of knowledge that directly 
guide performance and that are harnessed in separable structures that are internal to the 
performing agent (Jeannerod, 1997, 2006; Jankovic, 2019; Pavese, 2019; Piñeros Glasscock, 
2019; Stanley & Williamson, 2017; Pacherie, 2017). The instructionist assumption says that 
skillful performance is enabled by (what we will call) motor representations, which harness 
knowledge about how a specific skillful performance is to be executed in the form of 
instructions for movement. Instructionism, then, is the view that skillful performance depends 
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on the capacity of an agent to represent to itself explicitly the procedure to be accomplished as 
a set of motor instructions – and to execute those instructions for movement accordingly.  

This construct of motor representation has been cashed out in different, sometimes 
overlapping ways. In the philosophy and cognitive science literatures, we find flavors of this 
construct variously formulated as “practical representations” (Pavese, 2018), “action-based 
ways of thinking” (Peacocke, 1986), “ability-entailing concepts” (Stanley, 2011), “executable 
concepts” (Pacherie, 2011), “genic representation” (Wheeler & Clark, 1999), “action-oriented 
representations” (Clark, 1997), and so on. What these constructs have in common is that they 
operationalize the kind of motor knowledge at play in the execution of skillful motor action. 
Some of these accounts assume that motor knowledge is harnessed in internal structures that 
encode explicit instructions for movement, and they will be our focus here.  

In computational neuroscience, skillful performance has usually been studied under the 
rubric of optimal control theory (Stengel, 1994; Gregory, 2018; Anderson & Moore, 1990), 
with models often conforming to a separation principle (Baltieri & Buckley, 2018). This is the 
modularist assumption (Fodor, 1975) according to which motor control is realized by concerted 
processes performed by separable, modular subsystems. According to optimal control theory, 
skillful performance – indeed, all motor control – is realized computationally by three separate 
modules: the inverse model (or optimal control), forward model, and state estimator (Drayson, 
2018; Jeannerod, 2018; Levy, 2017; Mylopoulos and Pacherie, 2017; Fridland 2015, 2017; 
Friston, 2011). Optimal control theory is instructionist, in that it posits that skillful performance 
is realized through the construction and execution of an explicit motor command, which 
harnesses knowledge about (instructions for) skillful, knowledge-driven motor task execution. 
Thus, on this model of motor control, the so-called forward model and optimal controller work 
together to select an optimal action, based on a value function specified in terms of desired 
states; where the motor command is specified in terms of instructions for movement formulated 
in an intrinsic frame of reference (i.e., formulated in terms of the states of motor effectors, such 
as stretching and compressing of muscle fibers).  

The aim of this paper is to discuss critically the limitations of instructionist models of 
skillful performance. More specifically, we target the theoretical and empirical plausibility of 
separable, modular forward and inverse models and estimators responsible for the selection of 
actions based on a (value) function of future states, as postulated by optimal control theory. 
The first section of the paper characterizes the instructionist assumption, which casts skillful 
performance as being based in the construction and execution of motor representations. The 
following two sections characterize the implementation of motor representations as motor 
commands, focusing on computational models from optimal control theory. The final sections 
of this paper leverage work in predictive coding and active inference – behavioral modeling 
frameworks that inherit but are distinct from optimal control theory – to argue that instructionist 
models of motor control are ill-motivated.  
   
  
2. The instructionist model of skillful performance 
 

In this section, we examine the commitments of instructionism. Instructionist models 
define motor control of the kind involved in skillful performance as the execution of a set of 
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instructions for movements to be executed according to a prespecified method or procedure. A 
motor representation is defined as a structure internal to an agent that encodes or otherwise 
harnesses a set of explicit instructions for movement, the execution of which leads to skillful 
performance. As we will see, such a motor representation represents the specific manner in 
which a task is to be accomplished. 

How to make sense to this? What does it mean for a thing to represent some state of 
affairs? It is common in the philosophy of mind to argue that representations involve modes of 
presentation (Frege, 1892; Millikan, 1997). This construct of mode of presentation has two 
main components: a representation presents some state of affairs (1) as being so-and-so (2) 
from a specific vantage point. For instance, when I visually perceive the presence of a red 
apple, I perceive it from a certain point of view (i.e., from my visual vantage point), precisely 
as being a red apple (i.e., as opposed to perceiving it as being, say, a fruit or as being a red 
object). To represent a state of affairs thus entails that we represent it in a perspectival way as 
being so-and-so; which is equivalent to saying that representations, essentially, must have a 
mode of presentation (Burge, 2009, 2010). This entails that, if there exist motor or practical 
representations, there must also exist a motor or practical mode of presentation.  

The modes of presentation at play in perception, thought, and action involve a set of 
(perceptual, conceptual, and motor or practical) abilities that constitute a motor or practical 
perspective (Pavese 2019; Burge, 2009, 2010). Pavese’s (2019) discussion of representations 
situates what she calls practical representations (which we equate to motor representations as 
defined above) with respect to other kinds – perceptual and conceptual representations. The 
different varieties of representation differ in the manner in which they enable agents to 
represent states of affairs. Consider, e.g., the nature of perspectives that are involved in the 
perceptual representation of a situation. On this account, perceptual abilities (e.g., being able 
to discriminate between a middle C and a D sharp) constitute a perspective from which one can 
perceive states of affairs in the world; in this case, a musical state of affairs about the key of a 
song. To be endowed with such perceptual abilities enables an agent to track states of affairs 
in the world from a given perceptual perspective opened by these abilities (Dretske, 1988; 
Millikan, 1984; Fodor, 1987). Conceptual representations, similarly, are related to the 
conceptual abilities with which agents represent states of affairs to themselves conceptually 
(Laurence & Margolis, 1999; Machery, 2009; Margolis & Laurence, 2014; Peacocke, 1992; 
Prinz, 2004). To represent some state of affairs conceptually thus entails the existence of a 
conceptual perspective, itself rooted in the conceptual abilities of the agent.  

Importantly, this account allows us to fix the content of a representation, namely, the 
state of affairs that the representation is about, i.e. that which is disclosed by the relevant set of 
(perceptual and conceptual) abilities with which an agent is endowed – and which constitute 
the perspective from which it can represent that content. In the perceptual and conceptual cases, 
what is represented is the state of affairs that can be represented as being so-and-so thanks to 
the perspective that is opened by the perceptual and conceptual abilities with which an agent is 
endowed; i.e., the state of affairs that is perceived or that is entertained in thought or predicated, 
respectively.  

Pavese (2019) extends this line of reasoning to practical representation (and which we 
extend to motor representation). Similarly, to perceptual and conceptual varieties, practical 
representations also represent by virtue of a set of motor or practical abilities that constitute a 
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perspective from which state of affairs in the world is represented practically, in a format 
amenable to motor control. Practical abilities are defined as abilities to execute an action in a 
prespecified and typified manner. The content of a practical representation is a method: a 
specific sequence of physical movements to be carried out by the agent (Wolpert 1997; Girard 
1989; Pavese 2019, 2015). To be more precise, a method decomposes a particular task to be 
executed into component actions, perhaps nested the ones within the others, that when 
orchestrated bring about the desired outcome (Pavese, 2019, 2015; Mylopoulos & Pacherie 
2017). Thus, to represent the world from the perspective provided by practical abilities means 
to represent a task as having to be accomplished practically in a prespecified manner, i.e., 
according to the method or procedure by which the content of the representation – the task – is 
presented. The distinctive feature of practical representation is their ‘direction of fit’: they 
function to make the state of affairs in the world fit with the prescriptions harnessed in the 
practical representation (Pavese, 2020). Whereas perceptual and conceptual abilities have a 
world-to-mind direction of fit, practical representations have a mind-to-world fit, which is what 
gives such representations their practical aspect.  

Mylopoulos and Pacherie (2017) provide a definition of motor representations that 
dovetails nicely with Pavese’s (2019) account of practical representations and computational 
neuroscience research in motor control (Jeannerod, 1997, 2006). In sum, they argue: (1) that 
motor representations represent objects and situations in terms of their properties relevant for 
action, in a proprietary format specified in terms of an intrinsic frame of reference – defined, 
e.g., by the state of motor effectors, muscle fiber extension and contraction, etc.; (2) that these 
motor representations are informed by or contain implicitly some knowledge about the body’s 
biomechanical and kinematic constraints; (3) and that motor representations – at least usually 
– serve the execution of transitive movements, specified in terms of an extrinsic frame of 
reference (i.e., a representation of states of affairs that is ‘objective’ in three-dimensional space 
rather than body-dependent).  

The broad strokes of this definition seem common to most specific accounts of motor 
representation. For instance, on Pavese’s (2019) account, motor commands (which, as we will 
see below, implement motor or practical representations in optimal control theory) represent 
the procedure or method according to which a task is to be accomplished, and are informed by 
a sensorimotor mapping from the actions being generated to their sensory consequences, 
satisfying condition (2). Moreover, they represent the method of task execution in a format that 
can both be used by the motor system to generate a motor action – i.e., in an intrinsic frame of 
reference, satisfying condition (1) – and also in a format that is sensitive to online, real time 
sensory feedback – i.e., in a manner that renders it responsive to outcomes specified in an 
extrinsic frame of reference, satisfying condition (3) of the definition just discussed.   

Pacherie (2018) notes that motor representations meet criteria for representationality as 
set out by Bermudez (1998): they have correctness or satisfaction conditions; they have a 
structure that exhibits and leverages some form of compositionality (i.e., evinces identifiable 
constituent or elementary units); and they also have a “grammar” that regulates the assembly 
of the constituent units into a coherent pattern. In cognitive science, this has led to the 
investigation of principles common to all skills, premised on the idea that what is thus common 
must be some set of representational processes. This view is labeled intellectualism (Stanley & 
Williamson 2017) and can be seen as the broader rubric under which falls our target in this 
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article, namely, instructionism. At the root of such unifying models of skill is the instructionist 
assumption, which would allow for the construction of a general theory of skill, with epistemic 
attributes such as generativity, abstract rules or norms, and patterns of learning (Christensen et 
al. 2019; d'Avella et al. 2016; Sutton 2018).   

Finally, we distinguish two kinds of instructionism (Wheeler & Clark, 1999; Wheeler, 
2005), one strong and one weak. Strong instructionism is the claim that neural representations 
(in this case, motor representations) completely specify, on their own, the specific movements 
to be executed by an agent. We will see that this assumption is prevalent in many versions of 
motor control theory (e.g., Jeannerod, 1997, 2006). The weak version of instructionism is the 
more modest claim that, among the many dynamically coupled systems that generate skillful 
performance (e.g., an able body, a normal ecological backdrop of cultural practices and 
standards, and so on) one kind stands out: structures internal to an agent that are responsible 
for encoding information that can be interpreted as explicit instructions for action, given a 
background of ecologically normal processes that enable them to play this role (Clark, 1997; 
Engel et al., 2013).  

On this more modest account, motor representations would play in the generation of 
behavior a role analogous to that of genes in the generation of phenotypic traits (Wheeler & 
Clark 1999). It is well established (e.g., Goodwin, 1994; Kelso, 1995; Varela, Thompson, & 
Rosch 1991; Thompson, 2007) that genes are able to code for proteins in the context of a set 
of factors that are causally involved in gene expression, but that do not themselves code for 
proteins (e.g., epigenetic transcription factors, the overall healthy and normal functioning of 
the cell, that cell’s being embedded in an organism, etc.) (Hipólito and Martins, 2017). 
Analogously, the weak instructionist framework for motor representation says that skillful 
performance is the result of an orchestrated process spanning components in the brain, body, 
and world, but that of these components, some special structures in the brain play the specific, 
explanatorily irreducible role of encoding explicit instructions for motor performance. Note, 
en passant, the conformity of this definition of representation with the definition of motor 
representation by Mylopoulos and Pacherie (2017) that was discussed above. In what follows, 
we will argue that neither kind of instructionism is warranted. 
 
 
 
3. From motor representations to motor commands 
 

An appropriate scientific representational theory of motor action must elucidate both 
the kind of content in which motor representations traffic and, crucially, how such content is 
supposed to causally guide the generation of skillful performance – lest the story have no 
explanatory bite. Mylopoulos and Pacherie note that a scientifically respectable theory of motor 
action “cannot provide a full account of purposive action without appealing to motor 
representations and without explaining how intentions interface with motor representations.” 
(2017, p. 334). Computational models of motor control must explain the manner in which 
motor representations are able to play the role of interface between the conative states of an 
agent (that is, desires and intentions to perform some task) and the motor performance. 
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 Pavese (2019) argues that the construct of a motor command, which is widely used in 
the study of motor control, implements the construct of practical (or motor) representations in 
computational models of motor control. On this model, motor tasks are realized through a 
process involving “a series of sensorimotor transformations that map the intentions of the agent 
together with visual and other sensory information about the location of the targeted objects 
[…] and the location of the limbs into a series of motor commands” (Pavese, 2019, p. 791). On 
this view, a motor command is a practical or motor representation that enables the 
transformation from conative states or intentions of a motor agent (i.e., the agent’s intention to 
perform a task according to a prespecified method) to the actual motor performance itself (i.e., 
to the sequence of muscle movements that together comprise the skillful action).  

On Pavese’s (2019) denotational model, the content of a motor command is the task to 
be performed itself; a view which finds echoes in related theories of motor representation (e.g., 
Wolpert 1997; Girard 1989). More precisely, the content of a motor command is the task 
outcome, what the task is meant to accomplish; e.g., moving one’s body to some location in 
space. The motor command thus comprises the specification of the outcome of a task in an 
external frame of reference (i.e., in terms of movement in three dimensional space). A motor 
command is thus the output of a (conative) system responsible for motor planning. 

We have discussed what the contents of motor or practical representations are: they 
represent a specific method or procedure, which is defined as the explicit specification of 
movements in three dimensional space (i.e., limb movements prespecified by a method or 
procedure, and harnessed as instructions for movement in an intrinsic frame of reference) that 
lead to some desired task outcome. We also examined how such practical representations get 
their content through their coupling to those practical abilities that open up a practical or motor 
perspective. The mode of presentation of a motor command is the prespecified method 
according to which the task is to be carried out. Thus, motor commands are also the inputs of 
the system that controls motor actions (Fridland, forthcoming). They stand as an intermediary 
between the conative systems of the motor agent (intention and desire) and the motor system 
responsible for carrying out the actual motor performance that ends up being executed.  

Crucial to note is that, in order to play the intermediary role of informing the motor 
plant about what movements it must execute, motor commands must be generated via the 
inversion of a process mapping consequences in an extrinsic frame of reference, in which the 
desired movement is specified in terms of a task outcome in external coordinates (e.g., moving 
my finger to a point in three dimensional space), from an intrinsic frame of reference, specified 
in terms of muscle movements. This entails an inverse inference problem, which requires 
working back from the desired sensory consequences (e.g., desired visual and proprioceptive 
sensory feedback that confirms “my finger is now pressing the left button ”) to a specification 
of their motor cause in an intrinsic frame of reference (i.e., a set of muscle activations that can 
generate such desired consequences). In other words, given some goal state that is specified in 
terms of extrinsic coordinates (and given conative states like desires and intentions), the 
problem to solve is the generation of a sequence of muscle movements, explicitly specified 
intrinsically in terms of stretching and compressing of muscle fibers. This has been called the 
“interface challenge” (Butterfill & Sinigaglia, 2014). In other words, how are motor 
representations implemented such that they can realize or cohere with the intentions of an agent 
while also instructing motor performance? 
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4. Motor commands and their representational role in optimal control theory 
 

In this section, we examine how motor representations are implemented as motor 
commands in computational models of motor control from optimal control theory. We will see 
that the instructionist assumption that motor behavior is underwritten by the construction and 
execution of motor representations that are implemented in the brain as motor commands is, as 
it turns out, a pervasive one in studies of motor behavior.  

This inverse inference discussed in the previous section – to wit, the problem of 
inferring how to specify muscle movements in an intrinsic frame of reference that bring about 
a goal state specified in an extrinsic frame of reference – is a nontrivial one, which has been 
addressed and finessed by optimal control theory. A general schema as how motor control is 
implemented in optimal control theory is depicted in Figure 1. 

 
 

 
Figure 1. A computational model of optimal control. This figure presents a schematic of the computational 
architecture that underwrites optimal control theory. Note the separate optimal control or inverse model, state 
estimator, and forward model and the use of a cost function by the optimal control. Adapted with permission 
from Friston (2011). 
 

In optimal control theory (Wolpert, 1997; Kawato, 1999; Todorov, 2004; Scott, 2004), 
there are four main components at play in the generation of motor action: the motor plant, the 
state estimator, the forward model, and the optimal control (also called the inverse model). The 
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motor control scheme functions, heuristically, as follows. The core of the model is the optimal 
controller, which tackles the inverse problem that was just discussed (hence, its other name, 
the inverse model). The optimal control is a mapping from desired trajectories, specified in 
extrinsic coordinates, to muscle movements (i.e., to changes in muscular states specified in 
terms of intrinsic coordinates). The optimal control selects an action based on the minimization 
of a cost function: the action that is selected is the one that leads to outcomes associated with 
the lowest cost or, equivalently, that leads to the most valuable states. The output of the optimal 
control is a motor command, which in our reading is a kind of practical representation, as 
discussed above.  

Once an action is selected by the optimal control – i.e., once the optimal control has 
constructed a motor command – the latter is sent to the motor plant for execution. The motor 
plant is the physical motor system (e.g., a limb) that executes the task to be performed; it carries 
out the movement prescribed by the motor command, which contains a specification of the 
muscle movements needed to realize the task outcome (a representation of the method, in the 
parlance of practical representation theory). Thus, the optimal control generates motor 
commands, which implements a specific method or procedure as specified in terms muscle 
movements in an intrinsic frame of reference (the motor command). It follows that the motor 
command qualifies as a motor or practical representation in the sense discussed above.    

Physical movements of the motor plant, in turn, generate sensory information. This 
information is conveyed to a state estimator, via a sensory mapping. The function of the state 
estimator is to infer in what state the system finds itself, given its sensory feedback. The state 
estimator, technically speaking, comprises a probabilistic mapping from hidden parameters and 
states (i.e., hidden causes) to sensory observations; and its inference process inverts this 
mapping, to infer the most probable hidden cause, given available sensory data.  

As the motor command is being relayed to the motor plant, a copy of the motor 
command, known as an efference copy, is sent to a forward model. Actions have sensory (e.g., 
visual, and proprioceptive) consequences; and accordingly, the function of the forward model 
is to improve the execution of action by helping to finesse the inferences of the state estimator. 
Forward models do this by converting the (efference) copy of the motor command generated 
by the optimal control into a prediction of its sensory consequences, which can be discounted 
in state estimation. In effect, the state estimator uses information, pooled from the motor plant 
(via the sensory mapping) and the forward model, to form a prediction error: it compares the 
sensory outcome predicted by the forward model with the actual sensory data that is receives 
from the motor plant. It uses this error to finesse its posterior state estimates. Of note is that, in 
optimal control schemes, this prediction error is not typically represented in the model 
explicitly with a distinct variable or parameter; in Figure 1, it is denoted as the update term s - 
g(x) weighted by the Kalman gain K. Finally, posterior state estimates are used to guide the 
process of action selection that is carried out by the optimal control; which brings us to where 
we began.  

The standard approach to computational models of separable subsystems is based on 
linear quadratic gaussian (LQG) control (Stengel, 1994). LQG-based models focus especially 
on formulations of perception and action in terms of (Bayesian) inference on the hidden states 
of the environment and on (deterministic) optimal control of a motor system (i.e., the body). 
Following this architecture, perception is often implemented using Kalman filters or similar 
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Bayesian methods for estimation; while action is modelled as a process of feedback control 
based on linear quadratic regulators. The applications of the LQG framework in optimal motor 
control are ubiquitous, but often only implicit, with a few major exceptions more directly 
advocating its use in cognitive (neuro)science (Todorov and Jordan, 2002; Todorov, 2004; 
McNamee and Wolpert, 2019). This concludes our heuristic description of motor control as it 
is implemented in optimal control theory.  

 
 
5. The instructionist assumptions of optimal control theory 

 
The formulation of sensorimotor control in terms of optimal control theory heavily 

hinges on two different, but highly interconnected, assumptions: (1) the central specification 
of descending motor commands, and their (efferent) copies, in the form of detailed low-level 
instructions for control of the motor plant, which is specified in terms of an intrinsic frame of 
reference (i.e., extension and contraction of muscle fibers), and (2) a separation of forward and 
inverse models, operating on complementary aspects of action planning and execution. 
 As highlighted in the previous section, the constructs of motor commands and their 
efference copies are typically used in frameworks focusing on the computational role of various 
components (the state estimator, forward and inverse models) derived from (optimal) control 
theoretic approaches to the problem of motor control. In this light, motor commands are cast 
as the product of an optimal control (or inverse model), which builds accurate action policies 
based on internal models of the biomechanical and kinematic properties of an agent’s 
musculoskeletal system (the sensory mapping). While forward models are thought to emulate 
the mechanical properties of a body and its interactions with an environment, once a certain 
action policy is implemented, inverse models are normally portrayed as inverting these cause-
effect relationships to form plans over future actions, based on state estimators (also called 
comparator models) that combine internal simulations of agent-environment couplings and 
desired target states.  

The presence of these two models, forward and inverse, then naturally introduces the 
idea of different frames of reference over which internal models must operate: an intrinsic one, 
specified in terms of musculoskeletal properties of the body (e.g., muscle fibers), and an 
extrinsic, movement-based one, characterizing the external features of motor programs (e.g., 
hand position); see Friston, (2011) for a discussion of these ideas in the literature. In particular, 
a forward model takes a system from an intrinsic to an extrinsic frame, predicting the effects 
of different movements using musculoskeletal plans specified by neural activity, and 
essentially translating motor commands into actions on the world and their consequences. On 
the other hand, an inverse model builds motor commands by inverting this causal chain. The 
inverse model first leverages a value function of states, to form a mapping from desired target 
states in an extrinsic frame of reference (i.e., in a coordinate system based on external 
consequences of movements) to a set of intrinsic coordinates in the space of muscle fiber 
activations; and then maps these activations to a set of neural activation patterns in the motor 
system that are capable of generating the appropriate and desired muscle activations. From a 
more mechanistic perspective, frameworks based on optimal control theory are sometimes 
characterized in terms of “force control,” stressing the idea that, in these models, motor 
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commands specify actions in the form of muscle forces and joint torques (Hollerbach, 1982; 
Ostry and Feldman, 2003).  

This architecture based on a dual frame of reference rests on the assumption, central to 
optimal control theory, that value (valuable states) is what causes behavior. As we have 
discussed, in models from optimal control theory, sequences of actions are selected according 
to a value function of states. This means that actions are selected by the optimal control that 
maximize the value of – or, equivalently, minimize the cost or risk associated with – future 
outcomes, defined in terms of desirable states.  

A second major assumption in computational models of optimal control for action is 
their (often implicit) reliance on a sequential, modular architecture of perception-cognition-
action, notably described as the “sense-model-plan-act” paradigm (Brooks, 1991) or the 
“classical sandwich” of cognition (Hurley, 2001); see Baltieri and Buckley (2018) for 
discussion. On this conception, action, perception, and cognition are depicted as separate 
processes, working relatively independently with specialized kinds of representations 
(practical, perceptual, or conceptual, respectively) based on different mechanistic and 
neurophysiological (e.g., localized) implementations (Wolpert and Kawato, 1998). This is a 
classical idealization of the sensorimotor loop, in which perception is portrayed as a bottom-
up or feed-forward process with the primary goal of receiving information through the senses 
in order to build internal representations of the surrounding environment (Marr, 1982). Action 
is then cast as a process of deriving appropriate motor commands based on the outcomes of 
cognitive internal manipulations, such as thinking and planning.  

This notion of separable subsystems has its roots in the classical hypothesis of the 
modularity of the mind (Fodor, 1983) and often constitutes one of the underlying assumptions 
in various applications of optimal control theory to the study of cognitive agents (Wolpert, 
1997; Wolpert and Kawato, 1998); see Baltieri and Buckley (2018) and George and Sunny 
(2019) for some reviews. On the modularist view, more ‘peripheral’ components of cognitive 
systems, i.e., those subserving action and perception (but according to some, perhaps also some 
of “central processing”) are implemented as separable modules, working independently to 
transform sensations incoming through input interfaces (perception) into internal models, used 
to plan actions executed via output layers (motor control, behavior). The information content 
of each specialized module is encapsulated (i.e., its flow is restricted to the module), and the 
kinds of computations it performs is specialized as well; an idea closely related to the concept 
of cognitive impenetrability typically discussed in the context of perceptual processes 
(Pylyshyn 1999; Coltheart, 1999; Barrett and Kurzban, 2006; Raftopoulos, 2019). 

In summary, motor control schemes in optimal control theory are instructionist, as we 
described the notion in the opening sections. This can be seen from the modular architecture in 
these schemes, which is based on separable forward-inverse models, estimators, and on the use 
of value functions to select actions. This architecture for motor control is used to compute 
motor commands, which implement the construct of motor representation: they harness explicit 
motor instructions, canvassed in a proprietary format that the motor plant can use to guide the 
execution of action (i.e., specified in an intrinsic frame of reference), so obtain desired states 
specified in extrinsic coordinates. We now critically examine this assumption.  
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6. Less control, more action: From optimal control to predictive coding and active 
inference  
 
6.1. From forward-inverse models and cost functions to generative models  
 

The optimal control approach has been repeatedly challenged over the years, with work 
questioning its neurophysiological plausibility (Ostry and Feldman, 2003; Latash et al. 2010), 
its computational scheme of forward and inverse models with separate roles (Adams et al.. 
2013, Clark 2015a; Pickering and Clark, 2014), its reliance on cost functions, and its claims 
regarding optimality expressed in terms of the value of states (Friston 2011; Friston et al 
(2012); Pezzulo et al. 2015).  

The account of separable, modular perceptual and motor subsystems, in particular, has 
recently been suggested to reflect a classical result in the control theory literature, where 
modular regulators are defined using the “separation principle” (Baltieri and Buckley, 2018). 
In control theory, this principle describes a set of necessary and sufficient conditions for the 
independent optimization of the two main components of a device regulating a system in the 
presence of uncertainty: a paired state estimator and forward model, and a (deterministic) 
controller. Under the assumptions of the separation principle, teleological behavior can be cast 
as a sequential process of optimal estimation, combining state estimation and forward models, 
perhaps followed by a phase where internal world (forward and inverse) models are refined 
and used for off-line planning. This leads to an optimal control stage, where actions are 
produced by an inverse model using accurate estimates of the current state of a system. An 
intrinsic assumption of optimal control approaches based on the separation principle is thus 
that sensorimotor control is orchestrated mainly by two separate modules: a combined state 
estimator/forward model and control/inverse model. The assumptions behind the separation 
principle in control are, however, rather strict and include, for instance, the presence of linear 
dynamics, and the plausibility of using quadratic cost functions representing uncertainty with 
Gaussian noise. As previously suggested, some of these assumptions can be easily violated 
when applied to biological systems (Todorov, 2005; Baltieri and Buckley, 2018). 

Perhaps the most important shortcoming of this approach comes from the fact that its 
formulation expresses the neutrality, or lack of dual effects, of motor signals (Bar-Shalom and 
Tse, 1974). In practice, this means that the canonical controls generated by LQG models cannot 
affect a system’s levels of uncertainty in the future, i.e., actions can only be instrumental, and 
have no epistemic effect on future state estimates – with a possible exception to this account 
found in the optimal feedback control extension of the model by Todorov and Jordan (2002). 
In accordance with the differences in terms of epistemic actions, approaches based on the 
separation principle have variously been addressed also as adaptive (as opposed to dual) 
controllers (Kappen, 2011), or feedback (as opposed to closed-loop) methods (Bar-Shalom and 
Tse, 1974). 

An alternative approach can however be found in frameworks such as active inference 
(Friston et al., 2012; Friston et al. 2017). In these approaches, some of the assumptions that 
underwrite the separation principle are dropped in favor of a more cohesive and unifying 
perspective on forward and inverse models (Baltieri and Buckley, 2018); see also George and 
Sunny (2019). Active inference comprehensively challenges the optimal control theoretic 
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approach to sensorimotor behavior, highlighting some of the limitations associated with such 
schemes based on value functions (Friston, Adams, & Montague, 2012; Friston, 2011). First, 
there is good reason to believe that behavior cannot be specified by a single number – here, the 
single number or scalar that is tracked by the value function. Indeed, the physics of flow shows 
that motion in a biologically realistic state space irreducibly includes two orthogonal kinds of 
motion: an irrotational (or curl-free) component and a solenoidal (or divergence-free) 
component. Heuristically, the irrotational component is what allows the flow to climb a 
gradient towards more valuable or probable states; while the solenoidal component specifies a 
flow around an isoprobability contour, where all states entered have an equal value or 
probability. The irrotational component contributes the appetitive, motivated aspect to 
behavior, getting the agent closer to desired states or observations; whereas the solenoidal 
component describes behavior that does not aim directly at need satisfaction (e.g., circling 
around a prey, walking or simply trembling). Value functions – and indeed any motor scheme 
based on scalar value functions – are not up to the task of modelling behavior because, by 
construction, they can only account for irrotational, gradient destroying, value maximizing 
aspect of flow.  

In a nutshell, active inference (Friston, 2020) says that action and perception are in the 
service of maximizing not a value function of states, but a functional of beliefs about states 
(known as variational or expected free energy). Active inference models question the role of 
inverse models, previously claimed to be physiologically unrealizable (Ostry and Feldman, 
2003) and computationally intractable (Adams et al., 2013). Active inference replaces value 
functions and solutions to optimal control problems – formulated as motor commands based 
on dynamic programming methods – with priors (or Bayesian beliefs). That is, active inference 
replaces the inverse-forward model pair with a single forward model (a generative model) that 
encompasses probabilistic beliefs about expected sensory consequences of action. Rather than 
using a separate inverse model to infer the most appropriate course of action, active inference 
schemes use Bayesian inference techniques to invert the generative model in order to select 
action policies.  

Active inference eliminates recourse to explicit value functions (Friston, Adams, & 
Montague, 2012; Friston, 2011). Instead of selecting actions using a (value) function of states, 
active inference models directly construct a prior preference over sensory outcomes or 
observations, which is used to guide motor control in a feedback-sensitive, online fashion, in 
an extrinsic frame of reference. Technically, active inference extends popular predictive coding 
models used in neuroscience, where perception is cast in terms of prediction error minimization 
(Rao and Ballard, 1999). Active inference extends this account to model motor control and 
explains action selection by appealing to the minimization of divergence between predicted 
(c.f., desired) sensory data and actual sensory consequences, e.g., in visual and proprioceptive 
modalities. Crucially, action is modelled as an extrinsic frame of reference (e.g., “my hand is 
over there”) and the forward model generates predictions of sensory consequences in an 
intrinsic frame (e.g., “this is what I would feel and see if my hand is over there”). The idea, 
then, is that rather than select an explicit motor command, the agent infers what it is doing, 
under prior beliefs that are realized autodidactically (see Friston, 2010). Crucially, this brings 
perception and action together in the same functional frame – and also explains some of the 
similarities between the functional architecture of sensory and motor cortices (Adams et al., 
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2013). While this move from a problem of control to one of inference – in terms of predictive 
coding – does not make the problem mathematically easier in and of itself (Friston, 2011), it 
provides a hypothesis about the computational architecture that underwrites action selection, 
grounded in neurophysiological evidence and consistent with the literature on predictive coding 
models for other sensory modalities.  

In this light, the active inference approach stands in stark contrast to optimal control 
accounts described earlier, where forward and inverse models are seen as distinct functional 
units with perception and action lying at the two opposite ends of a chain of sequential 
processing (cf. the classical sandwich of cognition). Active inference, instead, posits that the 
functions of inverse models are absorbed into the inversion of forward models, now building 
actions by inverting a hierarchical generative model, where motor commands become 
proprioceptive predictions – and corollary discharge becomes exteroceptive predictions. 

 
 
 

 
Figure 2. Motor control in active inference. This figure presents the computational architecture that underwrites 
active inference. Note that the cost function has been replaced with proprioceptive prediction-error based control 
and that the separate inverse-forward models and state estimator have been merged into a single forward 
(generative) model. From Friston (2011) 
 
 
6.2. From motor commands to proprioceptive predictions 
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A second important move afforded by active inference is the replacement of motor 
commands in the form of accurate motor plans in intrinsic (bodily) coordinates, considered to 
be unrealistic due the required specificity of a plan and the huge number of degrees of freedom 
of the neuromuscular system, with predictions about proprioception (Ostry and Feldman, 2003; 
Adams et al., 2013). This implicitly solves some of the main issues with models relying on the 
inversion of the many-to-one mapping from a high-dimensional intrinsic frame of reference to 
a low-dimensional external, movement-based, coordinate system. In practice, this summarizes 
the problem of motor redundancy (see Latash (2012)) – and dissolves Bernstein's problem 
(Bernstein, 1967) – where several combinations of different muscle activations can lead to the 
same final goal: think for instance of an arm reaching task and the virtually infinite number of 
possible arm trajectories that could satisfy a given final goal in the form of a target location. 

In active inference, following models of predictive coding for perception as inference, 
action planning is described in terms of inverting a generative model (i.e., mapping from 
consequences to causes) via the inclusion of a proprioceptive modality, and an ensuing 
minimization of proprioceptive prediction errors. While this proposal provides an alternative, 
arguably more parsimonious, alternative to inverse models, it only apparently solves the least 
problematic aspect of instructionist models: the inversion of the process generating 
musculoskeletal motor plans from patterns of neural activity. The hard part still consists of 
ultimately explaining action execution. To solve this problem, active inference replaces the 
value function with prior beliefs about what an agent is doing; in other words, a hypothesis that 
best explains the sensory evidence at hand. This construction inherits directly from 19th-
century ideomotor theory put simply: the best explanation for my sensations is that I am 
walking and when walking, I expect these sensations. When peripheral reflexes resolve 
prediction errors at the level of the spinal cord, these explanations become self-fulfilling 
prophecies – and my prior beliefs about walking are realized, in an embodied and enactive 
fashion. 
 Active inference proposes an account of action selection that is consistent with some 
ideas of the mechanical description of motor actions provided in threshold or referent control 
(previously also known as the “equilibrium-point hypothesis” or “virtual trajectories control 
hypothesis”) (Feldman, 2015). Similarly to this framework, active inference suggests that, 
rather than encoding muscle forces or joint torques, descending motor signals act as reference 
points, setpoints or thresholds for stretch receptors, in order to create movement as a “chain of 
reflexes” (Adams et al., 2013). Unlike referent control however, active inference commits to 
the idea that such thresholds can be interpreted directly in terms of proprioceptive predictions 
of the target state, as opposed to thresholds “lambda” typical of referent control models 
(Feldman, 2015). 
 In active inference, proprioceptors become perception-action units whose combined 
functions for perception and action are controlled by their (Kalman) gain or precision (Adams 
et al., 2013). This has two deep ramifications for motor control. First, in active inference, 
classical motor command and efference copy constructs of optimal control theory become 
redundant; and second, control assumes a dual role in active inference schemes, reflective of 
the dual role of action itself. The former point speaks to the idea that frameworks based on 
optimal control and the separation principle typically require (efference) copies of motor 
commands (forces and torques) to be passed from an inverse to a forward model, such that 
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predictions generated by forward models can discount the effects of one’s own actions on one’s 
perception of the world. While in robotics and control theory, this is classically solved by the 
presence of an efference copy of motor signals sent to the estimator (Kawato, 1999) that is 
known to the engineer/roboticist. In neurobiology, the role of this copy is hotly debated 
(Bridgeman, 2007; Feldman, 2009; Adams et al., 2013; Feldman, 2016). Thus, for principled 
reasons, active inference avoids the requirement for a controller to send an efference copy to 
the estimator and forward model. This is due to the fact that forward connections already denote 
prediction errors in their mappings from prior beliefs about expected limb trajectories to their 
(proprioceptive) sensory outcomes. Active inference thus softens the lines between perception 
and action, reconciling Helmholtz’ account of perception as unconscious inference and 
Sherrington’s description of movement as a chain of reflexes, by expressing sensorimotor 
control as an inseparable problem of prediction error (or free energy) minimization. Note that 
the notion of efference copy can be more gracefully framed in terms of corollary discharge; 
namely, descending predictions of the consequences of action in other sensory modalities 
(Sperry, 1950; Von Helmholtz, 1867; Wurtz, 2008). This is an integral part of active inference 
as high-level constructs generate predictions at lower levels. 

Further, by building a framework that takes advantage of simple, lower-level motor 
functions, which are increasingly recognized as being more than simplistic, pre-programmed 
reflexes (Bizzi et al., 2000; Buhrmann and Di Paolo, 2014; Weiler et al., 2019), active inference 
introduces, at a computational level, an account of the dual effects of action at different levels. 
On a short spatiotemporal scale (action execution), one finds an implicit account expressed in 
terms of variational free energy (or prediction error) minimization, constrained by the dual role 
of proprioception in predictive coding models with reflex arcs (Friston et al., 2010). On longer 
time scales (such as those involved in action planning), on the other hand, a more explicit 
account of this exploration/exploitation problem emerges with the minimization of expected 
free energy that underwrites prior beliefs about action, and the emergence of epistemic and 
instrumental imperatives (Friston et al., 2017). 

 
 

 7. Motor control as interactive engagement with sensorimotor contingencies 
 
 Let us take stock of what has been said so far. We started from the observation that the 
most popular models in the field of motor control studies make an instructionist assumption. 
In instructionist models, skillful performance is explained by appealing to the construction and 
execution of motor commands. That is to say, these models posit motor or practical 
representations, which harness knowledge about how a specific skillful performance is to be 
executed in the form of explicit motor instructions that is specified in terms of an intrinsic 
(muscle-based) frame of reference. We then reviewed new frameworks in the study of motor 
control – namely, active inference and predictive coding – which undermine the instructionist 
assumption. We saw that, in these frameworks, nothing like an explicit motor command ever 
needs to be computed, which undermines even the weak version of instructionism (Wheeler & 
Clark, 1999). Where does this leave us in terms of a positive proposal? What is motor control 
if it does not consist in the skillful execution of motor commands?   
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Broadly speaking, active inference offers a model of motor control as a process of 
online, real-time motor adaptation to an environment; what has been cast in terms of attunement 
between and environment and its denizens (Bruineberg et al., 2014; Anderson 2017; Ramstead 
et al., 2019). The tight and reciprocal reconnection between perception and action in the active 
inference framework resonates deeply with several key ideas developed within embodied and 
enactive approaches to cognition and agency (Newen et al. 2018; Gallagher 2020; Ramstead et 
al., 2019). In particular, the inescapable codependence between action and perception in active 
inference coheres nicely with one brand of enactive-embodied cognition, namely, sensorimotor 
approaches to the study of cognition (Engel, Friston, & Kragic, 2015; Engel et al., 2013; Di 
Paolo et al., 2017; Gallagher 2020). According to the sensorimotor approach, cognition is a 
process of interactive engagement with the world, based on smooth online coping with minimal 
models enabling agents to interact with salient features of their environment (Engel, Friston, & 
Kragic, 2015). On this account, perception, cognition, and action are premised on the 
recognition of, and interaction with, sensorimotor contingencies, defined as a series of invariant 
correlations describing the relations between sensory and motor modalities (Noë, 2004). 
Perception is thus only appropriately defined for agents actively interacting with their milieu, 
when the world is dynamically coupled to an agent (Di Paolo et al., 2017); rather than on the 
“classical sandwich” of cognition (Hurley, 2001), which casts motor control in terms of 
sequential perception, planning, and action. On this account, perception and action are cast as 
the mastery of sensorimotor contingencies. 

Importantly, as suggested by Di Paolo and colleagues (2017), this view reflects a 
spectrum of related ideas, which includes simple open-loop sensorimotor correlations, closed-
loops ones, regularities given a goal, and optimal sets of regularities according to a certain 
performance metric. Some of these ideas speak to a move back to dynamical models of 
cognition, based on writing down equations of motion rather than symbolic computation; ideas 
that go back to ecological psychology (Gibson 1979), and which speak to the “lawful linkages 
between sensory and motor systems” advocated by Varela et al. (1991) and the “subjective 
physics” of perception (Brette 2013). When they are situated in the context of biological 
systems and their biomechanical constraints, sensorimotor contingencies may be seen in terms 
of “synergies,” capturing the attunement of different muscle groups to specific tasks engaged 
by an agent (Latash, 2008). Thus, instead of constructing elaborate instructions harnessed in 
motor representations, motor control deploys smooth real-time adaptation to the salient aspects 
of a situation, leveraging the biophysics of interacting physical bodies.  

In active inference, a similar account emerges once we consider non-modular 
approaches to cognition, combining predictive approaches to perception, dynamic reflex arcs, 
and mechanisms for planning over expected future outcomes (Parr et al., 2018). As previously 
suggested, for instance, by Brette (2013) and Di Paolo and colleagues (2017), the idea of 
sensorimotor contingencies is well captured by simple relationships between proprioceptive 
sensations and motor actions. We further suggest that the predictive role of proprioception – 
advocated in active inference – extends causally linear account of motor control (such as the 
one by Brette 2013), which tend to focus only on the contingency between new actions and 
their proprioceptive consequences (i.e., new action → new proprioceptive state). Active 
inference proposes a complementary view, where predictions of expected proprioceptive states 
are not just seen as passive reactions to new motor signals, but as also triggering adjustable, 
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dynamic reflex arcs to generate new actions (new proprioceptive state → new action → new 
proprioceptive state → new action → ...). The temporal depth of this model confers a more 
active, anticipatory role to proprioception, now seen in a causally circular model of 
sensorimotor control, in line with the enactive and embodied approach of Di Paolo and 
colleagues (2017); where action is informed by perceptual processes and perception is itself an 
active process of an agent engaging with the world (Baltieri 2017). 

Furthermore, active inference can capture and generalize other aspects of the 
sensorimotor account, including, for instance, the trade-off between exploration and 
exploitation. In sensorimotor contingency theory, this trade-off is used to characterize 
sensorimotor regularities in terms of equilibrium solutions in a dynamical system analysis of 
an agent/environment coupled system (Maye & Engel, 2013; Di Paolo et al., 2017).  

Ultimately, by invoking a formulation in terms of random dynamical systems (rather 
than deterministic ones, as in Di Paolo et al. 2017), active inference offers a more general and 
direct explanation for sensorimotor invariants in terms of nonequilibrium steady states. 
Technically, in active inference, the irrotational and solenoidal components of the solution flow 
(see section 6.1) characterize the behavior of a dynamical system in terms of components that 
increase/decrease value (irrotational) and maintain constant value over a trajectory of 
isoprobability in the phase space (solenoidal). Unlike the standard approach to the exploration-
exploitation dilemma based on value functions, this formulation can define steady states in the 
form of trajectories rather than fixed points; and in doing so, can better capture the idea of 
sensorimotor invariants in terms of patterns whose value (of being sensorimotor contingencies 
functionally useful to achieve a goal) is fixed over a trajectory (e.g., simply breathing). 
 
 
8. Conclusion 
 

This paper aimed to critically discuss the limitations of instructionist approaches to 
skillful performance and also to assess what kind of knowledge (if any) is involved in motor 
control. The instructionist assumption is that according to which skillful performance is, at 
bottom, driven by motor representations that harness instructions about how to perform a given 
task. We examined the manner in which motor representations are operationalized as motor 
commands in optimal control theory. We asked whether the assumption of modular knowledge-
driven motor control in optimal control theory, which is based on a modular architecture 
implementing separable state estimators, forward models, and inverse models, is warranted, 
and concluded that it is not. We argued that the new behavioral modeling tools and strategies 
from generalizations of optimal control theory – namely, active inference – show that the 
instructionist assumption is ill-motivated.  
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