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Abstract: In this paper, we aim at rethinking the concept of obesity in a way that better captures the 

connection between underlying medical aspects, on the one hand, and an individual’s developmental 

history, on the other. Our proposal rests on the idea that obesity is not to be understood as a phenotypic trait 

or character; rather, obesity represents one of the many possible states of a more complex phenotypic trait 

that we call ‘energy metabolism.’ We argue that this apparently simple conceptual shift can help solve 

important theoretical misconceptions regarding the genetics, epigenetics, and development of obesity. In 

addition, we show that our proposal can be fruitfully paired with the concept of developmental channeling 

of a trait, which connects to the study of the plasticity and canalization of complex traits. Finally, we discuss 

the potential impact of our approach on the assessment, treatment, and social narratives of obesity. 
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1. Introduction  

 

Obesity is a major issue on a global scale in contemporary societies. Since the 1990s (Hill 

and Peters 1998; James et al. 2001; Popkin and Doak 1998), it is customary for reports 

and documents to talk about obesity as an epidemic or even a pandemic that—in the words 

of Dariush Mozzaffarian—“will decimate population health, economic productivity and 

health-system capacity worldwide” (2020: 38). The potentially devastating impact, one 

may add, concerns not only societies and institutions, but also a reshaping of the ways in 
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which people form life plans and socialize. In fact, the data leave little doubts about the 

urgency of the matter. 

As of 2016, 650 million people in the world were considered obese and over 1.9 

billion overweight.1 Comparing figures between 1980 and 2016, it is remarkable that 

every single country worldwide has seen an increase in the number of obese and 

overweight people (Abarca-Gómez et al. 2017). A recent study regarding the US 

population suggests that nearly half of it will be obese by 2050 (Ward et al. 2019). The 

social significance of obesity is no less impressive than the medical. The category ‘obese’ 

is pivotal in public discourses concerning body image and plays a major role in shaping 

personal and group identities (Schwartz and Brownell 2004). 

Obesity should not be thought of in isolation from other categories that are relevant 

to pinpoint human conditions that typically precede the development of chronic diseases 

and illnesses (e.g., type 2 diabetes or kwashiorkor disease) and that typically follow from 

certain dietary patterns (e.g., a diet with a great excess of fats or remarkably lacking in 

proteins). In fact, international organizations such as the World Health Organization 

(WHO) and the Food and Agriculture Organization of the United Nations (FAO) consider 

obesity as one of the three forms of malnutrition existing, the other two being 

undernutrition and micronutrient malnutrition. Jointly taken, the three forms represent the 

so-called triple-burden of malnutrition. This is thought as an intermediate state typically 

linked to a prolonged unbalanced diet and potentially leading to chronic conditions 

(Rosenbloom et al. 2008; WHO 2018). 

Research over the past two decades showed that these three forms of malnutrition 

are often correlated (for a recent study complexifying the concept of malnutrition, see 

Scrinis 2020). For instance, in some cases, the forms are associated to two distinct life 

phases—since the two conditions relate to similar dietary practices and approaches to 

food, a person is typically first undernourished and then obese (Caballero 2006; Popkin 

et al. 2012). Or, in other cases, the forms occur simultaneously (Gómez et al. 2013), as 

when a person has an excess or deficiency of micronutrients and is obese at once. 

 
1 See Ten Facts About Obesity, fact 2 <https://www.who.int/features/factfiles/obesity/en/>. 
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Despite its centrality to individual humans and to societies, the category of obesity 

remains conceptually fuzzy. Broadly speaking, obesity consists of a storage of excessive 

amounts of triglycerides in adipose tissue that may impair health (Herrera & Lindgren 

2010), but most research on the biology of obesity focuses on proxy measures of overall 

body fat content, such as Body Mass Index (BMI), body weight, Waist Circumference 

(WC), and Waist to Hip Ratio (WHR). To calculate Body Mass Index (BMI), for 

example, a person’s weight is divided by the square of the person’s height (kg/m2). 

Unfortunately, proxies of this sort have been proven to be not only inaccurate, but also 

insensitive to racial and sexual differences that are nonetheless of central importance as 

regards the many medical, psychological, and social facets of obesity. As Ahima and 

Lazar put it, “optimal weight that is predictive of health status and mortality is likely to 

be dependent on age, sex, genetics, cardiometabolic fitness, pre-existing diseases, and 

other factors” (2013: 858).2 

What does ‘obese’ stand for? The term seems to trade in a sort of promiscuity 

between several understandings and their value-laden imports. In fact, it is declined 

within different narrative contexts and latched onto different conceptual frameworks 

(e.g., in terms of bodily measurements vs body appearance), parameters (e.g., health vs 

beauty vs group identity), and aims (e.g., efficiency vs appearance). These imports are 

often in tension with each other and may produce unwanted negative effects for both 

individuals and health care systems (Barnhill and Doggett 2018). 

For the purposes of this paper, it is worth drawing a distinction between two 

possible conceptual understandings of obesity. The first one sees ‘obese’ as a tag for 

classifying those people who contribute to a certain effect over society, namely incurring 

in unprecedented health costs, e.g., in terms of economic expenditure, or medical 

consequences over individuals and groups. An illustration of this is the opening of 

Singer’s well-known editorial on the ethical burdens of obesity: “We are getting fatter 

[…] it has become commonplace to see people so fat that they waddle rather than walk 

[…] Is a person’s weight his or her own business? […] I don’t think so. Obesity is an 

 
2 Note that the WHO regards BMI as the main index for tracking obese people. See Ten Facts About 

Obesity, fact 1 <https://www.who.int/features/factfiles/obesity/en/>. 
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ethical issue, because an increase in weight by some imposes costs on others.” Although 

this first understanding may be suitable for calculating economic and medical costs of 

obesity to society (those who matter, e.g., in a consequentialist spirit), it has modest 

explanatory ambitions as regards the processes that generate obesity, and it is probably 

unsuited for carefully assessing individual responsibilities. 

The second understanding sees obesity as a condition of individual agents that 

causes certain consequences. Biological and medical research devoted to explaining how 

obesity is generated must be read as aiming (explicitly or not) at uncovering a plausible 

version of this second understanding. In the most simplistic version of this interpretation, 

all obese people would share a single characteristic (e.g., a high value of BMI) that, in 

isolation, account for all the phenomena associated with obesity from medical, 

psychological, social, and individual perspectives. If so, such characteristic should be the 

target of uniform socio-political and economic intervention. 

In this paper, we focus on the second understanding of obesity, and we shall return 

briefly on the other one in our closing remarks. More precisely, we take on the task to 

conceptually reframe obesity in a way that would better capture the connection between 

biological and medical purposes, on the one hand, and the perspectives of individual 

agents and social effects, on the other. Can we devise an explanatory category of obesity 

without thereby overriding individual and social conceptual frameworks, values, and 

aims? As we shall discuss, this problem is especially pressing with respect to research on 

the genetics and epigenetics of obesity, which attempt to anchor the category to 

(apparently) clear-cut identity criteria. 

In Section 2, we begin by reviewing genetic research on obesity. We then move, in 

Section 3, to pitch our proposal, which rests on the idea that obesity is not a phenotypic 

trait; rather, obesity is one of the many possible states of a phenotypic trait that we shall 

call energy metabolism—for a simple parallel, having blue eyes is not a phenotypic trait, 

but one of the ways that the phenotypic trait having a certain eye color can be realized. 

We argue that this apparently simple conceptual shift solves some important theoretical 

misconceptions regarding obesity, particularly the expectation that the biological aspects 

(i.e., genetic variation) involved in the development of obesity are consistent or 

sufficiently similar among different individuals. Finally, in Section 4, we show that our 
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proposal can be fruitfully paired with the concept of developmental channeling of a trait. 

In this view, energy metabolism is channeled through a person’s life, so that an 

assessment of the obesity condition should be sensitive to the specific developmental 

story of the individual. Thus, our approach suggests a personalized medical assessments 

of obesity, which accounts not only for the specificities that Ahima and Lazar (2013) call 

for, but also for the framing of energy metabolism in individual terms and for temporally, 

geographically, and socially located dietary and life plans. 

 

 

2. Genetics Research on the Proxies of Obesity 

 

The genetic basis of obesity has been investigated through a variety of methodologies, 

including gene knockout experiments on animal models, heritability and family studies, 

linkage analyses, the candidate-gene approach, and, more recently, genome-wide 

association studies (GWAS). This plurality of approaches reflects the complex etiology 

and inter-individual variability of obesity, which can involve the effects of highly 

penetrant genes, the small effects of many single nucleotide polymorphisms (SNPs), and 

environmental effects such as nutrition and exercise. 

In genetics, obesity is usually classified into types depending on the hypothesized 

etiology. For instance, forms of so-called monogenic or Mendelian obesity are associated 

with mutations in single genes affecting major biochemical pathways. By contrast, so-

called common obesity is thought to be due to the combined effects of many genetic and 

environmental effects. Notably, common obesity phenotypes are normally distributed, 

meaning that individual values are distributed around a mean and the population’s 

variance can be expressed in terms of standard deviations from the mean. In this sense, 

common obesity is represented by a range of values of a biometrical or quantitative trait 

(e.g., BMI).3 

 
3 For a critical analysis of the distinction between qualitative (Mendelian) and quantitative (biometrical) 

traits, see Serpico (2020). 
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Between the 1970s and the 1990s, the genetics of obesity was extensively 

investigated in humans through family and twin studies, which estimated that the 

heritability of traits like BMI, WC, and WHR ranges between 0.3–0.8 (Herrera and 

Lindgren 2010; Maes et al. 1997).4 

Since the late 1990s, with technological and methodological advancements, 

researchers started to seek specific alleles associated with obesity. 

Early studies focused on extreme or rare forms of obesity characterized by 

Mendelian inheritance patterns. Identifying genetic variants associated with these forms 

of obesity is easier, at least in theory, due to the strong penetrance of genes on the 

phenotype. By 2005, hundreds of candidate genes across the whole human genome were 

investigated. Unfortunately, most results of candidate-gene studies were not successfully 

replicated, and only about twenty obesity susceptibility loci were identified by five 

different studies (Herrera and Lindgren 2010; Qi and Cho 2008; Rankinen et al. 2006).5 

Mutations more strongly associated with monogenic obesity were in genes 

encoding leptin and leptin receptors (LEP and LEPR), proopiomelanocortin (POMC), and 

melanocortin receptor 4 (MCR4), which all play a role in the regulation of food intake 

and energy balance (Farooqi and O’Rahilly 2006; O’Rahilly 2009; Xia and Grant 2013). 

As we mentioned above, common forms of obesity are probably not due to single, 

rare, and highly penetrant alleles. Rather, they are thought to be due to many common 

genetic variants (allele frequency in the population >1%) with small individual effects 

that are normally distributed in the general population. In this view, severe obesity would 

represent an extreme tail of the variation in BMI reflecting genetic factors shared by all 

individuals as well as environmental factors (Rohde et al. 2018; Xia and Grant 2013). 

Together with the limitations of the candidate-gene approach, the focus on common 

 
4 Heritability (h2) is a statistical index, varying between 0 and 1, that represents the portion of variance in a 

trait that is accounted for by genetic variance (in a specific population, in a specific environment). Note that 

the relationship between heritability and genetic causality has been debated since the 1970s (Downes and 

Matthews 2019; Serpico 2018). 

5 It is important to notice that the candidate-gene approach relies on specific research hypotheses on the 

pathogenesis of a condition formulated through the study of animal models. Moreover, candidate-gene 

studies usually entail small sample sizes, decreasing the reliability of the results. 
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obesity eventually determined a shift towards more systematic investigation of the human 

genome. Within this trend, GWAS came to represent the most promising methodology 

for seeking genetic variants associated with obesity.6 

Early GWAS allowed researchers to identify some new potential candidate genes 

operating both through adipose tissue and through the central nervous system and 

affecting appetite, satiety, energy expenditure, and feeding behavior (Herrera and 

Lindgren 2010; Locke et al. 2015). Unfortunately, as it is often the case with GWAS, 

such findings have not paved the way for the discovery of satisfying mechanistic 

explanations. It is worth noting that GWA is a hypothesis-free method where no specific 

prior knowledge of genes’ function is required. Thus, a SNP can be statistically associated 

with a trait’s variation for a number of reasons (not necessarily because it causes variation 

in such trait; see Eley and Rijsdijk 2005; Rohde et al. 2018). For instance, the FTO (fat-

mass and obesity) gene is widely considered the most robust common obesity-

susceptibility locus, but it only accounts for a small portion of variance in BMI and its 

role in the regulation of energy homeostasis remains unclear (Frayling et al. 2007; Xia 

and Grant 2013; Willyard 2014; for some explanatory attempts, see Claussnitzer et al. 

2015; Karra et al. 2013; Smemo et al. 2014). 

Another problem affecting GWAS on obesity is that currently identified SNPs 

(~97) together accounted for a small part of the variability of BMI (~3-5%) and are thus 

poor predictors of obesity (Bogardus 2009; Herrera and Lingren 2010; Locke et al. 2015; 

Rohde et al. 2018).7 The gap between the heritability estimated through family studies 

 
6 In GWAS several hundred thousand to more than a million SNPs can be assayed in thousands of 

individuals. In the case of traits that vary discontinuously in populations, like monogenic obesity, GWAS 

compare allelic frequencies for groups of affected individuals versus controls. In the case of quantitative 

traits, like BMI, they compare low-scoring versus high-scoring individuals. Variants that consistently show 

up among obese individuals, but not among lean ones, are thought to increase the risk of obesity (Willyard 

2014). 

7 In a recent meta-analysis including ~700.000 individuals, Yengo et al. (2018) revised the genome-wide 

significance threshold and identified 941 SNPs associated with BMI, which together explain ~6% of the 

BMI variance. 
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and the heritability accounted for by the SNPs identified by GWAS is called ‘missing 

heritability.’ 

Within the long-lasting debate on the missing heritability problem, researchers have 

pointed at a variety of potential explanations for the phenomenon, including the necessity 

of technical or methodological improvements (e.g., larger sample sizes and datasets) but 

also theoretical issues. For instance, many have pointed out that GWAS are unsuited to 

identify rare genetic variants and non-additive genetic effects. In this view, part of the 

missing heritability would depend on epistatic gene-gene interactions and epigenetic 

regulation of genetic expression; others have argued that heritability of BMI might be 

much lower than originally believed (Hebebrand et al. 2010; Li and Qi 2019; Rohde et al. 

2018; Yang et al. 2015; Willyard 2014; Xia and Grant 2013).8 

Some scholars have suggested that part of the problem might also depend on how 

obesity is operationalized. For instance, Hebebrand et al. (2010) identified shortcomings 

in the adoption of proxies like BMI. First, BMI depends on two different sub-traits, i.e., 

body weight and height, which have different heritability and are measured independently 

from each other. This could increase the chance of measurement errors. Second, BMI 

cannot differentiate the various components of body weight (i.e., fat and lean mass, which 

both contribute to body weight) and cannot account for the relative contribution of bones, 

muscles, and other tissues to body weight, which differs inter-individually. This might 

decrease our ability to detect reliable causal effects. Relatedly, Li and Qi (2019) noted 

that BMI cannot account for the distribution of body fat. This is significant because 

different types of body fat distribution (independent of overall adiposity as measured by 

BMI) are associated with different diseases, e.g., type 2 diabetes, cardiometabolic 

disorders, coronary heart disease, and hypertension. 

To summarize, two major factors have been identified as potential explanations of 

shortcomings in genetic research on obesity: first, currently available methodologies 

could be unable to account for some aspects involved in the etiology of obesity (e.g., 

gene-environment interactions); second, coarse-grained proxies of body fat content (like 

 
8 For general discussions on the missing heritability problem, see Downes & Matthews 2019; Eichler et al. 

2010; Matthews & Turkheimer 2019. 



Serpico & Borghini, 2020 

9 
 

BMI) cannot account for the actual biological complexity of obesity-related traits. In the 

rest of the paper, we will expand on both points by exploring the possibility that 

inconsistencies in empirical findings do also stem from conceptualizing obesity (and the 

related traits) in terms of certain phenotypic traits or characters. 

 

 

3. Reconceptualizing Obesity 

 

A phenotypic trait is usually defined as an observable or measurable characteristic of an 

organism that is due to the interaction between its genotype and the environment (Hartl 

and Jones 1998; Lawrence 2008).9 Given this definition, it would be reasonable to think 

that obesity is, in fact, a trait: not only is obesity observable, but it is also measurable or 

operationalized through, e.g., BMI and, no doubt, it is due to G-E interactions.  

As we mentioned in Section 2, attempts to identify the genetic causes of obesity 

reflect a view of monogenic obesity as a qualitative or Mendelian trait caused by single 

genes that can be identified through the candidate-gene approach. In the same vein, 

common obesity can be understood as a complex trait that is due to the interaction 

between genetic and environmental effects, and quantitative proxies like BMI, in turn, 

could be understood as quantitative traits. In this view, the multiple genetic effects 

involved in both common obesity and BMI could be identified through GWAS. 

In our understanding, the conceptualization of monogenic obesity, common 

obesity, and BMI as phenotypic traits is one important source of inconsistencies in genetic 

research and is also likely to hinder personalized treatment. In the following, we shall 

propose that obesity (as well as other observable characteristics like leanness, normal 

weight, and any BMI value) should be regarded as a specific value or form that a trait can 

have, rather than a trait (no matter whether monogenic or quantitative).10 

 
9 See also the Encyclopaedia Britannica <https://www.britannica.com/science/phenotype>. 

10 It is worth noting that conceptual issues involving the definition of phenotype are seldom discussed within 

empirical research; in this sense, the conceptualizations here discussed are often implicit, and it is possible 

that recent research trends endorse a view of obesity like our own (we thank an anonymous reviewer for 

suggesting this). For instance, this might be the case for GWAS, where obese versus lean groups are 
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To clarify this point, we need to introduce the distinction between characters and 

character states.11 Characters represent general—often species- or lineage-specific —

phenotypic characteristics, such as the shape of pea seeds, eye color in fruit flies, and 

height in humans. Character states, instead, are values or forms of the characters that 

further detail individual organisms. Instances include wrinkled pea seeds, the scarlet-eye 

phenotype in flies, and a given height value.  

The distinction between the two concepts has a central theoretical relevance. Thus, 

it is worth illustrating it in more details through two case studies. First, flies’ eyes. These 

can be of different colors depending on how different genes transport pigment precursors 

into the eye cells: scarlet phenotypes are due to the presence of red pigment only; brown 

phenotypes to brown pigment only; white phenotypes to the absence of any pigments 

(Guilfoile 1997; Pollock 1989). Each of such alternative phenotypes represents a possible 

form or state that the eye-color character can take. 

Second, to consider a subtler case, let us take wrinkledness in pea seeds. At the 

molecular level, the shape and texture of seeds depend on the functioning of the starch-

branching enzyme 1 (SBE1), which converts sugar into starch. Different quantities of 

starch affect the seeds’ water absorption capability during embryonic development, 

which, in turn, results in different seed shapes (Bhattacharyya et al. 1990; Guilfoile 

1997).12 One might be tempted to think that wrinkledness itself is a character. However, 

according to our definition, wrinkledness should be regarded as a character state, that is, 

a specific, determinate form that pea seeds can have. The character, instead, would be 

 
compared. It is likely that the problem is more significant for classical research programs, such as those 

involved in the study of so-called qualitative traits like monogenic obesity. For a discussion on the 

theoretical and historical connection between the study of qualitative/monogenic traits and Mendelian 

methods, on the one hand, and of quantitative/polygenic traits and biometrical methods, on the other, see 

Serpico (2020). 

11 Note that the two terms have a variety of meanings in biology. Here, we shall refer to the definition 

discussed in Serpico (2020). 
12 Bhattacharyya et al. (1990) identified the molecular cause of wrinkledness into the insertion of a 

transposon in SBE1, leading to the inactivation of the gene and absence of the enzyme. 
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the pea shape, which involves starch metabolism and thus depends on the quantity of 

available sugar and on the functioning of the SBE1. 

According to the definitions provided so far, neither obesity nor any BMI value can 

be considered as a character. In fact, they do not single out a generic phenotypic 

characteristic, which would be more plausibly connected to body shapes, height to weight 

ratios, and alike connotations of a person’s body. For the sake of simplicity, we will call 

this general feature ‘energy metabolism’ or ‘energy homeostasis,’ a far more general and 

complex phenotypic feature that involves species-specific developmental mechanisms 

related to bodily functions. Such a character represents a higher-level feature of an 

organism involving neuroendocrine and metabolic regulatory networks related to energy 

intake and expenditure, body shape, growth, and weight.13 Obesity and BMI, on the other 

hand, seem to be different states of a character, that is, specific forms of the more general 

character ‘energy metabolism.’ 

Conceptualizing obesity as a character reflects a simplified view of phenotypic 

development and, in particular, of the genetic and environmental factors involved in obese 

phenotypes. This misleading view of obesity, we contend, can generate important 

misunderstandings in public health efforts to mitigate obesity. To best explain this point, 

let us consider how different the development of characters and character states, 

respectively, can be. 

The development of characters like energy metabolism, seed shape, eye color, and 

height, is usually due to many interacting genetic and environmental influences. For 

instance, the development of pea seeds shape depends on both genotypic and 

 
13 Focusing on a very general and systemic feature like energy metabolism seems to us the best conceptual 

strategy (at least as a first approximation) due to the physiological complexity of obesity-related traits as 

well as their inter-individual variability. In mechanistic terms, two major neuroendocrine networks involved 

in energy homeostasis have been identified, involving leptin resistance and ghrelin resistance, respectively 

(Cui et al. 2017). So, one may want to consider two characters (e.g., leptin metabolism and ghrelin 

metabolism) instead of just energy metabolism more generally. However, it is unlikely that all forms of 

obesity (and all the individual forms that energy homeostasis can take) could be reduced to the functioning 

of just two endocrine regulatory networks: not only both leptin and ghrelin are involved in many biological 

functions beyond energy homeostasis, but about 500 molecules are probably implicated in obese states 

(Jagannadham et al. 2016). 
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environmental factors (e.g., sugar and water availability). Likewise, the development of 

energy homeostasis is due to the interaction between a variety of factors, including 

genetic factors, neuroendocrine and metabolic regulatory networks, epigenetic 

mechanisms, long- and short-terms psychological factors, and life experience. 

Sometimes, character states can causally depend on single-gene mutations, as in 

the case of scarlet eye color in flies and wrinkledness in pea seeds (see above). This 

applies to obesity, too. For instance, single gene-mutations in the LEP gene are associated 

with severe forms of obesity (see Section 2), leading to the view that a single gene alone 

can cause obesity. However, if we look at this from a wider perspective and consider the 

general functional role of the LEP gene, we can see that it encodes genetic products that 

enter complex developmental and regulatory networks of energy homeostasis.14 Some 

LEP mutations just ‘drive’ an organism’s development towards the character state that 

we usually call ‘overweight’ or ‘obesity.’ 

Importantly, in genetics research, genes involved in the development of different 

states of energy metabolism are usually expected to be highly consistent or sufficiently 

similar among individuals with similar phenotypes (e.g., similar BMI indexes). However, 

the character/character states distinction allows us to predict that etiological factors 

involved in different states of energy metabolism (or even in apparently similar states) 

can differ greatly from an individual to another, making each examined population highly 

heterogeneous in biological terms. Indeed, obese people in a sample can be very different 

from each other in terms of what genetic and environmental influences have driven energy 

metabolism towards the obese state—though they can be very similar as regards some 

phenotypic parameter like BMI. Thus, for instance, people in the sample can have similar 

weight or BMI value, despite having achieved it through quite different avenues; to name 

just a few sorts of avenues, individuals within the same category may have reached it 

because they were differently able, lead a sedentary lifestyle, overeating, through specific 

medical history, socio-economic conditions, and so on. This heterogeneity might impair 

our ability to identify reliable associations between genotypic and phenotypic variation. 

 
14 Note, moreover, that the function of leptin is not limited to energy homeostasis or metabolism (see Cui 

et al. 2017). 
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It is also worth emphasizing that the adoption of coarse-grained measures like BMI 

exacerbated the theoretical misunderstandings. BMI is expressed as a single quantitative 

dimension on which individuals can be placed. This has misled and still misleads those 

who make use of the concept in thinking that BMI is a quantitative character. Taking 

obesity as a character has prompted the view that it was possible to identify well-defined 

genetic factors involved in the development of obese states, and it was expected that such 

factors were uniformly distribute among obese individuals. On the contrary, BMI is the 

outcome of a cluster of different sub-traits, and the etiological factors that drive 

development towards obese states can vary widely also in apparently similar individuals.  

This subtle and seemingly innocuous misconception has fueled inconsistencies in 

the study of statistical associations between phenotypic and genotypic variation in large 

samples of individuals, where the same character state can be the end point of multiple 

developmental trajectories. Let us clarify that the problem is not just that different forms 

of obesity (e.g., monogenic or common) can have different etiologies (such as being 

related to single or many genes, respectively). What we would like to stress is that 

different forms of the energy metabolism character can have drastically different 

developmental bases in different individuals regardless of their phenotypic similarities. 

Moreover, conceptualizing obesity as a character state does work conceptually 

better with respect to the study of how genes and the environment interact to generate 

obesity states. Indeed, the distinction implies a shift in focus from how etiological factors 

generate an observable characteristic like obesity to how they drive an organism towards 

a specific developmental pathway, that is, a possible state of energy metabolism. 

In the next section, we aim to exemplify the impactful role of the 

characters/character states distinction for the study of the epigenetics of obesity, 

particularly as regards what aspects of the development of obesity future personalized 

medicine should target. 
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4. Perspectives on the Intervention on Obesity States 

 

As we explained in Section 3, the characters/character states distinction construes 

obesity as one possible state of the energy metabolism character. This allows us to better 

frame the role of genes in the development of body fat content: rather than causing the 

‘obesity trait,’ genes drive individuals towards one of the many possible metabolic states, 

each of which is associated with forms of obesity, leanness, and ‘normality.’  

The exposure to an obesogenic environment is widely recognized as necessary for 

the development of obesity, but a renewed focus on the environment in biomedical 

research was favored by the ‘failure’ of GWAS (see Section 2). Thus, in the last decade, 

the study of the epigenetics of obesity have attracted much attention, leading to the view 

that the effects of genetic factors on health depend on the effects of environmental factors 

and vice versa. For instance, dietary preferences have turned out to have long-term effects 

on behavior by affecting epigenetic programming of genetic expression and, in turn, 

epigenetic programming of genetic expression can affect dietary preferences (McGowan 

et al. 2008). As another example, physical activity and dietary changes have been shown 

to modify the action of genes like FTO (see Li and Qi 2019; Qi 2014; Qi and Cho 2008; 

Rohde et al. 2018). 

Understanding the role of the environment in the development of obesity would 

surely have profound implications for its prevention and treatment. Bogardus and 

Swinburn, for instance, assert that “if our goal is to reduce obesity, then the environment 

should be the predominant focus for research and action because that is where the 

pathology lies” (2017: 1861). Notably, epigenetic modifications induced by gene-

environment interactions are dynamic and thus potentially reversible (Rodhe et al. 2018). 

However, the limitations of environmental intervention on obesity are yet to be assessed. 

How should we think of the gene-environment interaction when it comes to obesity? And 

in what ways the conceptualization of obesity as a character state, rather than a character, 

can help us in this task? 

Our contention is that the character/character states distinction allows us to 

reframe the public health efforts targeting obesity at an individualized level in new terms. 

If obesity is one state, among many, of a character, then the question becomes: under 
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which circumstances is it possible to revert the character state obesity into another 

desired state (viz., a ‘healthy’ one)? Designing effective interventions on obesity requires 

considering this question carefully. In this section, we suggest that the answer will depend 

on how much the character state under analysis is canalized against environmental 

variations. 

The concept of canalization was originally introduced by Edwin Holt to denote 

prenatal conditions as factors that narrow down the initially random nature of motor 

activity in the embryo or fetus (see Gottlieb 1991) and then by Conrad Waddington to 

denote “the property of a developmental process of being to some extent modifiable 

[plastic], but to some extent resistant to modification [robust]” (1961: 270).15 

For clarifying the notion of canalization, Waddington depicted the developmental 

process as a ball rolling through valleys (which he called chreods) that represent 

branching paths: “the steeper the valley and the larger the ridges separating the valleys, 

the stronger the tendency of the ball, when it is pushed from its course along the valley 

bottom by internal or external disturbances, to go back to its original course” (Scharloo 

1991: 65; see Waddington, 1942). Canalization is thus defined as a preferred path that the 

development will follow against disturbances in the internal or external environment. 

Although canalization is often presented as a property of genotypes,16 

Waddington’s epigenetics involves a belief in the power of the environment in shaping 

the developmental path: “the environment can act either as a switch, or as a factor 

involved in the system of mutually interacting processes to which the buffering of the 

paths is due” (Waddington 1942: 564). 

 
15 Phenotypic plasticity concerns the ability of environmental influences to alter genetic expression 

(Bradshaw 1965). Robustness, instead, represents the ability of an organism to bypass minor perturbations 

from the genotype and the environment and develop as a typical individual of its species under a normal 

set of conditions (Palmer 1994). 

16 For instance, Ariew (1996) argued that Waddington’s idea of canalization represents a developmental 

interpretation of the vernacular concept of innateness. However, as Griffiths (2002) noticed, species 

typicality does not imply developmental fixity: the former reflects what traits an organism of that kind will 

have; the latter means that a trait is ‘hard to change’ or insensitive to environmental inputs. 



Serpico & Borghini, 2020 

16 
 

The characters/character states distinction does nicely fit Waddington’s depiction 

of development: on the one hand, canalization explains why a species-specific character 

will tend to develop against perturbations in most (if not all) the members of a species; 

on the other hand, understanding a character’s variation within a species involves asking 

how much the character is plastic or robust. 

Framing phenotypic development this way allows us to return to the question above 

about the power of the environment in treating obesity, which, as we mentioned, depends 

on how much such character state is plastic or robust. In Waddington’s view, “an 

alteration in the course of a developmental path will, if it occurs early in development, 

shift the whole set of paths which afterwards branch from it” (1941: 147). In this sense, 

the range of developmental potentials narrows down over time.17 This suggests that, 

depending on the developmental stage, environmental interventions might be more or less 

effective, because we cannot just ‘revert’ development or ‘replay the developmental 

tape.’ It is plausible, however, that different character states can be more or less 

canalized. 

Let us consider two examples, namely, phenylketonuria (PKU) and intelligence 

(assessed through IQ tests). 

PKU is a metabolic disease due to mutations in a single gene (PAH). In individuals 

with two mutated PAH copies, the enzyme phenylalanine hydroxylase is unable to 

properly metabolize phenylalanine, and this leads to the stacking up of the amino acid in 

the body, causing clinical symptoms including cognitive disability.18 Notably, 

environmental intervention can prevent the manifestation of clinical symptoms: by 

assuming a diet poor of phenylalanine early in development, it is possible to prevent the 

pathological state and favor a healthy one. However, if this specific diet is not assumed 

 
17 Notably, as Scharloo noticed, “this occurs not only in the development of distinct types of tissue, but also 

on the organismic level in the realization of morphological patterns, in size and shape of organs and in 

matters of growth and determination of size of whole organisms” (1991: 65). 

18 According to the characters/character states distinction, PKU would represent a specific variant of liver 

metabolism: in normal conditions, liver is capable of metabolize phenylalanine; in other cases, liver is 

unable to do so, leading to PKU. Thus, both normal liver metabolism and PKU are states of the character 

liver metabolism (on this interpretation of PKU, see Serpico, 2020). 
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on time, individuals carrying two mutated PAH alleles will develop PKU and, eventually, 

it will become impossible to revert the character state into a healthy one. In other words, 

at some point of the developmental trajectory, liver metabolism will become insensitive 

to perturbations and its pathological state highly canalized. 

Human intelligence represents a slightly different exemplification of canalization. 

Intended as a species-specific character, intelligence is strongly canalized: most human 

beings develop (or have the developmental potential for) that sort of higher-level 

cognition.19 In terms of individual variation (i.e., in terms of the possible states that 

intelligence can take), intelligence is usually very plastic due to the sensitivity to 

environmental influences characterizing the human neurocognitive system (see Sauce & 

Matzel 2018). However, there are probably some limitations to how much the cognitive 

capacities of an individual can change at various developmental stages. There are also 

some extreme developmental scenarios where genetic or environmental influences can 

drive an individual’s intellectual development towards highly canalized paths. For 

instance, some single-gene mutations, early-life experience, or injuries can disrupt the 

whole neurodevelopmental process and drive an individual’s development towards a path 

that will lead to low IQ performance. In these extreme scenarios, intelligence will become 

‘hard to change’ or highly canalized, like in the case of PKU analyzed above. 

To return to our main topic, energy metabolism and obesity seems to abide by 

patterns of organization similar to intelligence and intelligence states. The human 

neuroendocrine system and metabolism are highly sensitive to environmental influences 

and plastic. At the same time, they are robust to a certain extent. This robustness was 

defined by Walter Cannon as ‘physiological homeostasis,’ that is, the production of 

constant metabolic states despite disturbances (see Debat and David 2001). Thus, it is 

plausible that, in some developmental scenarios, the range of the accessible states given 

the previous developmental history is reduced, and energy metabolism becomes canalized 

into one state (chreod) or another. 

 
19 It should be noted that most characters are highly canalised, being them related to species-specific 

developmental and evolutionary mechanisms. 



Serpico & Borghini, 2020 

18 
 

This is consistent with the observation that “most of the monogenic causes of 

human obesity seem to operate through increasing the ‘set point’ at which body adipose 

stores stabilize in the individual. Individuals with mutations in leptin, the leptin receptor 

and MC4R, for example, become obese at a very young age and remain severely, but not 

necessarily increasingly, obese throughout their lives. Other individuals, included among 

which are some of the most massively obese, gradually and progressively become more 

severely obese over time” (O’Rahilly 2009: 311). 

 

 

5. Concluding Remarks  

 

Two main ideas emerge from our analysis, which focused primarily on the biological 

basis of obesity. First, obesity should not be regarded as a trait of an individual; rather, it 

is a specific realization of a more general trait of an individual—which we suggest 

identifying with energy metabolism. Second, individual states of energy metabolism are 

canalized in a way that is specific to each individual, depending on a combination of 

aspects including gender, age, genetics, environment, historical development, and 

education. Therefore, two individuals may realize similar forms of the more general trait 

energy metabolism, but their cones of future possibilities may diverge deeply. These two 

ideas have important consequences that we urge should be considered by the different 

communities of researchers and practitioners addressing obesity. We outline three of 

them. 

The most immediate and striking implication regards how we measure obesity. The 

assessment of an energy metabolism state—e.g., whether a person is obese and to what 

extent—should take place at the individual level, rather than involving the statistical inter-

individual comparison of some parameters, in order to account for the range of potential 

future possibilities and trajectories that are actually accessible to a given individual. 

People with the same BMI, or with strikingly similar genetic characteristic, may turn out 

to instantiate the trait energy metabolism in very different ways, so that one is regarded 

as obese and another as having a normal weight. Thus, we come out with a subverted 

picture of the matter, according to which obesity is far from being a ‘shared trait’ and an 
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equalizing condition for a sub-population of people. In this sense, our framework does 

not offer ready-made metrics to assess obesity at an individual level. Rather, it aims to 

render the concept of obesity temporally dynamic, sensitive to individual specificities, 

and theoretically flexible to accommodate varying medical, psychological, and social 

variables—and, hence, different understandings of the category. 

The second consequence regards how we cure obesity. Therapeutic efforts should 

not attempt to go back or recover a normal state of energy metabolism that an individual 

had (or could have had) at a previous developmental stage. The idea of epigenetic 

landscape suggests that organisms cannot move backwards through the developmental 

trajectory, because the time arrow is monodirectional, and development too. In treating 

obesity, we cannot subsume a narrative framework under which a patient is supposed to 

‘replay the developmental tape.’ Rather, a patient may see themselves in a developmental 

path that is channeled and may choose to target specific ‘future’ directions and points 

within the channel. In this view, we need to identify therapeutic strategies capable of 

generating or making available new chreods, to speak metaphorically, through which ‘the 

ball can roll down’ and, with them, effective as well as ethically suitable ways to 

communicate them. Considering the strikingly low success rate of dieting programs (Puhl 

and Heuer 2010), it seems to us promising to suggest reasonable and attainable steps that 

a patient would (under the best conditions) agree upon realizing at a future stage in life 

starting from the present state. 

The third consequence regards the way we talk about obesity. Thinking of obesity 

in terms of canalization reframes the narratives within which media as well as public 

health interventions conceive and communicate about it. In this sense, the metaphor of 

obesity as a sui generis epidemic or pandemic that has been in use since the 1990s is 

particularly misleading. Apart from very superficial characteristics (e.g., being within a 

certain range of values on the BMI scale) there seems to be no single common trait that, 

like a virus, all people who end up being regarded as obese in some contexts do share. 

The parallel with our minds may be handy here. Each of us has their own personal 

conscious life, rooted in a personal history of embodied experiences, sensitive to social 

and environmental conditions as well as to the individual developmental stage, and linked 

to a host of potential future conscious states; in a parallel fashion, we contend, each of us 
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has their own energy metabolism, emerging from a specific dietary history, sensitive to 

social and environmental conditions as well as to the individual developmental stage, and 

linked to a host of potential future energy metabolism states. 

An important corollary of our proposal is that it undercuts certain grounds for 

ethical prejudices against obesity (see Puhl and Heuer 2010). To elaborate on this point, 

we should come back to the first understanding of ‘obese’ we introduced in Section 1, 

according to which the term applies to all those people who contribute to certain effects 

over society (remaining silent with respect to underlying causal mechanisms that may 

explain these effects). Of course, in this first sense, obese people may often contribute to 

a burden to themselves or to others. And, in this sense, we can conclude that all obese 

people partake in a moral problem. But the reasons why that is the case vary on an 

individual basis, and the specific course of action that may help each individual with the 

burden varies, too. It serves little explanatory purposes to divide people into subgroups—

such as obese vs lean, or obese vs overweight—and, on the basis of such divisions, derive 

medical and ethical consequences. Rather, we should start from the assumption that all 

humans share the energy metabolism character, in some form or another, and cultivate 

ethically meaningful ways to live with specific realizations of that character. 
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