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ABSTRACT. Prediction is an important aspect of scientific practice, because it helps us 
to confirm theories and effectively intervene on the systems we are investigating. In 
ecology, prediction is a controversial topic: even though the number of papers focusing 
on prediction is constantly increasing, many ecologists believe that the quality of 
ecological predictions is unacceptably low, in the sense that they are not sufficiently 
accurate sufficiently often. Moreover, ecologists disagree on how predictions can be 
improved. On one side are the ‘theory-driven’ ecologists, those who believe that ecology 
lacks a sufficiently strong theoretical framework. For them, more general theories will 
yield more accurate predictions. On the other are the ‘applied’ ecologists, whose research 
is focused on effective interventions on ecological systems. For them, deeper knowledge 
of the system in question is more important than background theory. The aim of this 
paper is to provide a philosophical examination of both sides of the debate: as there are 
strengths and weaknesses in both approaches to prediction, a pluralistic approach is best 
for the future of predictive ecology. 

 

 

1.INTRODUCTION  
 
In the mid-1980s, a group of scientists were investigating the effects of bird guano runoff on 
intertidal ecosystems in southwestern South Africa. In the course of their fieldwork, they made an 
interesting discovery that had no connection to the bird populations: the coastal waters around two 
islands, only 4 km apart, had radically different benthic communities. The first was covered in 
rock lobsters (Jasus lalandii) and had small densities of mussels and whelks (3 species of the 
Burnupena genus), while the second was covered in mussels and whelks and had no lobsters. 
According to the local fishermen, lobsters were present in both locations till the early 1970s, but 
then mysteriously disappeared from the second island. The scientists decided to investigate further. 
First, they conducted a field experiment to determine whether lobsters could still survive on the 
second island. Cages with lobsters were introduced to both islands (the set on the first island as a 
control) and all animals were still alive nine months later. Then, they conducted a second 
experiment to determine whether the low whelk density on the first island was due to predation by 
the lobsters. Mesh cages were installed in the reefs that allowed larvae of prey populations through 
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but excluded lobsters. Sure enough, these areas were quickly recolonized by whelks. The final 
piece of the puzzle was to reintroduce lobsters to the second island, so that the species could 
become reestablished. A thousand healthy lobsters were simultaneously dropped into the waters 
of the second island. What happened then, was later described by one of the scientists as “a horror 
movie” (Wilcox 2018):  

The apparently healthy rock lobsters were quickly overwhelmed by large numbers of whelks. Several 
hundreds were observed being attacked immediately after release and a week later no live rock lobsters could 
be found at Marcus Island. As damage during tagging may have triggered the attacks the experiment was 
repeated five times with smaller numbers (-20) of unmarked rock lobsters. Pairs of animals were recovered 
at 15–minute intervals after release and the attached whelks were counted. The rock lobsters escaped 
temporarily by swimming, but each contact with the substratum resulted in several more whelks attaching 
themselves until weight of numbers prevented escape. On average each rock lobster was killed within 15 
minutes by more than 300 Burnupena that removed all the flesh in less than an hour. (Barkai and McQuaid 
1988, 63, my emphasis) 

 
This event was the first observed occurrence of ‘predator-prey role reversal’, where prey turn the 
tables on their predators and attack them. Since then, some other cases of predator-prey reversal 
have been observed in other ecosystems (Magalhes et al. 2005; Wizen and Gasith 2011). However, 
its main source of fame is as an example of how surprising ecological systems can be (Doak et al. 
2008). There are many other examples of surprising ecological phenomena. A species of butterfly 
that adapted to an invader host (for oviposition) which had outcompeted its native host, but went 
locally extinct when the invader was eradicated, less than 20 years later (Singer and Parmesan 
2018). In field experiments of plant-soil feedback, interactions between plants and soil microbes 
have been known to reverse, changing from positive to negative feedback (Casper and Castelli 
2007; Klironomos 2002). Even within laboratory settings, there have been documented cases of 
unexpected changes in interactions between species (Benincà et al. 2008).  
 Many ecologists equate surprise with predictive failure (Beckage et al. 2011; Coreau et al. 
2009; Doebeli and Ispolatov 2014; Ellner and Turchin 2015; France and Duffy 2006; Yodzis 
1988). The reasoning for this is the following: scientists are surprised when their expectations are 
not met. When these expectations are expressed as hypotheses about the future states of the system, 
i.e. predictions, a surprise amounts to an inaccurate prediction. A high frequency of inaccurate 
predictions is often a sign of uncertainty regarding the phenomena being investigated, or more 
problematically, methods used to investigate them (Doak et al. 2008; Hitchcock and Sober 2004). 
In fact, the high frequency of predictive failure has led some ecologists to question the status of 
their discipline as truly scientific (Hayes and Barry 2007; Valéry et al. 2013). For others, the worry 
is predictions are insufficiently risky, in the sense that they are obvious or even tautological. This 
means that they cannot be falsified nor can they be used to refute existing theories—a mark of a 
nonscientific (or at least immature) discipline (Peters 1991). Interestingly, many of these critiques 
persist, despite establishment and growth of the community of predictive ecologists, whose work 
focuses on increasing the number and quality of predictions in the field (Mouquet et al. 2015). The 
worry is that despite great advances in data collection, availability, and manipulation, despite a 
better understanding of the causal mechanisms that give rise to ecological phenomena, for many 
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ecologists, predictions are not sufficiently accurate sufficiently often (Houlahan et al. 2017; 
Marquet et al. 2014).  
 Moreover, ecologists’ opinions vary significantly in terms of how this situation can be 
remedied. On one side are those who believe that ecology lacks a sufficiently strong theoretical 
framework. For them, the problem is that researchers are focusing too much on data-rich models 
and are failing to see the bigger picture, i.e. how seemingly disparate phenomena can be subsumed 
under general patterns or laws (Houlahan et al. 2017; McGill 2010; Ward et al. 2014). The idea is 
that the failure of predictions is a symptom of inadequate theories, so developing better theories 
will lead to better predictions. On the other side are those who believe that predictions should be 
more localized and take into account the context of each particular system. While they do not think 
that general background theories are irrelevant, they are more interested in intervening effectively 
on ecological systems. Thus, they usually advocate acquiring more in-depth knowledge about the 
particular systems being investigated in each case (Evans et al. 2012; Heger and Jeschke 2014; 
Kaunisto et al. 2016; Phillips et al. 2016).  
 The aim of this paper is to show that while both sides have made important contributions to 
ecological prediction, their arguments suffer from important limitations. I start by outlining the 
notion of surprise in ecology and its effect on predictive success (section 2). I then analyze the two 
most common suggestions for improving the accuracy of ecological predictions (section 3). The 
theory-driven approach has sound philosophical commitments, but is not best suited to ecological 
systems, as they are not merely complex, but also causally heterogeneous, leading to a tradeoff 
between generalizability and predictive power. I am more sympathetic to the opposing view, as it 
is better suited to the reality of ecological systems, though it suffers from an important practical 
limitation, namely that complex models sometimes do have low predictive accuracy. In section 4, 
I will suggest a way forward for predictive ecology that takes into account the pros and cons of 
each view.  
 

2. SURPRISE AND PREDICTIVE FAILURE 
 
Before delving into the issue of how to improve predictions, a little more needs to be said about 
surprise in ecology and its implications for prediction. As stated above, a common way for 
scientists to be surprised is if their hypotheses yield unexpected results. In the case of predictions, 
this happens when they turn out to be inaccurate. In traditional philosophy of science and 
theoretical ecology, an important mark of a successful theory is that it makes accurate predictions. 
Conversely, inaccurate predictions are caused by gaps in scientists’ knowledge and show that there 
is something wrong with the frameworks, theories, or models they are using to investigate 
phenomena. Thus, theories that often yield surprising and inaccurate predictions are likely to be 
flawed. A traditional example of this type of surprise is the orbit of the planet Uranus, which was 
anomalous given the predictions of Newtonian mechanics. The story goes that the anomaly (along 
with others) showed that there were fundamental flaws in the Newtonian framework, and 
eventually led to its replacement by Einsteinian relativity (Thornton 2019). An example often 
mentioned in the ecological literature is Paine’s surprising discovery that not all components of an 
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ecosystem are equally important, but that some keystone species can have effects disproportionate 
to their relative size or abundance (Filbee-Dexter et al. 2017).  
 Of course, surprise is not always problematic, even if it results in the overturning of 
established theories. It is an integral aspect of scientific practice and features in all scientific 
disciplines. Moreover, scientists learn from surprises, and understanding why they occur, even in 
retrospect, leads to scientific progress (Morgan 2005; Parke 2014). Problems start when surprises 
occur too frequently or across many different models, theories, or frameworks. That is, when a 
discipline cannot produce new models, theories, or frameworks that succeed where the previous 
ones have failed or when the new models and theories also yield inaccurate predictions. A few 
failed predictions are to be expected in any science, but frequent failed predictions indicate that (i) 
there are problems in the underlying theories used to investigate the phenomena, (ii) there are 
methodological problems in the investigations, (iii) there are hidden factors or dynamics at work 
in the phenomena, or (iv) a combination of the above. As shown in the introduction, some 
ecologists take this worry quite seriously and claim that the frequency of surprises should cast 
doubt on many of the models, theories, or frameworks used to investigate ecological systems, so 
many that this doubt can be directed toward the discipline of ecology as a whole (Hayes and Barry 
2007; Houlahan et al. 2017; Valéry et al. 2013).  
 How frequent are surprises in ecology? While it is not easy to make comparisons with other 
fields, there is some data on the frequency surprises within the discipline itself. Doak and 
colleagues (2008) conducted a survey of ecological surprises and found that they are far from rare 
occurrences. They outline at least 16 cases of famous surprises just within the subfields of 
population and community dynamics, and report that 98 percent of established field ecologists 
responding to a survey affirmed that they had encountered surprise events akin to the 16 
paradigmatic cases in the paper. Moreover, many of the respondents also stated that the majority 
of surprising results had not been subsequently sent for publication, “the implication being that 
these observations were uninteresting, bothersome, embarrassing, or not sufficiently well 
chronicled and understood through proper application of the scientific method, and thus were 
underreported in the scientific literature” (p. 956, my emphasis).  
 What should we make of this particular frequency of surprise in ecology? I believe it explains 
the worries expressed by ecologists concerning the scientific status of their discipline, but that it 
does not justify them. While it is true that in some scientific disciplines, predictive failure often 
means that there is something wrong with the models or theories used to investigate phenomena, 
this is not the case in ecology. There are two reasons for this. First, the frequency of surprises is 
high but not extremely high. That is, there are many cases where ecologists are not surprised, and 
their predictions do not fail (Dambacher, Li, and Rossignol 2003; Evans, Norris, and Benton 
2012a; Richardson and Rejmánek 2004). This is important because it shows that there are some 
patterns in ecology that are described accurately by models and theories.  
 Second, there is an alternative explanation for why surprises occur in ecology, and this 
explains a significant amount of predictive failure. Ecological systems are causally heterogeneous 
(Elliott-Graves 2018). Two systems are causally heterogeneous when they differ in terms of causal 
factors. The factors that give rise to a phenomenon or affect the outcome of a phenomenon in one 
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system do not generalize to another system, nor do they remain unchanged in the future. In other 
words, it is often the patterns themselves in ecological systems that break. In cases like these, 
knowledge from one ecological system does not transfer to another, hence even when we know 
the mechanisms operating in one ecological system we might still fail to correctly predict the 
outcome of the same phenomenon in another system.  
 I should note that the notion of causal heterogeneity is distinct from the notion of complexity. 
A system is complex when it is made up of many interacting parts (Levins 1966; Matthewson 
2011). Complexity can but need not contribute to causal heterogeneity. For example, a Boeing 747 
is a complex system, yet each Boeing 747 is very similar to all the other Boeing 747s. Thus, finding 
out all the causally relevant factors in the operation of one allows us to generalize across different 
systems (Elliott-Graves 2018; Matthewson 2011). In contrast, a marine ecosystem and a forest 
ecosystem might have similar trophic levels, but the entities in each level are different and behave 
differently. In fact, some ecological systems exhibit causal heterogeneity even when they are 
ontologically similar. For instance, in plant-soil feedback (PSF)1 the same species of plants interact 
with the same species of soil microbes across different systems (e.g., geographically distinct 
prairies), yet these interactions are sometimes positive, sometimes neutral, and sometimes negative 
(Klironomos 2002). Even if scientists know the mechanisms by which PSF occurs and are able to 
explain particular instances of PSF, they are still not always able to predict each particular feedback 
outcome. Finally, as we saw in the case of the whelks and lobsters, systems and their parts can 
behave radically differently over time, even though the species within them are the same. 
 To sum up, the frequency of surprises in ecology is, in large part, due to the causal 
heterogeneity inherent in ecological systems. This heterogeneity explains why it is so difficult to 
make accurate predictions in the discipline. Nonetheless, improving the accuracy of ecological 
predictions is imperative, not because of general worries concerning the scientific status of the 
discipline, but because many of these surprises occur in applied contexts, i.e. when ecologists are 
trying to intervene on a particular system in order to induce, mitigate, or avoid a particular 
outcome. All too often, a failed prediction has real-world consequences, such as the local 
extinction of a species, the invasion of a species into a new area, or the creation of an even bigger 
ecological problem. A rather tragic example is the policy introduced for dealing with the invasive 
giant African land snail in the Pacific islands, which involved the introduction of a predatory snail. 
However, the introduced predatory snail preferred the native species to the invader, thus creating 
a much larger risk to the native pacific snail species (Thiengo et al. 2007).  
 How can the accuracy of ecological predictions be improved? There are two main 
suggestions in ecological literature, which I will discuss in the next section.  
 
 
 
 

                                                
1 Plants invariably interact with microbes in the soil, such as arbuscular mycorrhizal fungi and nutrient fixing bacteria. 
These interactions can be beneficial to the plant’s growth (e.g., displacing plant pathogens) or detrimental (e.g., less 
access to nitrogen). Often, different feedback loops cancel each other out resulting in apparent neutral feedback.  
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3. IMPROVING ECOLOGICAL PREDICTIONS 
 
The debate around the status of prediction in ecology is one manifestation of a larger issue, that of 
the division between theoretical and applied ecology (Lawton 1996). Theoretical ecologists tend 
to approach ecological phenomena by reducing the complexity of ecological systems through 
highly abstract, mathematical, simple, and general models. Applied ecologists tend to deal with 
problems in particular systems, often using experiments or models that incorporate a lot of 
complexity. In truth, this distinction is not clear-cut, as most ecologists fall somewhere between 
the two extremes. Nonetheless, it is worth investigating because some ecologists—usually those 
who self-identify as theoreticians—decry the alleged shift in focus away from theory and toward 
application, citing it as the underlying cause of problems in ecology, especially regarding 
prediction (Courchamp et al. 2015; Houlahan et al. 2017; Marquet et al. 2014).  
 
3.1. FOCUS ON THEORY AND GENERALITY 
 
For theoretical ecologists, predictions are statements about the future state of a system that are 
derived from ecological theories (and data). An ecological theory is often understood as a 
conceptual framework that identifies the “essential features” of systems or phenomena (Marquet 
et al. 2014, 701). A successful theory, on this view, is one that is efficient, i.e. simple, 
parsimonious, derived from first principles, quantitative, and mathematical, with few inputs and 
many predictions (p. 704).2 For example, two fundamental principles of population ecology are: 
(i) exponential growth (expressed as dN/dt = rN3) and (ii) limiting factors. The first principle 
describes how a population grows when it is not limited. The second principle can take many 
forms, including the effects of density (i.e., the competition for resources within a population), 
competition (between members of the population and members of other species’ populations), and 
predation (Berryman 2003). The main theories of population ecology, e.g. competition, are built 
on these first principles.  
 Efficient theories “should yield a compressed description of the system or phenomenon under 
study, thereby reducing its complexity” (p. 703). In other words, efficient theories abstract away 
from the idiosyncratic details of each particular system, reducing the aspects of the system that 
need to be parametrized.4 This has two advantages. First, it allows scientists to distinguish between 
‘real’ causal factors and mere details, thus gaining a more accurate picture of the dynamics of 
ecological systems. Second, it forms the basis of generalizations, as the real causal factors are also 
(thought to be) those that are common across different systems. So, an efficient theory is also 
general and unifying, because it reveals what is common between seemingly disparate systems.  

                                                
2 I should note this is not how philosophers usually interpret the term ‘efficient’; this use comes from the ecological 
literature. Philosophers usually term these theories as simple, general, or even unifying (Kitcher 1981).  
3 Here, the equation describes how a population grows if it is not affected by any limiting factors. N is the population 
size and r is the intrinsic growth rate: the average number of offspring an individual has, at low density.  
4 See Raerinne (2018) for different notions of abstraction in ecological modeling. 



 
 

 7 

 The types of models favored by this conceptual framework are also simple, in the sense that 
they have few equations and parameters, and general, in the sense that they apply to many different 
ecological systems (Holling 1966; May 2004). Examples include the exponential growth equation, 
mentioned above, and its variants that include limiting factors (such as the logistic model, the 
Lotka-Volterra competition and predation models and their variants). The aim of these models, 
like the theories that frame them, is to reduce the complexity of ecological systems and to identify 
core causal factors that are common across different systems.  
 On this view, efficient theories and their models should also yield successful predictions, 
because the theories and models are accurate and the predictions are based on real causal factors. 
In contrast, failures of prediction occur because there is something wrong with the background 
theories. The problem, for many theoretical ecologists, is that the theories have not correctly 
identified the essential features of the systems under investigation, i.e. have not identified the real 
causal factors at work (Houlahan et al. 2017; see also discussion in Maris et al. 2018). 
Consequently, the way to improve predictions is to find new or refine existing theories by making 
them more efficient, i.e. stripping them of confounding details so as to make sure that only the 
core causal factors are taken into account.  
 This view is supported by many historically influential philosophers of science. For many 
years, the prevailing view on scientific explanation was that good explanation is based on general 
laws or patterns and subsumes particular instances within these laws, thus unifying disparate 
phenomena (Hempel and Oppenheim 1948; Kitcher 1984, 1989). On many of these views, 
predictions follow naturally from general theories, because a prediction about the phenomenon 
under investigation doubles as a claim that the phenomenon is manifestation of a more general 
pattern. The idea that testing theories is an important function of prediction is also part of these 
views. Interestingly, even though the popularity of these traditional views in philosophy of science 
has waned in recent years, the idea that predictions function as tests of existing theories has 
remained important (Barrett and Stanford 2006; Hitchcock and Sober 2004; Lipton 2008). Even 
in more recent accounts of scientific explanation, such as certain types of causal or mechanistic 
accounts, philosophers place less value on unification yet preserve the importance of prediction as 
a means of testing theories (Levy and Bechtel 2012; Strevens 2004).  
 The problem with both the ecological and philosophical versions of this view is that they 
assume that laws, generalizations, or at the very least, a certain level of causal homogeneity holds 
in and across ecological systems. If we want to show that a phenomenon is an instance of a more 
general pattern, such a pattern must first be shown to exist. However, as we have seen, ecological 
systems display causal heterogeneity, i.e. the patterns exist but break. Importantly, causally 
heterogeneous systems differ in terms of relevant causal factors, not mere details. The 
‘idiosyncrasies’ of each system, i.e. the aspects of a system not shared by other systems, are not 
irrelevant details, but causally relevant factors that affect the functioning of the system. 
Abstracting away these types of differences, by averaging them out or by omitting them altogether, 
can make a model’s results highly and dangerously inaccurate.  
 For example, many causal factors that determine the outcome of competition are common to 
animal and plant populations. However, plant populations have a number of different causal factors 
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that affect their ability to compete, most importantly the additional dynamic created by competition 
for resources between plant roots, which is, in turn, affected by dynamical interactions between 
plants, fungi, and bacteria (van der Putten et al. 2013). The importance of these additional 
dynamics becomes evident if we compare the relative predictive power of various competition 
models. Population-level models are meant to be simple and general, because they capture only 
the core features of competition that are common to animal and plant populations. Yet while they 
apply to animal populations, they often yield inaccurate results for plant populations (Berger et al. 
2008). In contrast, individual-based models are flexible and can be constructed to include 
additional causal factors (Grimm et al. 2005). These have been shown to yield better results for 
plants (Evans et al. 2012). Even within this family of models, those which take into account 
additional factors such as below-ground competition and the heterogeneity of resources seem to 
be better at predicting the outcome of competition between plant populations (Phillips et al. 2016).  
 Theoretical ecologists may have a sound philosophical basis for their claims that ecological 
predictions fail because the background theories that give rise to them are not sufficiently general, 
yet this framework does not seem to fit the reality of ecological systems, which are complex and 
heterogeneous. I will now turn to the alternative suggestion for improving predictions, which stems 
from applied ecological research.  
 
3.2. FOCUS ON DETAIL AND INCORPORATING COMPLEXITY 
 
The main aim of applied ecology is to solve particular problems that manifest in ecological 
ecosystems, such as population extinctions, biological invasions, conservation of biodiversity, etc. 
Solving these problems often occurs through direct interventions on the system in question, with 
theory operating in the background. The resulting approach is rich in data and detail, as applied 
ecologists usually aim to gain in-depth knowledge about each system under investigation. Their 
models also tend to be data-rich and aim to incorporate rather than reduce complexity. For 
example, niche distribution models such as GARP (Genetic Algorithm for Rule-set Prediction) 
incorporate a very large number of parameters that make up an organism’s niche, and compare 
that niche to other areas with high levels of parameter similarity (figure 3). They can be used to 
make predictions about the spread of a particular species to new areas (Peterson and Vieglais 2001; 
Sobek-Swant et al. 2012).  
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Figure 3. GARP for Japanese Longhorn Beetle  

  
Distributional modeling efforts for the Japanese white-spotted citrus longhorn beetle 
(Anoplophora malasiaca). (a) Distributional points and modeled distribution in southern and 
eastern Asia, and (b) potential distribution in North America. (Adapted from Peterson and 
Vieglais 2001) 
 
 Applied ecologists usually explain cases of failed prediction by citing the inherent 
complexity and idiosyncrasies of ecological systems. They take seriously the fact that if seemingly 
similar systems have idiosyncratic causal factors, then the knowledge gained from studying one 
system might not be generalizable to others. An interesting example comes from the study of insect 
overwintering strategies. Insects face a number of environmental and biotic stressors, such as 
temperature, pathogens, and toxins, that affect their behavior and their ability to survive, especially 
during the winter months (Kaunisto et al. 2016). One strategy for dealing with harsh winters is for 
insects to produce a kind of antifreeze in their haemolymph (Sinclair et al. 2003). The mechanism 
for the production of these antifreeze proteins is understood quite well for a number of insect 
species, yet this does not necessarily mean that the outcome for each insect population can be 
predicted. For instance, if the winter is generally mild, insects can produce less antifreeze protein 
and have higher energy reserves in the spring, yet if the winter temperatures rise often and above 
a certain threshold, insects can burn through more of their energy reserves. In some cases, this 
means that they can survive the winter, but are less capable of reproducing during the spring 
(Sinclair et al. 2003). Finally, if there are repeated freezing events at the beginning of the winter, 
then some insects become increasingly less capable of producing the antifreeze proteins. This may 
not always be a problem, e.g. if they are under snow cover (temperatures under snow cover are 
stable and relatively warm, i.e. close to 0o C) but can result in high mortality rates if they are 
subsequently subjected to spells of much lower temperatures (Marshall and Sinclair 2012). The 
difficulties of predicting insect responses to stressors are summarized in Box 1 (figures taken from 
Kaunisto et al. 2016). 
 

Twenty-six distributional points from the species’ native
distribution in southern and eastern Asia were used to cre-
ate an ecological niche model. Although occurrence points
were insufficient to permit development of statistical tests,
we projected this model across Asia to outline a potential
native distribution (Figure 4a). Projecting the niche model
to North America (Figure 4b), we were able to predict
areas of potential invasion: across the southern United
States, in much of central and southern Mexico, and spot-
tily across the eastern United States. Given that this species
constitutes such a serious pest of Citrus in its native distri-
bution, the coincidence of its potential distribution with

major Citrus-growing areas in
California and the southeastern United
States should raise concerns about the
possibility and consequences of a
future invasion.

[Note: Since this paper was submitted
for publication, Anoplophora malasiaca
has entered North America, having
stowed away in the trunk of a bonsai
tree, to appear  in Wisconsin (see Web
site www.aphis.usda.gov/oa/pestaler/
palbbn. html). Although this appearance
does not yet constitute an invasion, it
certainly illustrates the potential for test-
ing our suitability models via real, albeit
unwanted, appearances of species in
North America.] 

Synthesis: Future 
possibilities
The theoretical framework for treating
invasive species and the information
infrastructure described above present
fascinating opportunities for develop-
ment of a proactive tool for invasive
species risk assessment, namely, a virtu-
al data facility. This facility, although
computationally intensive, could create
predictive ecological models for all
species not native to a particular
region. These models could then be
used to develop strategies for avoiding
species invasions that might result from
certain activities, such as trading with a
particular country or opening a new
canal or transportation route. Such a
facility could easily be incorporated
into the activities of a number of agen-
cies already focusing on invasive
species.

Development of such a facility re-
quires several strong steps. First, care-
takers of biodiversity information will
have to embrace the project, because

they would have to share data that they might consider pro-
prietary. It will require experimentation and exploration of
new methodologies and approaches, in particular for the
community of specialists in invasive species biology. Finally,
it will require pushing the frontiers of technology to allow
large-scale, fast computation for organismal biology, which
calls for new algorithms and quick links with computer
facilities that permit millions of complex analyses to arrive
at a single result. This set of achievements would open the
door to an entirely new, different approach to the invasive
species challenge, one that is proactive, predictive, and
quantitative.
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Box 1. Idiosyncrasies, Generalizability, and Prediction in Insect Responses to 
Environmental Stressors 
 
 The suggestions of applied ecologists for improving ecological predictions vary to some 
extent, but share a common theme, namely trying to better represent the complexity and 
heterogeneity of ecological ecosystems. The variation is in terms of how this can be achieved. 
Some applied ecologists suggest focusing more on experimentation rather than modeling, 
especially field experiments, as they support experimental designs that incorporate a lot of 
complexity (Brinkman et al. 2010; Kareiva, Parker, and Pascual 1996; Thrush et al. 2000). Others 
suggest a turn toward process-based ecological models, such as individual-based models, that can 
include a large number of parameters and thus take into account idiosyncrasies of particular 
systems (Evans et al. 2012; Grimm et al. 2005). Others still, suggest adapting complex predictive 
models from adjacent fields dealing with similar problems, such as fisheries, epidemiology, and 
forestry (Pennekamp et al. 2017; Pielke and Conant 2003).  
 The first problem with the applied ecological approach to prediction is that it can lead to 
extreme localism, i.e. where the results of a study are only applicable within the context of that 
study and cannot be transferred to any other system (Guala 2003). If models or experiments are 

Can we generalize multiple stressor effects to
yield predictions?
Currently, the insect literature is dominated by descrip-
tive studies that characterize the responses of a specific
taxon to a specific combination of (usually two) stressors.
When designed well, these studies can identify non-
additive interactions, and hint at underlying mechanisms

or pathways shared among stressors. However, the mil-
lions of insect species and thousands of stressors
mean there are trillions of potential stressor-taxon com-
binations, so such descriptive studies fall short if we
wish to account generally for multiple interacting stress-
ors in our understanding of climate change. To make a
priori predictions about the consequences of multiple
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Responses to interacting stressors can be generalizable or idiosyncratic. This may be evident when responses are compared across a phylogeny
(A), where a strong phylogenetic constraint can imply a generalizable response. We speculate that generalizable responses arise when
mechanisms are shared (Figure 1), but idiosyncratic, if the same mechanisms yield different responses (B), or if the mechanisms themselves are
context-dependent (C).
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present, then the responses may have underlying shared
mechanisms, and thus mutually predictable responses,
even if they have not previously co-occurred in nature
[32,33].

Mechanisms underlying insect responses to
multiple stressors
Identifying the mechanisms underlying stressor interac-
tions could help us to predict a priori the effects of novel
combinations of stressors, or to generalize the effects of
multiple stressors among taxa [2]. This is especially
challenging when our understanding of the mechanistic
basis for insects’ responses to even simple single stressors
is incomplete. Predictable and generalizable responses
to multiple stressors could arise through cross-tolerance
— shared mechanisms of stress response that impart
protection against multiple stressors once activated —
or through cross-talk, whereby signaling responses to the
first stress also activate resistance to other stressors [28!].
These underlying processes are generally conceived as
adaptive, leading to antagonistic effects of combined
stressors, to the benefit of the insect. For example,
prior exposure to dehydration improves subsequent tol-
erance to (i.e. reduces the impact of) cold or heat in the
Antarctic midge Belgica antarctica, the cross-tolerance
facilitated by accumulation of trehalose [29]. In addition,
cross-tolerance  between low temperature and hypoxia
(or other controlled atmospheres), and their underlying
physiological and molecular mechanisms have been
studied to some extent in insects [17!,34–36]. For exam-
ple, in the false codling moth Thaumatotibia leucotreta
mild pre-treatments with chilling and hypoxia increased
resistance to low temperatures and these responses were
correlated with increased membrane fluidity and/or

alterations in heat shock protein (HSP70) [36]. The
antagonistic effects of cross-tolerance or cross talk are
conceptually (and likely mechanistically) related to
hormesis [25].

However, this adaptive framework based on shared
responses to stressors predicts antagonistic responses to
multiple stressors and thus appears to be at odds with the
preponderance of synergistic effects of multiple stressors
that we observed in our literature survey (Figure S1).
Synergistic stressor interactions in insects have been
most commonly reported for chemical–temperature and
chemical–pathogen pairs and the effects of other stressor
pairs have been little-studied. Thus, we lack both either
the breadth of descriptive data or (for many stressors) the
mechanistic understanding of their mode of action which
are necessary to make predictions within this framework.
However, mechanism can predict synergistic responses to
combined stressors, as in a scarabaeid beetle in which
application of an insecticide weakens the immune sys-
tem, leading to a synergistic interaction when the insec-
ticide is applied in concert with a fungal pathogen [37].
These mechanism-based non-additive interactions can
easily yield both synergistic and antagonistic results.
For example, cell membrane fluidity can determine
cold tolerance in the collembolan Folsomia candida, so
lipophilic contaminants can either increase or reduce
cold tolerance, depending on each contaminants’
impact on the phospholipid membrane — a property that
can be predicted in advance [38!]. Thus, predicting the
impacts of multiple stressors based on mechanism may be
primarily hampered by a lack of understanding of the
mechanisms underlying the impact of each stressor in
isolation.
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Shared response mechanisms can hypothetically be used to predict responses to novel stressor combinations. Stressor pairs P + Q and P + R
share same mechanism (X) resulting in a shared response or outcome (O1). In this example, the new stressor pair T + S also share response
mechanism X, so we predict the O1-response.
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Figure 1.2. Responses to interacting stressors can be 
generalizable or idiosyncratic. This may be evident when 
responses are compared across a phylogeny (a), where a 
strong phylogenetic constraint can imply a generalizable 
response. We speculate that generalizable responses arise 
when mechanisms are shared (Figure 1.1.), but 
idiosyncratic, if the same mechanisms yield different 
responses (b), or if the mechanisms themselves are context-
dependent (c). 

Figure 1.1. Generalizability and Predicted outcomes

Figure 1.1. Shared response mechanisms can 
hypothetically be used to predict responses to novel stressor 
combinations. Stressor pairs P + Q and P + R share same 
mechanism (X) resulting in a shared response or outcome 
(O1). In this example, the new stressor pair T + S also share 
response mechanism X, so we predict the O1-response.

Figure 1.2. Idiosyncrasies and Generalizability

adapted from Kaunisto et al., (2016)
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tailor-made for particular systems, and those systems are idiosyncratic (i.e., have high levels of 
causal heterogeneity), then including all the relevant factors that give rise to the phenomenon in 
that system means that the model will not be applicable or informative for any other system. 
Moreover, even tailor-made approaches will not protect from surprises that occur within a system, 
if causal heterogeneity manifests in the same system across time. For example, a model that 
includes all the factors contributing to a positive feedback loop between plants and soil microbiota 
may fail to predict a correct outcome if that positive loop becomes negative. Now, we might be 
forced to concede that in some cases, this outcome is inevitable. However, the worry is that by 
adopting the tailor-made approach, applied ecologists might miss the opportunity to identify 
commonalities between systems when they do occur. If there are any patterns in the ecological 
world, it is extremely important that they are identified!  
 I do not believe that this problem is insurmountable. There is an abundance of papers in the 
literature that actively look for patterns across systems, within certain constraints (see for example 
Heger and Jeschke 2014; Linquist et al. 2016; Phillips et al. 2016; Richardson and Rejmánek 
2004). This is often achieved by large-scale statistical analysis of existing data sets, or meta-
analyses of existing papers, which examine tailor-made models or experiments. For example, a 
study of invasive and noninvasive species of pines showed that invaders shared three important 
traits: small seed mass, small juvenile periods, and short intervals between seed crops (Rejmánek 
and Richardson 1996; Richardson and Rejmánek 2004). This sort of study proved to be extremely 
useful, as the authors were able to identify species of pines that pose particular threats to 
ecosystems. For example, they identified P. radiata, P. contorta, P. halepensis, P. patula, P. 
pinaster as the five most invasive species of pine and also identified 14 species of pine that do not 
pose a threat to invasion. More specifically, they also identified particular forests in Sweden as a 
potential danger zone, as they are susceptible to invasion by the North American P. contorta. The 
important difference between this approach to generality and that of the theoretical ecologists is 
that the existence of patterns is investigated rather than assumed. Consequently, the generalizations 
are modest, in the sense that they apply only within certain parameters, such as a particular species, 
genus, or geographical location.  
 The second issue with this approach concerns low-quality data sets: often, the data ecologists 
need are difficult to obtain, or even unavailable. For example, the capture-recapture method is 
perhaps the most widely used sampling method in ecology yet does not work equally well for all 
species/populations. It is not very useful in cases where capture or recapture is difficult, and it can 
result in biased samples. For instance, in some fish species, capture methods are biased toward 
larger fish, skewing demographic information (Pine et al. 2003). All models have some chance of 
prediction error when they are based on low-quality data, yet the more complex models, favored 
in the applied approach, are likely to result in higher levels of prediction error (Novak et al. 2011; 
Perretti and Munch 2013). There are two reasons for this. The first is the increased risk of 
overfitting (Hitchcock and Sober 2004). According to the Akaike framework, models with many 
parameters are in greater danger of fitting the data too well, in the sense that they can be trained 
extremely efficiently on the original data sets. The problem is that this makes them oversensitive 
to data points that are outliers or even noise, which decreases the likelihood that they will yield 
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accurate predictions. The second reason is that, as errors can be introduced every time a model’s 
parameter is estimated from low-quality data, more complex models have more parameters, so 
each additional parameter contributes to the likelihood of error (Novak et al. 2011). Moreover, in 
complex models, parameters interact with each other, so the effect of each error is magnified and 
passed on to other parameters. In short, while simple models tend to be accurate on fewer 
occasions, when compared to more complex models, the latter tend to have greater margins of 
error, when inaccurate.  
 This issue is much more problematic for the second approach, because the practical limitation 
of patchy data is here to stay (Tucker and Duplisea 2012). That is, it seems unlikely that our data 
sets will be greatly improved in the foreseeable future. Ecologists are using state-of-the-art data 
collection methods, and while there have been some technological advances over the last decades, 
data sets remain patchy and skewed, especially in some types of ecosystems (e.g., marine 
ecosystems where (a) population sizes are incredibly difficult to estimate and (b) a lot of data 
comes from fishermen—who have an obvious motivation to underreport their catches or 
misrepresent the relative abundances of various fish populations) (National Research Council 
2000).  
 

4. THE FUTURE OF PREDICTIVE ECOLOGY 
 
At this point, the future of predictive ecology may seem rather grim. I have argued that the 
theoretical approach is doomed to fail, as it cannot capture the complexity and heterogeneity of 
ecological systems. Yet the applied approach is also problematic, as complex models of low-
quality data sets have high rates of predictive failure. I propose that the way forward is a hybrid of 
the two approaches which retains the best aspects of both. Two aspects should be retained from 
each approach. The first is the importance of generalization from the first approach. 
Generalizations are useful because they allow scientists to compare different systems and to 
identify patterns in the world. If there are patterns, we want to be able to find them. There is a big 
caveat, however. All this can be achieved with quite modest generalizations. Thus, the methods 
for generalizing should come from the second approach. Instead of searching for a theoretical 
framework to unify all of ecology, or even all community or invasion biology (see Houlahan et al. 
2017), ecologists should be content with generalizations with a much more restricted scope. What 
is the appropriate scope? This can only be determined on a case-by-case basis, as it depends on 
whether two or more systems have sufficient causal homogeneity. Still, a second suggestion for 
attaining generalizations is for theoretical ecologists (i.e., those concerned about the lack of 
generality in ecology) to recognize the usefulness of bottom-up, modest generalizations, especially 
those used in the generation of systematic reviews and meta-analyses. These approaches do not 
assume that generalizations hold, but test the scope of generalizations across different taxa/systems 
(Gurevitch et al. 2018; Heger and Jeschke 2014). Hence, they are much less likely to result in 
overgeneralization and the omission of relevant causal factors.  
 The second issue is to determine which models should be favored for ecological predictions. 
As we have seen, simple models cannot incorporate complexity and thus have systematic errors, 
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yet complex models, though they have a lower frequency of error, have a much higher magnitude 
of prediction error, given the patchiness of available data. I believe that the answer is to favor more 
complex models over simple models, as they are correct more often, but with an important caveat, 
namely that ecologists should be wary of the likelihood of error in their models and take steps to 
minimize error. I believe that the following are the two most fruitful ways to minimize error. First, 
ecologists should focus on models that are flexible rather than maximally complex. These are 
models that can be altered to capture different groups of parameters, depending on which are 
considered relevant. The first advantage is that flexible models can leave out error-inducing 
parameters if they are deemed to be irrelevant. Second, the models can be run with various 
combinations of factors, so as to determine the effect of parameters on the overall model output. 
In other words, the models’ flexibility can be used to test the sensitivity of the model output to 
particular biases in the data. An example of such models are IBMs, which can be adapted to suit 
the peculiarities of particular systems. For example, a group of scientists recently showed that the 
performance of the FORMIND Forest Model (an IBM) was hampered by considering only one 
plant functional type (groupings of species based on important characteristics such as fecundity 
and competitiveness) (Fischer et al., 2018). However, they also found that there was no need to 
use a different model, because the model was sufficiently flexible to allow for the representation 
of additional plant functional groups, and found that the performance of the model reached the 
appropriate level of accuracy when (i) it included three plant functional types and (ii) one of these 
groups represented pioneer species (those that are first to colonize a disturbed/barren area).  
 The second suggestion is a more extreme version of flexibility, which includes using more 
than one model with different levels of complexity, or using hybrid models that combine elements 
of two different models (Gallien et al. 2010). Of course, this is not always feasible, but in some 
cases, using multiple models with radically different assumptions can provide more robust 
predictions (Weisberg 2006). Thus, sometimes, ecologists might wish to use both simple and 
complex models, to check whether they produce similar predictions.  
 

5. CONCLUSION 
 
The future of predictive ecology is conceptually straightforward, but difficult to implement 
practically. That is, there is no need for a conceptual rehaul of ecology, or for the search of new 
theoretical frameworks. Instead, what is needed is the realization that the causal heterogeneity of 
ecological systems means that generalizations will be necessarily limited in scope, and that models 
will have high rates of predictive error. This predictive error is due to heterogeneity and low-
quality data sets and can be combatted on a case-by-case basis, by checking and rechecking each 
model’s performance in a given context. In addition, theoretical ecologists can utilize various 
methods for generalizing and testing the scope of generalizations and predictions from the 
literature on systematic review, meta-analysis, and other types of formalized synthesis.  
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