# The physical impossibility of machine computations on sufficiently large integers inspires an open problem that concerns abstract computable sets $X \subseteq \mathbb{N}$ and cannot be formalized in the set theory $Z F C$ as it refers to our current knowledge on $\mathcal{X}$ 

Sławomir Kurpaska, Apoloniusz Tyszka


#### Abstract

Edmund Landau's conjecture states that the set $\mathcal{P}_{n^{2}+1}$ of primes of the form $n^{2}+1$ is infinite. Let $\beta=(((24!)!!!)!$, and let $\Phi$ denote the implication: $\operatorname{card}\left(\mathcal{P}_{n^{2}+1}\right)<\omega \Rightarrow \mathcal{P}_{n^{2}+1} \subseteq(-\infty, \beta]$. We heuristically justify the statement $\Phi$ without invoking Landau's conjecture. The set $\mathcal{X}=\left\{k \in \mathbb{N}:(\beta<k) \Rightarrow(\beta, k) \cap \mathcal{P}_{n^{2}+1} \neq \emptyset\right\}$ satisfies conditions (1)-(4). (1) There are a large number of elements of $\mathcal{X}$ and it is conjectured that $\mathcal{X}$ is infinite. (2) No known algorithm decides the finiteness/infiniteness of $\mathcal{X}$. (3) There is a known algorithm that for every $n \in \mathbb{N}$ decides whether or not $n \in \mathcal{X}$. (4) There is an explicitly known integer $n$ such that $\operatorname{card}(\mathcal{X})<\omega \Rightarrow X \subseteq(-\infty, n]$. (5) There is an explicitly known integer $n$ such that $\operatorname{card}(\mathcal{X})<\omega \Rightarrow \mathcal{X} \subseteq(-\infty, n]$ and some known definition of $\mathcal{X}$ is much simpler than every known definition of $\mathcal{X} \backslash(-\infty, n]$. The following problem is open: Is there a set $\mathcal{X} \subseteq \mathbb{N}$ that satisfies conditions (1)-(3) and (5)? The set $\mathcal{X}=\mathcal{P}_{n^{2}+1}$ satisfies conditions (1)-(3). The set $\mathcal{X}=\{k \in \mathbb{N}$ : the number of digits of $k$ belongs to $\left.\mathcal{P}_{n^{2}+1}\right\}$ contains $10^{10^{450}}$ consecutive integers and satisfies conditions (1)-(3). The statement $\Phi$ implies that both sets $\mathcal{X}$ satisfy condition (5).


Key words and phrases: complexity of a mathematical definition, computable set $\mathcal{X} \subseteq \mathbb{N}$, current knowledge on $\mathcal{X}$, explicitly known integer $n$ bounds $\mathcal{X}$ from above when $\mathcal{X}$ is finite, infiniteness of $\mathcal{X}$ remains conjectured, known algorithm for every $n \in \mathbb{N}$ decides whether or not $n \in \mathcal{X}$, large number of elements of $\mathcal{X}$, mathematical statement that cannot be formalized in the set theory $Z F C$, no known algorithm decides the finiteness/infiniteness of $\mathcal{X}$, physical impossibility of machine computations on sufficiently large integers.

## 1. Basic definitions and the goal of the article

Logicism is a programme in the philosophy of mathematics. It is mainly characterized by the contention that mathematics can be reduced to logic, provided that the latter includes set theory, see [3, p. 199].

Definition 1. Conditions (1)-(5) concern sets $\mathcal{X} \subseteq \mathbb{N}$.
(1) There are a large number of elements of $\mathcal{X}$ and it is conjectured that $\mathcal{X}$ is infinite.
(2) No known algorithm decides the finiteness/infiniteness of $\mathcal{X}$.
(3) There is a known algorithm that for every $n \in \mathbb{N}$ decides whether or not $n \in \mathcal{X}$.
(4) There is an explicitly known integer $n$ such that $\operatorname{card}(\mathcal{X})<\omega \Rightarrow X \subseteq(-\infty, n]$.
(5) There is an explicitly known integer $n$ such that $\operatorname{card}(\mathcal{X})<\omega \Rightarrow \mathcal{X} \subseteq(-\infty, n]$ and some known definition of $\mathcal{X}$ is much simpler than every known definition of $\mathcal{X} \backslash(-\infty, n]$.

Definition 2. We say that an integer $n$ is a threshold number of a set $\mathcal{X} \subseteq \mathbb{N}$, if $\operatorname{card}(\mathcal{X})<\omega \Rightarrow X \subseteq(-\infty, n], c f$. [8] and [9].

If a set $\mathcal{X} \subseteq \mathbb{N}$ is empty or infinite, then any integer $n$ is a threshold number of $\mathcal{X}$. If a set $\mathcal{X} \subseteq \mathbb{N}$ is non-empty and finite, then the all threshold numbers of $\mathcal{X}$ form the set $[\max (\mathcal{X}), \infty) \cap \mathbb{N}$.

Edmund Landau's conjecture states that the set $\mathcal{P}_{n^{2}+1}$ of primes of the form $n^{2}+1$ is infinite, see [5] and [6].

Definition 3. Let $\Phi$ denote the implication:

$$
\operatorname{card}\left(\mathcal{P}_{n^{2}+1}\right)<\omega \Rightarrow \mathcal{P}_{n^{2}+1} \subseteq(-\infty,(((24!)!)!)!]
$$

Landau's conjecture implies the statement $\Phi$. In Section 4, we heuristically justify the statement $\Phi$ without invoking Landau's conjecture.

Statement 1. There is no explicitly known threshold number of $\mathcal{P}_{n^{2}+1}$. It means that there is no explicitly known integer $k$ such that $\operatorname{card}\left(\mathcal{P}_{n^{2}+1}\right)<\omega \Rightarrow \mathcal{P}_{n^{2}+1} \subseteq(-\infty, k]$.

Proving the statement $\Phi$ will falsify Statement 1 . Statement 1 cannot be formalized in the set theory ZFC because it refers to the current mathematical knowledge. The same is true for Statements 2 and 3 and Open Problem 1 in the next sections. It argues against logicism as Open Problem 1 concerns abstract computable sets $\mathcal{X} \subseteq \mathbb{N}$.

## 2. The physical impossibility of machine computations on sufficiently large integers inspires Open Problem 1

Definition 4. Let $\beta=(((24!)!)!)!$.
Lemma 1. $\beta \approx 10^{10^{10^{10}}} \begin{array}{r}25.16114896940657\end{array}$.

Proof. We ask Wolfram Alpha at http://wolframalpha.com
Statement 2. The set $\mathcal{X}=\left\{k \in \mathbb{N}:(\beta<k) \Rightarrow(\beta, k) \cap \mathcal{P}_{n^{2}+1} \neq \emptyset\right\}$ satisfies conditions (1)-(4).

Proof. Condition (1) holds as $\mathcal{X} \supseteq\{0, \ldots, \beta\}$ and the set $\mathcal{P}_{n^{2}+1}$ is conjecturally infinite. By Lemma1, due to known physics we are not able to confirm by a direct computation that some element of $\mathcal{P}_{n^{2}+1}$ is greater than $\beta$, see [2]. Thus condition (2) holds. Condition (3) holds trivially. Since the set

$$
\left\{k \in \mathbb{N}:(\beta<k) \wedge(\beta, k) \cap \mathcal{P}_{n^{2}+1} \neq \emptyset\right\}
$$

is empty or infinite, the integer $\beta$ is a threshold number of $\mathcal{X}$. Thus condition (4) holds.

In Statement 2

$$
\operatorname{card}(\mathcal{X})<\omega \Rightarrow X \subseteq(-\infty, \beta]
$$

and the sets

$$
\mathcal{X}=\left\{k \in \mathbb{N}:(\beta<k) \Rightarrow(\beta, k) \cap \mathcal{P}_{n^{2}+1} \neq \emptyset\right\}
$$

and

$$
\mathcal{X} \backslash(-\infty, \beta]=\left\{k \in \mathbb{N}:(\beta<k) \wedge(\beta, k) \cap \mathcal{P}_{n^{2}+1} \neq \emptyset\right\}
$$

have definitions of similar complexity. The following problem arises:
Open Problem 1. Is there a set $\mathcal{X} \subseteq \mathbb{N}$ that satisfies conditions (1)-(3) and (5)?

## 3. Number-theoretic statements $\Psi_{n}$

Let $f(1)=2, f(2)=4$, and let $f(n+1)=f(n)!$ for every integer $n \geqslant 2$. Let $\mathcal{U}_{1}$ denote the system of equations which consists of the equation $x_{1}!=x_{1}$. For an integer $n \geqslant 2$, let $\mathcal{U}_{n}$ denote the following system of equations:

$$
\left\{\begin{array}{rll}
x_{1}! & = & x_{1} \\
x_{1} \cdot x_{1} & = & x_{2} \\
\forall i \in\{2, \ldots, n-1\} x_{i}! & = & x_{i+1}
\end{array}\right.
$$

The diagram in Figure 1 illustrates the construction of the system $\mathcal{U}_{n}$.


Fig. 1 Construction of the system $\mathcal{U}_{n}$
Lemma 2. For every positive integer $n$, the system $\mathcal{U}_{n}$ has exactly two solutions in positive integers, namely $(1, \ldots, 1)$ and $(f(1), \ldots, f(n))$.

Let

$$
B_{n}=\left\{x_{i}!=x_{k}: i, k \in\{1, \ldots, n\}\right\} \cup\left\{x_{i} \cdot x_{j}=x_{k}: i, j, k \in\{1, \ldots, n\}\right\}
$$

For a positive integer $n$, let $\Psi_{n}$ denote the following statement: if a system of equations $\mathcal{S} \subseteq B_{n}$ has at most finitely many solutions in positive integers $x_{1}, \ldots, x_{n}$, then each such solution $\left(x_{1}, \ldots, x_{n}\right)$ satisfies $x_{1}, \ldots, x_{n} \leqslant f(n)$. The statement $\Psi_{n}$ says that for subsystems of $B_{n}$ with a finite number of solutions, the largest known solution is indeed the largest possible. The statements $\Psi_{1}$ and $\Psi_{2}$ hold trivially. There is no reason to assume the validity of the statement $\Psi_{9}$, cf. Conjecture 1 in Section 4

Theorem 1. For every statement $\Psi_{n}$, the bound $f(n)$ cannot be decreased.
Proof. It follows from Lemma 2 because $\mathcal{U}_{n} \subseteq B_{n}$.
Theorem 2. For every integer $n \geqslant 2$, the statement $\Psi_{n+1}$ implies the statement $\Psi_{n}$.
Proof. If a system $\mathcal{S} \subseteq B_{n}$ has at most finitely many solutions in positive integers $x_{1}, \ldots, x_{n}$, then for every integer $i \in\{1, \ldots, n\}$ the system $\mathcal{S} \cup\left\{x_{i}!=x_{n+1}\right\}$ has at most finitely many solutions in positive integers $x_{1}, \ldots, x_{n+1}$. The statement $\Psi_{n+1}$ implies that $x_{i}!=x_{n+1} \leqslant f(n+1)=f(n)!$. Hence, $x_{i} \leqslant f(n)$.

Theorem 3. Every statement $\Psi_{n}$ is true with an unknown integer bound that depends on $n$.

Proof. For every positive integer $n$, the system $B_{n}$ has a finite number of subsystems.

## 4. A conjectural solution to Open Problem 1

Lemma 3. For every positive integers $x$ and $y, x!\cdot y=y!$ if and only if

$$
(x+1=y) \vee(x=y=1)
$$

Lemma 4. (Wilson's theorem, [1, p. 89]). For every integer $x \geqslant 2, x$ is prime if and only if $x$ divides $(x-1)!+1$.

Let $\mathcal{A}$ denote the following system of equations:

$$
\left\{\begin{aligned}
x_{2}! & =x_{3} \\
x_{3}! & =x_{4} \\
x_{5}! & =x_{6} \\
x_{8}! & =x_{9} \\
x_{1} \cdot x_{1} & =x_{2} \\
x_{3} \cdot x_{5} & =x_{6} \\
x_{4} \cdot x_{8} & =x_{9} \\
x_{5} \cdot x_{7} & =x_{8}
\end{aligned}\right.
$$

Lemma 3 and the diagram in Figure 2 explain the construction of the system $\mathcal{A}$.


Fig. 2 Construction of the system $\mathcal{A}$
Lemma 5. For every integer $x_{1} \geqslant 2$, the system $\mathcal{A}$ is solvable in positive integers $x_{2}, \ldots, x_{9}$ if and only if $x_{1}^{2}+1$ is prime. In this case, the integers $x_{2}, \ldots, x_{9}$ are uniquely determined by the following equalities:

$$
\begin{aligned}
x_{2} & =x_{1}^{2} \\
x_{3} & =\left(x_{1}^{2}\right)! \\
x_{4} & =\left(\left(x_{1}^{2}\right)!\right)! \\
x_{5} & =x_{1}^{2}+1 \\
x_{6} & =\left(x_{1}^{2}+1\right)! \\
x_{7} & =\frac{\left(x_{1}^{2}\right)!+1}{x_{1}^{2}+1} \\
x_{8} & =\left(x_{1}^{2}\right)!+1 \\
x_{9} & =\left(\left(x_{1}^{2}\right)!+1\right)!
\end{aligned}
$$

Proof. By Lemma 3, for every integer $x_{1} \geqslant 2$, the system $\mathcal{A}$ is solvable in positive integers $x_{2}, \ldots, x_{9}$ if and only if $x_{1}^{2}+1$ divides $\left(x_{1}^{2}\right)!+1$. Hence, the claim of Lemma 5 follows from Lemma 4

Lemma 6. There are only finitely many tuples $\left(x_{1}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0\})^{9}$, which solve the system $\mathcal{A}$ and satisfy $x_{1}=1$. This is true as every such tuple $\left(x_{1}, \ldots, x_{9}\right)$ satisfies $x_{1}, \ldots, x_{9} \in\{1,2\}$.

Proof. The equality $x_{1}=1$ implies that $x_{2}=x_{1}^{2}=1$. Hence, for example, $x_{3}=x_{2}!=1$. Therefore, $x_{8}=x_{3}+1=2$ or $x_{8}=1$. Consequently, $x_{9}=x_{8}!\leqslant 2$.

Conjecture 1. The statement $\Psi_{9}$ is true when is restricted to the system $\mathcal{A}$.
Theorem 4. Conjecture 1 proves the following implication: if there exists an integer $x_{1} \geqslant 2$ such that $x_{1}^{2}+1$ is prime and greater than $f(7)$, then the set $\mathcal{P}_{n^{2}+1}$ is infinite.

Proof. Suppose that the antecedent holds. By Lemma 5, there exists a unique tuple $\left(x_{2}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0\})^{8}$ such that the tuple $\left(x_{1}, x_{2}, \ldots, x_{9}\right)$ solves the system $\mathcal{A}$. Since $x_{1}^{2}+1>f(7)$, we obtain that $x_{1}^{2} \geqslant f(7)$. Hence, $\left(x_{1}^{2}\right)!\geqslant f(7)!=f(8)$. Consequently,

$$
x_{9}=\left(\left(x_{1}^{2}\right)!+1\right)!\geqslant(f(8)+1)!>f(8)!=f(9)
$$

Conjecture 1 and the inequality $x_{9}>f(9)$ imply that the system $\mathcal{A}$ has infinitely many solutions $\left(x_{1}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0\})^{9}$. According to Lemmas 5 and 6 , the set $\mathcal{P}_{n^{2}+1}$ is infinite.

Theorem 5. Conjecture 1 implies the statement $\Phi$.
Proof. It follows from Theorem 4 and the equality $f(7)=(((24!)!)!)!$.
Theorem 6. The statement $\Phi$ implies Conjecture 1
Proof. By Lemmas 5 and 6 , if positive integers $x_{1}, \ldots, x_{9}$ solve the system $\mathcal{A}$, then

$$
\left(x_{1} \geqslant 2\right) \wedge\left(x_{5}=x_{1}^{2}+1\right) \wedge\left(x_{5} \text { is prime }\right)
$$

or $x_{1}, \ldots, x_{9} \in\{1,2\}$. In the first case, Lemma 5 and the statement $\Phi$ imply that the inequality $x_{5} \leqslant(((24!)!)!)!=f(7)$ holds when the system $\mathcal{A}$ has at most finitely many solutions in positive integers $x_{1}, \ldots, x_{9}$. Hence, $x_{2}=x_{5}-1<f(7)$ and $x_{3}=x_{2}!<f(7)!=f(8)$. Continuing this reasoning in the same manner, we can show that every $x_{i}$ does not exceed $f(9)$.

Definition 5. Let $\mathcal{K}=\left\{k \in \mathbb{N}\right.$ : the number of digits of $k$ belongs to $\left.\mathcal{P}_{n^{2}+1}\right\}$.
Lemma 7. $\operatorname{card}(\mathcal{K}) \geqslant 9 \cdot 10^{9 \cdot 4^{747}} \approx 10^{10^{450.6930560314272}}$.
Proof. The following PARI/GP ([4]) command
isprime (1+9*4^747, \{flag=2\})
returns $\% 1=1$. This command performs the APRCL primality test, the best deterministic primality test algorithm ([7], p. 226]). It rigorously shows that the number $\left(3 \cdot 2^{747}\right)^{2}+1$ is prime. Since $9 \cdot 10^{9 \cdot 4^{747}}$ non-negative integers have $1+9 \cdot 4^{747}$ digits, the desired inequality holds. To establish the approximate equality, we ask Wolfram Alpha about $9 *\left(10^{\wedge}\left(9 * 4^{\wedge} 747\right)\right)$.

Statement 3. The sets $\mathcal{X}=\mathcal{P}_{n^{2}+1}$ and $\mathcal{X}=\mathcal{K}$ satisfy conditions (1)-(3). The statement $\Phi$ implies that both sets $\mathcal{X}$ satisfy condition (5).

Proof. Since the set $\mathcal{P}_{n^{2}+1}$ is conjecturally infinite, Lemma 7 implies condition (1) for both sets $\mathcal{X}$. Condition (3) holds trivially for both sets $\mathcal{X}$. By Lemma 1 , due to known physics we are not able to confirm by a direct computation that some element of $\mathcal{P}_{n^{2}+1}$ is greater than $f(7)=(((24!)!)!)!=\beta$, see [2]. Thus condition (2) holds for both sets $\mathcal{X}$. Suppose that the statement $\Phi$ holds. This implies two facts:

$$
\begin{equation*}
\beta \text { is a threshold number of } \mathcal{X}=\mathcal{P}_{n^{2}+1} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\underbrace{9 \ldots 9}_{\beta \text { digits }} \text { is a threshold number of } \mathcal{X}=\mathcal{K} \tag{7}
\end{equation*}
$$

Thus condition (4) holds for both sets $\mathcal{X}$. The definition of $\mathcal{P}_{n^{2}+1}$ is much simpler than the definition of $\mathcal{P}_{n^{2}+1} \backslash(-\infty, \beta]$. The definition of $\mathcal{K}$ is much simpler than the definition of $\mathcal{K} \backslash(-\infty, \underbrace{9 \ldots 9}_{\beta \text { digits }}]$. The last three sentences imply that condition (5) holds for both sets $\mathcal{X}$.

Acknowledgment. Sławomir Kurpaska prepared two diagrams in TikZ. Apoloniusz Tyszka wrote the article.

## References

[1] M. Erickson, A. Vazzana, D. Garth, Introduction to number theory, 2nd ed., CRC Press, Boca Raton, FL, 2016.
[2] S. Lloyd, Ultimate physical limits to computation, Nature 406 (2000), 1047-1054, http: //doi.org/10.1038/35023282
[3] W. Marciszewski, Logic, modern, history of, in: Dictionary of logic as applied in the study of language (ed. W. Marciszewski), pp. 183-200, Springer, Dordrecht, 1981.
[4] PARI/GP online documentation, http://pari.math.u-bordeaux.fr/dochtml/ html/Arithmetic_functions.html
[5] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, A002496, Primes of the form $n^{2}+1$, http://oeis.org/A002496
[6] Wolfram MathWorld, Landau's Problems, http://mathworld.wolfram.com/LandausProblems.html
[7] S. Y. Yan, Number theory for computing, 2nd ed., Springer, Berlin, 2002.
[8] A. A. Zenkin, Super-induction method: logical acupuncture of mathematical infinity, Twentieth World Congress of Philosophy, Boston, MA, August 10-15, 1998, http: //www.bu.edu/wcp/Papers/Logi/LogiZenk.htm
[9] A. A. Zenkin, Superinduction: new logical method for mathematical proofs with a computer, in: J. Cachro and K. Kijania-Placek (eds.), Volume of Abstracts, 11th International Congress of Logic, Methodology and Philosophy of Science, August 20-26, 1999, Cracow, Poland, p. 94, The Faculty of Philosophy, Jagiellonian University, Cracow, 1999.

Sławomir Kurpaska
Technical Faculty
Hugo Kołłạtaj University
Balicka 116B, 30-149 Kraków, Poland
E-mail: rtkurpas@cyf-kr.edu.pl
Apoloniusz Tyszka
Technical Faculty
Hugo Kołła̧taj University
Balicka 116B, 30-149 Kraków, Poland
E-mail: rttyszka@cyf-kr.edu.pl

