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Abstract

There are two basic approaches to the problem of induction: the empirical one, which deems that the possibility of induction depends on how the world was made (and how it works) and the logical one, which considers the formation (and function) of language. The first is closer to being useful for induction, while the second is more rigorous and clearer. The purpose of this paper is to create an empirical approach to induction that contains the same formal exactitude as the logical approach. This requires: a) that the empirical conditions for the induction are enunciated and b) that the most important results already obtained from inductive logic are again demonstrated to be valid. Here we will be dealing only with induction by elimination, namely the analysis of the experimental confutation of a theory. The result will be a rule of refutation that takes into consideration all of the empirical aspect of the experiment and has each of the asymptotic properties which inductive logic has shown to be characteristic of induction.
1. Introduction
Epistemology acknowledges two different information theories: the statistical and the semantic. The latter was proposed in 1953 by Carnap and Bar(Hillel
 on the basis of an idea of Popper’s, according to which the lower the logical probability of a sentence is, the higher its informative content. The semantic information was included in the ((continuum of inductive methods developed by Carnap. Hintikka later generalized this concept, adapting it to his own ((((continuum and investigating the philosophical implications of a theory of induction based on semantic information
. The main characteristics of the semantic approach are the use of logic probability (the ratio of possible worlds where the sentence holds true) and a Bayesian decision model that relies on a maximization of the expectation of a suitable utility function. The main problem here concerns the definition of a unique measure of information. Indeed, like Carnap’s c(functions, these measures form a (bi(dimensional) continuum set as well.

The statistical theory of information derives from Claude Shannon’s pioneering mathematical analysis of the concept of information. Notwithstanding the fact that Shannon’s main aim was to characterize the communicative processes relating to telegraphy and telephony, his theory, from the very beginning, was easily applied to any process that was linked to information, such as a musical concert, a written or oral discourse, an encrypted military message, and so on. This was due to the fact that Shannon based his theory on a simple function that expressed the informational content of any message: the entropy function. It is evident that Shannon used that function within the framework of its normal meaning in thermodynamics and statistical mechanics,
 but he also gave entropy a new meaning that was absolutely unaffected by its usual fields of application
. He demonstrated a large number of theorems related to this function and he analyzed the concepts of communication channel, noise, and message coding. The peak of his theory is represented by the theorem carrying his name, which connects channel capacity, message entropy and ideal coding, ​that is, the coding that minimizes the effect of noise due to transmission through the channel. In his original writings, Shannon often demonstrated his theorems in a non–rigorous way, and sometimes only for the case of Markov chains. The generalization of his results to any message sequences occurred with the fundamental theorems of McMillan in 1953 and of Feinstein in 1954, and was definitively established by Khinchin in 1956
.

Shannon’s ideas were applied in the philosophy of science towards the end of the 1960s, especially in the problem of scientific explanation. James Greeno proposed a model that was principally based on the notion of statistical relevance in which the concept of ‘information transmitted’ by a theory was used as a measure of the ‘explanatory power’ of the theory itself
. Even though Greeno’s fundamental thought was correct, the close link between his model and Salmon’s model of statistical relevance caused the contribution and the function of the statistical theory of information to be misleading. A model much more consistent in this regard was proposed and developed by Joseph Hanna
. The main difference between his model and Greeno’s consists in the fact that Hanna’s conditional probabilities are not meant as a measure of relevance, but as probabilistic sentences deductively derived from a certain scientific theory. Furthermore, Hanna’s model introduces the notion of explanatory (or predictive) power for a single event and uses the statistical(informational concept of ‘source’ in order to distinguish between ‘explanation’ and ‘description’
. In this approach, however, as opposed to the semantic one, a statistical(informational analysis of the inference from empirical evidence to theory was not developed. There is no purely statistical(informational equivalent of the Bayesian decision process or rules of acceptance elaborated in the semantic theory.

This article is an attempt to fill this gap by continuing Hanna’s model for the analysis of stochastic theories in broader terms
. We will therefore try to apply the statistical theory of information to the case of scientific experiment. The validity of this proposition is upheld by the fact that the experiment is an informative event, that is, an information carrier
. Moreover, the scientific experiment is the starting point for any (confirming or refuting) inference regarding a theory. We will propose a measure of the capacity of an experiment to put a theory ‘in difficulty’ and this will yield the basis for an inferential rule concerning acceptance or refutation. The results of Shannon’s theory will allow us to extend our investigation to the experimental apparatus as well, a problem to which the philosophy of science paid scarce attention. In this way, we will be able to fix quantitative limits for the classic ‘saving’ argument, according to which an experimental refutation can be avoided by casting doubt on the trustworthiness of the experimental apparatus. In concluding, we will compare the results obtained with Hintikka’s semantic approach.
2. Information concept analysis

2.1 Technical preliminaries

The first distinction that we must introduce is that between a model of experiment and a specific experiment
. A model of experiment is the description, according to a theory, of the behavior of a physical system M placed in a disposition ( which we will call theoretical set–up. The analysis of the behavior of cathode rays in a magnetic field according to the wave theory of cathode rays, for example, is a model of experiment. The result of a model of experiment (the deviation or lack of deviation of the cathode rays) is said to be a theoretical state. A specific experiment is the concrete realization of the disposition that is contained in the model: for example, the production of the magnetic field by means of a particular magnet, or a tube with a certain degree of vacuum, etc. This concrete realization forms the experimental set(up (, i.e. the carrying out of the theoretical set(up. The outcome of the experimental apparatus that represents the experimental set(up is said to be an experimental state.

In order to describe an experiment based upon a theory, two elements are needed: (a) a theoretical description of the system and (b) a description of the effects of the theoretical set–up. Formally, the first requirement concerns the definition of a probability space.

A probability space is the structure (X, B, m) where X is a set, B a (–algebra and m a measure function
. It can be stated that B is a (–algebra if and only if it is a collection of subsets of X with the following features:

(a) X ( B.

(b) If B(B , then the complement of B also belongs to B.

(c) If each one of the elements of a numerable collection of subsets of X belongs to B, then their union also belongs to B.

A measure is a function m: B ( R+  with the following features:

(a) m(() = 0.

(b) Given a numerable collection of sets Bi pairwise disjoint, then: 
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Moreover, we will take into account the measure function to be normalized, namely m(A) ( 1 for each elements A of B and the sum of m(A) over all the elements A of B is equal to 1. Under such conditions, the measure function m is called a probability function and expresses the probability linked to each element of B.

The set X of all possible states simply defines the possible configurations of the system, according to general laws. Accordingly, this constitutes the background theory S. The addition of a (–algebra consists in individuating, from among the possible states, a particular set of states characterized by a certain physical meaning. The system is considered not only from the background theory standpoint, but also from a more specific point of view. The (–algebra and the subsequent addition of the probability function are the contribution of a specific application of the background theory. In general, the probability space (X, B, m) is the description of a class of physical systems and can therefore be called the specific theory T within the background S. Mechanics, for example, is like a background theory: the Hamilton equations allow the possible states of a particle set to be calculated. The introduction of physical assumptions concerning a particular subject (for example the physical state of a gas described by the energy distribution among the particles) allows us to define a set of physical states of the system and to assign a probability to them.

2.2 Information of an experiment.

A theory T describes an experiment E when it gives a list of possible outcomes for E and a probability distribution for them. So T defines a partition A = (a1, …, an(, namely a finite set of pairwise disjoint elements of B such that their union is X and a probability distribution (m(a1), …, m(an)(.

So, an experiment can be defined, in relation to some specific theory, as a structure E = [A, m], where A is the partition and m the normalized measure function. In information theory, this structure is often referred to as a source, and this same term will be used later in the text to indicate the model of an experiment, since [A, m] is a theoretical description of an experiment. Whenever an experiment is mentioned in this context, it means something completely absorbed by a theory, something characterized by (and having meaning only within) a specific theory. In the structure [A, m], there is nothing that relates directly to the nature of the physical process itself, but only to the description of it that can be made within such a theory, namely that such a theory allows. Henceforth, what is produced by the source will be called message to distinguish it from the signal, which is received by an observer by means of a suitable measuring apparatus.

Two further remarks can be made about the partition and the probability concept used in this context. First, the possible outcomes of the partition are the empirical eventualities that the theory regards as ‘serious possibilities’
. They are the empirical events that make physical sense from the theory standpoint. Although this fact does not exclude that these eventualities could have zero probability. Second, the probability assigned to an empirical eventuality by the theory must be understood as a propensity. Indeed, such probability measures the tendency of the eventuality to appear, provided the disposition (, with a certain relative frequency. Thus, this tendency is derived from the theory, but linked to the theoretical set(up
.

The next step is to measure the information assigned to partition A. Choosing a partition and a probability distribution, a theory automatically provides an ‘information value’ for the experiment. This value represents the amount of information allowed by the theory to the experiment, that is, the amount of information made available through the carrying out of the experiment itself. Statistical information theory connects this amount of information with the uncertainty, which can be removed via the experiment (Weaver 1963, 8–9):

To be sure, this word information in communication theory relates not so much to what you say, as to what you could say. That is, Information is a measure of one’s freedom of choice when one selects a message. […] The concept of information applies not to the individual messages (as the concept of meaning would) but rather to the situation as a whole, the unit information indicating that in this situation one has an amount of freedom of choice, in selecting a message, which it is convenient to regard as a standard or a unit amount. 

In other words, having a partition and a probability distribution for an experiment means being uncertain of the outcome of the experiment itself. Carrying out the experiment means removing this uncertainty. It is evident that the more uncertainty is removed, the more information is generally collected through the experiment. However, it should be remarked, that in the particular case of an experiment, there is also a specific theory to be taken into account. Thus, in addition to the classic interpretations, we have also the following: the information is linked to the degree of commitment that the specific theory assumes concerning the experiment. Of course, the more the probability distribution is distanced from uniformity, the less uncertainty is removed. If the same probability 1/n is given to each outcome ai, there will be complete uncertainty about the outcome and therefore the experiment will supply the observer with a maximum quantity of information. This is also the case in which the theory is least committed to the experiment itself. On the contrary, if the distribution assigns almost all of the probability to one outcome only, and a zero probability to all the others, then this will be a condition of minimum uncertainty and minimum information about the outcome, while the theory results in complete commitment, compromised by a particular outcome.

The function H, expressing the amount of information of an experiment (as a whole) is defined as follows:
(1)
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We call the function H(E), the entropy of the experiment E. We can ignore the positive constant k, which is merely a convention. The logarithmic base used fixes a unit measure of information and is arbitrary. It is convenient, for many reasons, to assume 2 as a base, since the information is usually measured in bits. Note that entropy is a characteristic of the experiment as a whole, not the result of taking into account only a specific outcome. Furthermore, it is the expectation of individual entropy h(ai) = log(1/m(ai)). The possible entropy values can vary along with the following
:

Theorem. Let the entropy function H(E) be given, then H(E) ( 0 and H(E) ( log n. The equalities hold if and only if m(ai) = 1 and m(aj) = 0 for each j(  i and m(ai) = 1/n for each 0 ( i ( n, respectively.
As can be seen, the information value depends on the number of partition elements, namely the degrees of freedom of the experiment. 
Conditional entropy can be introduced in a completely natural way. Let us consider two experiments E1 = [A, m] and E2 = [B, m], defined within the same specific theory with A = (a1, …, an( and B = (b1, …, bm(. If the experiments are independent from one other, the entropy of their product is equal to the sum of their single entropies. In the case that they are not independent, it makes sense to calculate the conditioned probability of the experiment E2 given E1. For each element of the two partitions, the conditioned probability is: 
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thus we obtain the quantity: 
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Extending this to all of the elements of partition A, we obtain:  

(2)
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which expresses the quantity of information from experiment E2 added to that already provided by experiment E1. It is possible to prove that:  
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namely, to carry out an experiment connected to E2 causes a reduction, or at most, a non–variation in the contribution of information of just E2. Such a conclusion is perfectly in line with the intuitive idea of information. Furthermore, it is possible to generalize (1) as follows: 

Theorem. Let two experiments E1 are E2 be given; hence
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with equality if, and only if E1 and E2 are independent.

2.3 The divergence function.

The entropy function has many other features, but those being considered now are more useful in the following analysis
. It is opportune to introduce a new concept, which does not belong to information theory at all, but only to its application in the case of scientific experiment. As seen above, entropy is a characteristic of the experiment as a whole, without taking into account either a distinction between possible outcomes or the commitment of the theory to such outcomes, but only the trend of the probability distribution. At the same time, we can expect the experiment to affect the specific theory, depending on the obtained outcome. Such effect is one of reinforcement, if we obtain an outcome where the theory was committed, and of weakening, if we obtain an outcome which the theory either held to be improbable, or virtually excluded. While entropy expresses the informative value of the whole experiment, the necessity arises for a new function in order to measure the action of the feedback, which the experiment can then exert on the theory in accordance with the outcome. We will pay special attention to the weakening effect, both because it is the most interesting from a philosophical point of view and because it is the most vast and probable, if the theory is precise enough.

At first glance, a good candidate to measure the weakening effect could be a simple function of entropy. For example, an inverse function of Hanna’s explanatory power would seem to fulfill many intuitive requirements. As we have seen, equation (1) can be interpreted as the expectation of individual entropy hi = log(1/m(ai)). If m0(ai) is the prior probability of ai obtained by means of ‘pre(theoretical beliefs’, then Hanna’s explanatory power of the theory T as regards the outcome ai is:
(3)
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The quantity IT(ai) is the information transmitted by the theory about the outcome ai. Thus, it seems natural to suppose that the weakening effect produced by the experiment depends on the inverse of this quantity, because the less the outcome ai may be explained by the theory (the less the theory possesses explanatory power concerning ai), the greater the weakening effect is on the theory itself. Using equation (3), however, does not seem admissible for a philosophical reason. Indeed, in Hanna’s view, there is no unique criterion for defining prior probability: such probability comes from extra(theoretical beliefs and also, eventually, from the ‘insufficient reason’ principle. Nonetheless, in some particular cases, such a probability could play a decisive role. If our pre(theoretical beliefs, no matter how obtained, suggest that the probability of ai is very low, then the prior information will be very high. Likewise, if our theory suggests a high probability for ai, then the theoretical information will be low. In these cases, explanatory power is principally represented by the pre(theoretical beliefs for which it is not possible to establish an objective criterion. If the weakening effect depended on an inverse function of transmitted information, it could concern pre(theoretical beliefs more than the theory itself. Such a measure would therefore be of little significance from a philosophical standpoint since it would depend especially on a group of beliefs that are not under discussion during the actual experiment.

It would be better to adopt another concept, rather than directly use the entropy function. The quantity 2H/n is linked to the ratio of ‘typical’ outcomes for the theory. Intuitively, the idea is as follows. The more a probability distribution is uniform, the greater is the number of eventualities agreeing with it, that can be regarded as typical. For example, if all outcomes but one are equally probable, these outcomes are ‘typical’ and the remaining one is ‘atypical’. This fact becomes more apparent when considering sequences of outcomes, as will be shown in the next paragraph. In a very broad sense, the quantity 2H/n, having to do with the proportion of possible outcomes agreeing with the theory, is similar to the logic probability used in the semantic theory of information. This probability is the ratio of possible worlds where a sentence holds. While the notion of typicality is weaker than truth, 2H/n nonetheless expresses the ratio of eventualities that when realized will further support the theory. We will call this quantity the breadth of the theory. On the contrary, the quantity 2h(a)/n expresses the atypicality of a singular outcome a, because this quantity increases as the probability of a decreases
. It is natural to interpret the weakening effect that an outcome produces on the theory as the divergence between the atypicality of the outcome and the breadth of the theory since the more atypical the outcome, the greater this effect  in proportion to the total number of typical outcomes. Therefore, we propose the following divergence function for the outcome ai for a theory T subjected to the experiment E = [A, m]:
(4)
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Formula (4) expresses the impact of the experiment on the specific theory that concerns the outcome obtained and it is an original enhancement of the application of information theory in the field of scientific experiments
. If Div(ai, T) > 0 (positive divergence), the outcome has a negative effect on the theory, because the theory penalizes this outcome in its initial probability distribution. The extreme values of the function agree with intuition. If H(E) = log n, that is, if the theory does not privilege any outcome, then Div(ai, T) = 0 for each i. Obviously, in this case, no outcome of the experiment can weaken or reinforce the theory because the experiment is irrelevant to it. If H(E) = 0, i.e. if the theory yields probability 1 to one outcome and 0 to the others, it turns out that Div(ai, T) = 0, if 1 is the only probability outcome obtained and Div(ai, T) = ( if otherwise. Thus, in the deterministic case, divergence assumes the highest value. As for the middle values (stochastic theory), the matter is more complicated. We will see later that asymptotic behavior is especially important for these theories. In general, it is easy to prove the following: 

Theorem. Let the experiment E = [A, m] be given, then a necessary and sufficient condition for  ai ( A to be such that 
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As a comment on the set of values that the divergence can assume, we can make the following remark. It can be objected that the fact that divergence is zero in the case where we obtain the unique outcome with probability 1 is counterintuitive. Indeed, the theory implied such an outcome only in a deterministic sense and the fact that it was obtained represents at least a corroboration, if not a confirmation. Such an objection presupposes a particular epistemological position, however. It supposes that, when the experiment is carried out, any commitment about the theory is suspended. If experiments are made in order to know if a theory is true or false, then any judgment about the truth or falsity of a theory must be interrupted while they are being carried out. Two consequences derive from this. First, the experiment must be regarded from a point of view that is external to and independent from the theory, otherwise this point of view assumes the truth of the theory itself. Second, the theory has to be deemed an ensemble of beliefs that can be false, i.e. fallible. This thesis is known as fallibilism. According to fallibilism, a theory can be corroborated or refuted by an experiment. The set of values yielded for the divergence function, however, does not agree with this thesis, but demands, on the contrary, the infallibilism thesis, according to which a theory is assumed to be true when an experiment is performed and the experiment is carried out from the theory point of view. Thus, a theory can be refuted by an experiment, but not confirmed, since it is already regarded as true (although not logically true). The connection between the ‘informational’ approach presented here and the infallibilism thesis will become more apparent in the next paragraph when the concept of ergodicity will be introduced
.

At present, the thesis of infallibilism allows us to clarify further the philosophical meaning of divergence defined by equation (4). The main objection against infallibilism consists in the revision problem. If we regard a theory to be true, how it is possible to discuss and to revise it? Isaac Levi articulated a theory of revision in the question of infallibilism
, but he seems to respond only to a part of the objection. His model explains the mechanism for the revision of an ensemble of true(retained beliefs, but does not explain why this mechanism should ​begin to operate. We can call this the primer problem. The revision of a true theory requires not only the specification of how and to what extent one theory can be replaced with another, but also (and especially) when it is necessary to question something previously regarded as true and infallible. The concept of divergence serves as the foundation for solving the primer problem, which is clearly a problem about the condition of an inference. It concerns the possibility of inferring the refutation of a theory from the evidence. Another aspect of the primer problem concerns the question: why carry out an experiment about a true-retained theory? Levi answers that a true(retained theory can also be regarded as corrigible. The concept of divergence allows us to define this notion of corrigibility more formally and clearly. Saying that a true(retained theory is corrigible means that in the case of experiment: (a) it cannot be corroborated by any outcome and that (b) certain conditions for retaining the theory refuted by the experiment can be clearly and a priori defined. Point (b) justifies the performance of an experiment.

Accordingly, the weakening effect of an experiment on the theory is not merely a logical effect, but also an epistemological one, since the epistemological status of the theory can be established by means of such an effect. Hence, a complete analysis of divergence from a philosophical point of view implies the specification of its inferential role, which we will discuss later.

First, let us further develop the formal consequences of equation (4). It is possible to define the concept of conditioned divergence having two experiments E1 = [A, m] and E2 = [B, m] defined by the same specific theory T with partitions A = (a1, …, an( and B = (b1, …, bm(. The conditioned divergence Div(bk/ai, T) expresses the increase of divergence we obtain if the outcome bk is the result of E2, being already ai the result of E1. It is relatively easy to demonstrate the following: 

Theorem. Let the experiments E1 = [A, m] and E2 = [B, m] for the same specific theory T with A = (a1, …, an( and B = (b1, …, bm( be given. Then Div(bk/ai, T) ( Div(bk, T) if and only if:
(5)
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Formula (5) represents the upper limit when the first experiment reinforces the divergence of the second, relative to  the theory.

It is worth noting the behavior of condition (5)  in particular cases:

(I) If E1 logically implies E2 (that is, if each outcome in E1 determines one and only one outcome in E2), then the conditioned entropy will be 0. Let us assume that the prior entropy E2 is at the maximum. Then we have:  
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for any bk and any ai.

(II) Assuming that E1 logically implies E2, but that E2 has an arbitrary entropy, it can be shown that condition (5) becomes: 
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Because of the relationship implied, given any ai, the conditioned probability will be m(bk / ai) = 1 for the only bk, so that ai ( bk and m(bk / ai) = 0 for all other outcomes. In the first case, the conditioned divergence is zero and in the second case, it is infinite.

(III) If the entropy of E2 is zero, then the conditioned entropy will be zero for the known properties of the entropy. In this case, formula (5) becomes: 
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As before, however, only one bk exists that verifies m(bk) = 1, while in all the other cases the probability is zero, and the condition is verified only with that bk, while the divergences are infinite in the case of the other possible outcomes.

The testability of a theory is another very important philosophical concept that can be defined. According to Popper’s view, testability has to do with a theory’s aptitude to be refuted. The less probable a sentence, the greater the probability to prove it false and the greater its testability. The semantic theory of information introduces this concept in a natural way. In particular, defining information as the ‘content’ of a sentence (namely 1 ( p(h) where p(h) is the logic probability of the sentence h), it turns out that the greater the quantity of this information, the fewer the number of possible worlds where the sentence holds. The critique could be made that in this way testability depends only upon the meaning of the sentence and that sentence’s relation with the language in which it is formulated, but not upon either objective facts or the empirical properties of the theory.

From a more general standpoint, testability is the capacity of a theory to come to terms with a refuting experiment (Popper’s so(called ‘potential falsifiers’) and hence is a property of a particular experiment. The concept of testability thus has an empirical and relative, rather than merely logical and absolute, meaning. A similar problem arose in the philosophical application of the statistical theory of information when Greeno proposed a simple relationship between the information transmitted by a theory and its testability
. Hanna later pointed out that Greeno’s measure contained only logic probabilities and that his notion of testability completely lacked empirical content
. Here we propose to assume as testability coefficient the expectation of divergence:
(6)
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The coefficient of testability defined by equation (6) refers to an experiment, that is, to a potential falsifier. On the other hand, it depends on the logical structure of the theory as well, by means of the addendum 2H. Its reaction to the limit is intuitively correct. If the distribution tends to become un(uniform (H ( 0) and the theory tends to privilege only one eventuality, the coefficient tends to (n ( 1)/n, namely to the proportion of excluded eventualities. This property is completely analogous to that which can be found in semantic theory. Likewise, if the distribution tends to become uniform (H ( log n), then coefficient tends to 0 independently from the degrees of freedom. Thus, it is apparent from the testability coefficient (6) that the testability of a theory relative to an experiment depends essentially on the number of serious possibilities that a theory considers. Indeed, the interval of values is [0, (n ( 1)/n] and it grows with n. Making the theory more general (by increasing n) also helps to improve its testability, even (and especially) if these new serious possibilities have zero probability. Moreover, the concept of serious possibilities allows us to avoid the formal trick of adding an infinity of zero probability possibilities, leaving the structure of the theory untouched. Actually, adding a serious possibility implies essentially modifying the theory, moving it towards the notion of ‘more general theory’.

A measure of testability depending on the relationship between the theory and the serious possibilities alone is the logic testability coefficient:
(7)

[image: image17.wmf]1

2

)

,

(

1

)

,

(

)

(

-

-

=

×

-

=

n

n

T

E

S

n

n

T

E

S

E

H

L


obtained simply by normalizing equation (6). Equation (7) can be formulated as a percentage and it turns out to be independent of the number of empirical eventualities, even if still referring to an experiment. If a set K containing k potential falsifiers is given, the average testabilities for the set K can be defined:
(8)
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We can add two remarks concerning this notion of testability.

First, Hintikka maintained that faced with empirical evidence, the theory that best explains it is the one having a low prior probability and a high posterior probability
. In other words, the theory rationally suggested by the evidence is the one that (a) has a high testability and, at the same time, (b) makes the divergence low. If both conditions are applied to our approach, the result is that the theory that agrees most with the evidence is the one implying the evidence itself with probability 1. This result is completely analogous to Hintikka’s, in which the evidence is optimally explained by the ‘constituent’ which states that all the predicates actually observed and only these will be exemplified. The difference between our approach and the semantic theory is that this criterion does not hold absolutely, since it is not possible to fix a maximum for testability. It follows that, in this informational theory, the criterion is global from a logical standpoint (i.e. it is absolute if n is fixed), but local from an empirical standpoint. The search for a theory that agrees with the evidence is an infinite task if considered empirically.

Second, if the evidence is found in a repetition of experiments where each outcome ai appears with relative frequency fi, then the forementioned condition (b) means that our theory must imply probabilistic sentences according to which m(ai) = pi = fi. Neglecting matters of limit (about which we speak in the next paragraph), such a conclusion perfectly agrees with Hanna’s thesis that a stochastic theory explains a probabilistic phenomenon when it implies a sentence where the probability of the phenomenon is equal to its (infinite) relative frequency
. But condition (a) seems to suggest that the issue does not conclude here. Indeed, a good explanation also depends on the generality of the theory that implies the probabilistic sentences. Hence, the derivation (also deterministic) of an eventuality (i.e. of the sentence describing the eventuality) is only one step in the explanation. First, it is necessary that the eventuality to be explained (i.e. the explanandum) be included in a framework of other possible alternatives. We call such a framework the comprehension of the explanandum. Therefore, the definition of a particular comprehension (which depends on the background theory, too) is an indispensable element in order to balance the explanation.

Thus, from our previous analysis follows the thesis that the explanation of an event consists in the derivation of that event (namely of a sentence stating that the probability of the event is equal to the observed relative frequency) and in the comprehension of it as an event of a certain kind (as defined by the set of alternative events). A more rigorous foundation for this demands that we consider experimental repetition.

3. Generalization to experiment sequences.
3.1 Sequence spaces.

The concept of divergence has allowed us to draw some interesting consequences concerning the testability of a theory and scientific explanation. But it is manifest that the first function of this concept, and of an experiment in general, is to decide if a theory is reinforced or weakened. At the same time, a single experiment cannot be sufficient to make such a decision, especially if the theory is a stochastic one. In this paragraph, we will generalize the previous analysis by taking into consideration arbitrarily long repetitions of the same experiment. The aim is to formulate a rule allowing us to decide the issue of refutation of a theory i.e. whether or not a theory can be refuted. We will call this the inferential rule, rather than ‘decision rule’, in order to avoid confusion with decision theory and to identify our philosophical field. Indeed, decision theory is mainly interested in measuring the expected utility of some consequences (courses of action), having been provided with some presuppositions (states of nature). The rule that we are going to give establishes a true inferential link between presuppositions and consequences, in the sense that accepting the presuppositions, in certain conditions, means necessarily accepting the consequences as well.

Let us consider repetitions of the same experiment. The source [A, m] will be treated as the source of a message, which is a sequence of r elements among those of A (r–sequence). The entropy to be discussed is that of the possible messages sent out by the source, within, of course, the specific theory that defines the source itself. Henceforth, that entropy will be called theoretical entropy, in order to distinguish it from the entropy of the signal, which correspond to the message reception and is the experimental entropy. It is possible to compare only r–sequences with the same number of elements, thus creating spaces of r–sequences ( = [A, r, (], characterized by the same partition A, the same dimension r and a probability measure ( derived from the original probability measure of the experiment. In fact, let x be an r–sequence 
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(9)
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Thus, each sequence space ( contains all the possible x sequences of the same dimension, i.e. it contains nr elements, each of them having a well–defined probability. Indeed, it is possible to apply the results obtained in the previous paragraph to the sequence spaces. For example, the entropy of a space of r–sequences ( is defined as:
(10)
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Equation (10) represents the average amount of information contained in a sequence of r symbols, and will be simply referred to as H. Accordingly, the divergence of a sequence space can be defined in accordance with the outcome obtained, i.e. in terms of a certain r–sequence x:
(11)

[image: image22.wmf])

(

2

)

(

1

)

,

(

x

n

x

T

x

Div

r

r

rH

r

r

r

m

m

-

=

.

It is extremely important for our analysis, to define the features of the stationary state and ergodicity of a source. Let us consider any sequence, infinite on both sides, x = xi (–( < i < +() and let us introduce the displacement operator L such that
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, and which transforms an element of the sequence into that element on its right. This operator performs the function of time, allowing movement within the resulting sequence. The subset W of x sequences is defined to be in a stationary state, if and only if ((LW) = ((W), which means that the displacement does not affect the subset measure. As before, W is invariant, if and only if LW = W. The source [A, m] is defined as ergodic, if and only if the only invariant sets of sequences produced are such that ((W) = 0 or ( (W) = 1.

3.2 The interpretation of ergodicity and fundamental theorems.

The interpretation of this ergodic condition is subtle. It implies that a sequence of a certain length is representative of an infinite sequence, i.e. that the infinite sequence does not contain statistically relevant elements beyond a certain limit
. This has an extremely important consequence that must be mentioned here and will be analyzed further on, namely, that a long enough experimental sequence, or a signal sequence, is comparable with the theoretical sequence of the message: ergodicity expresses a possibility condition of comparison between experiment and theory. A further requirement for this operation is that the theory upon which the definition of the message depends, must be not only enunciated, i.e. syntactically developed, but also affirmed, or proposed as adequate to the subject phenomenon. In fact, to devise an experimental control, for example, to a physical law, the formal expression of that law is not enough: it is also necessary for the law to concern a certain class of real physical phenomena and to describe some physical events concerning those phenomena
. Ergodicity also performs this second task, which involves the fact that there are no privileged subsets of sequences that periodically arise or, in other words, all sequences deemed by the theory to be possible will happen sooner or later. This is a condition of adequacy for the specific theory pertaining to the physical process under examination, and is equivalent to affirming that the statistical structure implied by the theory represents a deep aspect of the reality studied. This is a complete formalization of that commitment which is only enunciated in the probabilistic distribution provided by the specific theory: all (and only) the serious possibilities foreseen are those possible. Furthermore, it is apparent that ergodicity implies the thesis of infallibilism, because affirming a theory means believing it true.

If a source [A, m] is ergodic, it has many interesting characteristics that can be useful, among them those derived from the Birkhoff theorem
: 

Theorem (Birkhoff). Let f(x) be a continuous function of sequences produced by the source [A, m] and let Mf(x) be the expectation defined by:
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if the source is ergodic it can be proved that:
(12)
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Furthermore, given (W(x) the characteristic function of set W
, follows as:

(13)
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These characteristics will be useful later. 

The most important property for understanding the asymptotic behavior of divergence, however, is the one known as equipartition property, or E–property as Khinchin
 defined it. As mentioned before, (9) provides a probability distribution for sequences of any length. It is rather obvious which of these sequences has the higher probability. From the probability assigned to the partition, the corresponding forecast is that in an r–sequence a1 will appear m(a1)r times, a2 will appear m(a2)r times, and so on. Thus the probability assigned to a typical r–sequence must be: 

(14)
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Simple calculations allow us to arrive from (14) to:

(15)
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if r is high enough. With these considerations, it is possible to demonstrate the following: 

Theorem. Let (  be an r–sequence space and let ( > 0 then:

1. The sum of the atypical r–sequence probabilities is less than (.

2. A number e > 0 exists so that the probability p(x) that x is a typical r–sequence is:
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3. The number of typical r–sequences is 2rH.

The property of equipartition justifies our choice of the function of divergence that depends on the number of typical outcomes. At the same time, it is also the starting point for studying the asymptotic behavior of divergence which we analyze in detail in the final paragraph. Indeed, the property of equipartition means that once ( > 0 and ( > 0 are determined to be arbitrarily small, there is an r0 such that, for every r > r0, all the r–sequences can be divided into two groups: 

(I) those of ((x) probability, so that:
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(II) those whose probability sum is less than (.

This is called the equipartition property because it ensures that almost all of the probability is uniformly distributed among the typical sequences. In fact, for increasing r, there is a number of sequences of the (I) group, whose probability is near the maximum and for which (15) is valid and a second number of sequences of the (II) group, whose probability decreases beyond any limit. The first group is, then, composed of sequences with ‘high probability’, while the second group has a ‘low probability’. Moreover, the first group contains 2rH elements. Since the total number of r–sequences is nr = 2rlogn, and H ( log n, the r–sequences with high probability are less than the total number, and their proportion of becomes even scarcer because 2rH/2rlogn = 2r(H–logn), which is a quantity that decreases with r. This leads us to the fact that the only r–sequences really under consideration are the ones with high probability. Shannon demonstrated that Markov chains have this property. Later, in 1953, McMillan proved a famous and fundamental theorem, known today as the Shannon–McMillan theorem, which states that if a source is ergodic, then it fulfills the equipartition property in an asymptotical way, that is to say that for high enough r, it is possible to select a series of sequences from the total nr that is precisely a series of those with high probability.

3.3 The inferential rule.

At this point, we can use the notion of divergence in order to justify that an inferential process which takes us from evidence to theory be a rule of the acceptance or refutation of the theory itself. To do this, we need to fix a ‘sufficiently high’ number of repetitions and a level of tolerable divergence. The first condition demands that the theory be ergodic because, as was demonstrated above, only ergodicity can grant that a certain number of repetitions be sufficient. The second condition is extremely widespread in scientific practice, since very few experiments confirm the predictions exactly. Although, by convention, these two quantities must be defined, from a quantitative point of view, they are objectively founded on a qualitative perspective.. Hence, we propose the following inferential rule:

IR1. Let [A, m] be an ergodic source, T a theory implying a distribution of probability on the outcomes of the model of experiment E = [A, m] and r > 1 e ( > 0 with r integer. So, the theory T must be refuted if, after a number r of repetitions of E, we obtain an outcome x such that Div(x, T) > (.

The logical structure of the rule is analogous to that of tests of significance in statistical inference. Like such tests, our rule compares two hypotheses, one according to which the theory is refuted and one according to which it is not; the latter plays the role of null hypothesis because of the infallibilism thesis. The number ( is the level of significance of divergence and can be fixed in a conventional way depending on the degrees of freedom of the experiment. This rule does not measure a particular quantity linked to the experiment (for example, an epistemic utility); it only states that provided certain presuppositions, certain consequences follow, if certain conditions are verified. Before discussing in detail the philosophical implications of this approach, however, a classical argument that can be used to avoid IR1 must be taken into account.

Indeed, before an experimental refutation, the hypothesis that the experiment was incorrect or misleading due to the inadequacy of the used experimental apparatus has often arisen. This situation is common in the history of science. But the point is that this argument is not necessarily conservative. It has sometimes been revealed to be correct and led to improvements in the experimental apparatus. J. J. Thomson refused to consider the corpuscular theory of cathode rays confuted by Hertz’s experiments and suggested that the tube used had a degree of vacuum far too low to allow it to single out deviation in a magnetic field. Likewise, when Einstein was presented with Miller’s interferometric results, he correctly supposed that they were due to differences of temperature between sea level and the peak of Mount Wilson, so they did not in fact indicate a refutation of the theory of relativity. Thus, the possibility of a ‘saving appeal’ for the theory cannot be eliminated categorically because sometimes it is useful and productive. Accordingly, the conditions to which this argument is applicable must be analyzed in order to generalize IR1. The statistical theory of information allows us to perform such an analysis by means of analogy between an experimental apparatus and a noisy channel.
4. Experimental apparatus, coding, error.

4.1 Noisy channels.

The analogy between an experimental apparatus and a noisy channel has already been proposed by Rosenkrantz
, but was never completely developed. Functioning as a channel, an experimental apparatus transports information from the source to the observer. At the beginning of paragraph 2, we claimed that a model of experiment concerns a theoretical set(up ( that defines the condition in which the theory yields the probability distribution on the outcomes. These probabilities have to be regarded as the propensity of a particular outcome to appear in condition ( with a certain relative frequency. But we have also claimed that a theoretical set(up can rarely be directly realized. The theory of elementary particles says that if two particular particles with a certain speed collide, a certain quantity of energy will be produced. But in order to carry out this condition, an experimental set(up ( capable of realizing the theoretical set(up must be built. Obviously, this experimental set(up introduces new ‘environmental variables’ which can disturb the performance of the experiment. These variables depend not only on the experimental apparatus, but also, in general, on the group of conditions in which the specific experiment is performed. If we recall the examples in the previous paragraph, we can see that while Thomson suggested that Hertz’s apparatus was unsuitable, Einstein claimed that the problem could be the particular environment in which the experiment was carried out, even if the apparatus itself was completely feasible. These remarks show that the estimation of the importance of ‘environmental variables’ depends on the level of detail with which we define the final result, namely on the number of (internal and external) parameters that we regard as relevant for producing appropriate evidence. Hertz, for example, did not deem the degree of vacuum in the tube for producing evidence to be relevant for deciding whether the cathode rays were deviated by a magnetic field or not, while Miller did not consider relevant the place where he was conducting his interferometric experiments. Therefore, the performance of an experiment always presupposes the definition of a level of detail in the final result.

As stated above, the message is propagated and received as a signal through the experimental apparatus. Henceforth, we refer to the experimental apparatus as a channel. A channel is a structure [E, (x, F], made up of an input partition E, an output partition F, and a probability function (x(yi), which expresses the probability for any element y1, …, yn of the y signal that is generated by the x message to be equal to the various elements of the output partition F, that is, the probability that yi = fj ( F, for each i and for each j. For the sake of simplicity, we will assume that the input and output partition are equal. A particular ‘state’ of the experimental apparatus has to correspond to a particular state generated by the theoretical set(up. Since the channel is formally analogous to a source, we will also assume that it is stationary and ergodic. 

An extremely difficult quantity to evaluate is the amount of information that the channel can transmit. In fact, various types of disturbing phenomena can occur in a channel due to environmental variables, which are generally called noise. The entropy of an r–sequence of a composed source, corresponding to the system source + channel, is: 

(16)
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where Hry(x) is the conditional entropy, namely the entropy of the r–sequence of message x with respect to signal y, which is the additional quantity of information contained by the message in comparison with that of the signal. This quantity is called equivocation. A similar interpretation must be applied to Hrx(y), resulting in a quantity that will be called dilatation. Without taking into account the repetition length, we will define H(x, y) as information transmitted through the channel and we will denote it as I(x, y). This information depends on the characteristics of the channel as well as those of the source emitting the signal. It is therefore correct to take into consideration the maximum amount of information calculated for all the possible sources, and this very important quantity is called capacity of the channel. This subject and the analysis of the error that occurs when using experimental apparatus
 will be treated further on.

4.2 Coding.

If we assume that an experimental set(up carries out a certain theoretical set(up, we also have to assume that a link exists between a given state of the apparatus and the corresponding theoretical state and that this link is the evidence for any inference about the specific theory. In the definition of an experiment, it is necessary to fix a correspondence among the possible output signals y and the input messages x, i.e. to interpret an experimental state as standing for a theoretical state. This correspondence, as we have seen, depends not only on the level of detail with which we describe the state of the apparatus, but also on the theory of the apparatus itself and on certain conventions (concerning the unit of measure, for example, or the standard used). These operations, common in experimental physics, can be generically interpreted as a coding of the theoretical state in an experimental state.

A code [s, r] is a collection of s q–sequences y such that one and only one q–sequence y (with q ( r) corresponds to each r–sequence x. In addition to the operation of coding, there is the inverse operation of de(-coding, which is extremely important because it is part of the comparison between experimental result and theory. The presence of noise can make this operation extremely complex. Noise appears through equivocation, which is a decrease of the signal entropy in proportion to the message, where a decrease of entropy is a deviation in the distribution from uniformity. This means that, in general, different message symbols can end up in the same signal symbol, thus creating difficulties in decoding. If the maximum probability of error is defined as
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, with p(e/yi) being the error probability for any possible output sequence, then we define the code [s, r, (] as the code having a maximum error probability less or equal to (.

We can choose the code in order to avoid problems due to presence of noise. There are two ways to do this: either by increasing the level of detail in the definition of the experimental state (namely making the output signal more complex) or by optimizing the code for the typical sequences.

The first point is justified by the fact that the longer a coding sequence is, the easier it is to identify and correct an error. If a source emits 4 possible 5–sequences and the input partition of the channel is binary, this means that, leaving aside the length of the input sequences, we can construct the following code: 
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Now, if there is noise in the channel, the symbols can be swapped, thus transmitting 0 instead of 1 or vice–versa. If 0 is swapped with 1 in the previous code, the result is still a sequence belonging to that code, which will be misinterpreted., Swapping symbols in the sequence 00, for example, would lead to 01, and would be translated as x2 without possibility of checking the error. If the code sequences were 5–sequences, any symbol swapping would be unlikely to be interpreted as a correct sequence of the code. In this way, it is much easier to find the errors and correct them by arriving at a code sequence close to the original
. Thus, it is to be assumed that the r–sequences of the source are coded in r–sequences of input in the channel.

The second point is a consequence of McMillan’s theorem. If an ergodic source emits information with rate H(x), where H(x) is the entropy of the source itself, and the aim is to assign a code to the r–sequences, it is possible with the McMillan theorem to neglect the sequences with low probability and to concentrate on those with high probability, which are the 2rH(x) possible r–sequences that a source can emit. This means that the desired code will have 2rH(x) sequences with a length equal to or less than r. In other words, as the number of repetitions grows, the experiment becomes an ‘alternative’: either a typical or an atypical sequence is obtained. Accordingly, we can concentrate on typical sequences that are equiprobable. To each of the 2rH(x) typical r–sequences x correspond 2rH(y) typical r–sequences y, with a total of 2rH(x,y) typical couples. Noise is clearly present when considering the difference between these two numbers: to each y output sequence correspond generally 2rH(x/y) input sequences. It is possible to demonstrate that if the sequence length increases, then the probability for the set S of input sequence associated to an output sequence y, to contain more than one sequence, goes to zero. This permits the consideration of longer and longer sequences, in order to decrease the probability error, in complete agreement with what we said above.

Mainly, noise has this consequence: two different theoretical states are received as one experimental state. In the previous example, the swapping of a single digit can make x1 and x2 correspond to the same experimental state 01. This fact makes the experiment inconclusive because we cannot draw any consequence from the observation. Hertz’s apparatus, for example, did not allow one to conclude that the corpuscular theory was false because the design shortcomings made two theoretical states (deviation and non(deviation of cathode rays) collapse in the same experimental state. Thus, the main problem of noise is distinguishability.

If it were possible to prove that typical sequences x have high probability to end up in different and disjoint sets of y sequences, then those sequences would be distinguishable from the others. Because of dilatation, for example, an x sequence has a high probability to result in a certain output sequence set, in which case, the reception of a sequence belonging to this set would be interpreted as x. If these sets are pairwise disjoint, the probability error is greatly reduced. In 1954, Feinstein demonstrated the conditions in which this case occurs, with a result known as the Feinstein lemma
:

Lemma (Feinstein). Let a stationary channel with C capacity be given; so that, for sufficiently small values of parameter ( > 0 and for a sufficiently large value of r, a group of distinguishable r–sequences exists with a number N of members such that:
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In other words, increasing the length of the sequences means also increasing the number of sequences with this particular characteristic. This result, taken together with our previous considerations, proves that problems relating to coding and noise in the channel can be overcome under certain conditions. The formalization of such conditions goes under the name of the Shannon theorem or the fundamental theorem for channels with noise
:

Theorem (Shannon). Let a stationary channel with capacity C and an ergodic source [A, m] with entropy H(x) be given. So that, if H ( C and for r high enough, a sequence of codes W1, W2, W3, … exists such that Wn is a [2rH, r, (n] code and (n ( 0 if r( (.
If the source entropy is less than the channel capacity (i.e. if the quantity of information emitted is less than that which can be transmitted by a channel in ideal conditions), then a code can be found that optimizes information transport and reduces noise. Accordingly, by increasing the sequence length, it is possible to significantly reduce the maximum error probability in the decoding. This affects the coding time, however, which increases to infinity, because transmitting longer sequences means waiting for more time
. The error probability decreases exponentially.

4.3 Completing the inferential rule.

Shannon’s theorem establishes the conditions in which the classic argument against an experimental refutation is acceptable. At this point we can complete our inferential rule:

IR2. Let [A, m] be an ergodic source, T a theory implying a probability distribution for  the outcomes of a model of experiment E = [A, m] with entropy H, let this model be realized by means of an experimental apparatus with capacity C and let r > 1, ( > 0 and ( ( 0 with given r integer. If H ( C, then the theory T must be refuted if, after a number r of repetitions and after the adoption of a [2rH, r, (] code, it produces an experimental state yj decoded in a theoretical state xi such that Divr(xi, T) > (.
This new rule completes the solution for the problem of the scientific experiment. An experiment is performed in order to obtain a decision. Any result of IR2 is a decision because only one of three possibilities can happen: (1) the theory is refuted, (2) the theory is accepted, or (3) the experiment is incorrect.

The problem we have dealt with so far is part of the more general issue of the relationship between evidence and inductive generalization. As is known, Hintikka studied a particular aspect of this relationship, namely the problem of the best inductive generalization implied by evidence. From a logical point of view, however, asking whether or not a generalization is reinforced by evidence is a totally equivalent problem. It is nothing but the inverse problem. Hintikka argued that, given a body of evidence, the simplest inductive generalization compatible with the evidence, i.e., the constituent with the least number of predicates, has the higher posterior probability. Furthermore, as the evidence increases, this probability tends to 1, while the probability of all the other constituents tends to zero no matter how the probability of constituents is measured (namely how the parameter ( in the ((((calculus is chosen)
. This result seems to exemplify a more general principle of induction according to which as the evidence at our disposal increases, the solution of a inductive task becomes both increasingly sharp and increasingly less dependent on the parameters used to define it. If this is an (asymptotic) general principal of induction, it must hold for the inverse problem (with respect Hintikka’s) as well.

Indeed, IR2 fulfils this fundamental principle of inductive inference. As the inference depends on the number of observations, we should expect that as the observations increase, the inference becomes increasingly sure. More formally, this means that the result of the inference is asymptotically independent from parameters defined arbitrarily. For the divergence function, the following theorem can be easily proven:

Theorem. Let [A, T] be an ergodic source. If r ( ( , then Divr(xi, T) ( 0, if xi is a typical sequence and Divr(xi, T) ( ( if otherwise.
This theorem is a direct consequence of the equipartition property, of McMillan’s theorem, and of coding process based on the distinction between typical and atypical sequences. It is a result entirely equivalent to Hintikka’s. As the number of repetitions increases, the probability of typical sequences tends to 1. McMillan’s theorem teaches us that IR2 can be reduced to the following alternative: we obtain either a typical sequence (precisely which sequence is irrelevant because all are equivalent and equiprobable) or an atypical sequence. This means that the situation tends to become deterministic, because the proportion of typical sequences decreases. As the divergence of an atypical sequence tends to infinity, IR2 becomes applicable for every level of significance (. Furthermore, since it can be proven that the probability of error also decreases, we deduce that, from an asymptotic standpoint, IR2 leads to a result independently of the value of its parameter. Thus, while Hintikka’s result shows that induction by enumeration becomes more and more trustworthy as the number of repetitions increases, our theorem proves an analogous property for induction by elimination.

Formally, there is an important difference between our theorem and Hintikka’s theory. Let us take a sample of evidence with dimension n and let w predicates be exemplified in it. The constituents compatible with this sample are obviously those stating that c predicates (c ( w) are exemplified. Among these, the constituent in which c = w is preferable for two reasons. First, it is the simplest constituent to be compatible with the evidence. Second, if many repetitions took place in order to arrive at this constituent, we must believe that all of those which were effectively existent had a possibility of appearing
. This latter reason, however, presupposes that the universe, meant as a physical system, is built so that all existent predicates will be exemplified. But this condition is ergodicity. Our informational theory formalizes a presupposition that is hidden in Hintikka’s approach and ascribes the asymptotic properties of induction to empirical conditions, such as ergodicity, rather than to the structure of our language. Furthermore, a reference theory exists for ergodicity (ergodic theory) so that its characteristics and requirements can be studied independently. The role of these requisites in a general theory of induction remains to be seen, but we cannot study it here; suffice it to say that they have an important epistemological role.

Philosophically, this theorem implies that, asymptotically, a stochastic theory has a behavior logically equivalent to a deterministic theory from an inferential point of view. In other words, as the number of repetitions increases, a stochastic theory becomes equivalent to a deterministic one as far as the relationship with empirical evidence is concerned. From a formal point of view, this means that a stochastic theory is deterministic within the framework of certain asymptotic(like assumptions (for example, ergodicity). This fits with Hanna’s view about stochastic explanation. A theory explains evidence if it provides a probabilistic sentence which attributes to that evidence precisely the probability that is observed as relative frequency. In the case that divergence is 0, the resulting sequence is typical, i.e. all the outcomes appear with a relative frequency equal to the propensity probabilities derived from the theory.

A number of scholars regard looking for acceptance rules (like IR2) as incorrect in principle because the aim of inductive logic in such cases would be merely to measure degrees of confirmation or utility functions. As an example, it is interesting to compare our informational theory with the Bayesian decision method based on the maximization of an expected utility function. At first glance, they seem to be very different. Whereas the informational theory analyses the effect of evidence on a single theory regarded as true, the Bayesian theory begins with evidence in order to choose from a set of alternative hypotheses. The former presupposes infallibilism, the latter presupposes fallibilism. Notwithstanding this difference in starting point, the two theories can be formally compared. If the Bayesian approach is applied with two hypotheses, one claiming that the theory is true and one claiming that it is false, we obtain, from a formal standpoint, a situation identical to that of IR2, although from a different philosophical viewpoint.

Two remarks can be made regarding the Bayesian approach. First, it shares the main problem of logical approaches, namely it demonstrates ambiguity in the definition of the measure of probability. Hintikka argued that a bi(dimensional continuum of measures exists and that the choice among these measures is arbitrary, at least partially. Furthermore, he proved that the definition of the probability function presupposes a strong commitment to the degree of regularity of the universe and to our willingness to be influenced by the evidence
. Second, Hintikka argued in favor of the thesis according to which prior probabilities cannot be originated according to logic alone, but must depend on posterior considerations because they derive from a quantitative (and empirical) commitment to the degree of order in the universe
. In Hintikka’s opinion, this is the main difference between the semantic and the statistical theories of information.

Our informational theory does not suffer from the first problem and agrees with the second thesis. First, a direct consequence of ergodicity is that only one probability function exists which is invariant relative to the displacement operator. Thus probability is introduced in a natural and not arbitrary way. Second, in informational theory, probabilities have a posterior origin, too, since they depend on the theoretical set(up. Furthermore, IR2 does not demand a commitment as strong as Hintikka’s ((((continuum. The ergodicity condition, which supports the inferential properties investigated above, is a condition weaker than that requested by Hintikka, and is limited to the system under investigation here. It should also be noted that the parameters defined in IR2 are the minimum requirement for addressing the problem of inference from empirical evidence and they are not arbitrary, but can be fixed by convention, namely by means of a previous agreement (as in a test of significance). The foundation for this, again, is ergodicity, an empirical property definable only from a theoretical point of view. Indeed, we can never observe ergodicity directly, but we can fix empirical conditions that help it to hold. Therefore, prior and posterior elements are synthesized in the notion of ergodicity.

Moreover, the Bayesian approach produces sentences that concern the probabilities of events and these probabilities are related to empirical events by means of the definition of language, thus resulting in a strong dependence on the language that is used to describe the universe. IR2, on the contrary, provides not a probabilistic sentence, but an empirical one (the theory is accepted/refuted or the experiment is incorrect). In informational theory, probabilities play only an inferential function and do not appear in any conclusions. From this point of view, IR2 is not a completely probabilistic rule
, therefore it does not suffer the classical paradoxes of probabilistic rules. At the same time, it is not merely a logical rule, because it does not depend on an assumption about how the language works, but rather on an assumption about how the world does. For these same reasons the term ‘inferential rule’ is preferable.

5. Concluding remarks.

The theory presented above has its most important result in IR2. From a formal point of view, IR2 is essentially a test to evaluate the relationship between theory and experiment and could be further developed in this direction, analogously to Nyman-Pearson’s theory, for example. In this paper, we have presented only the foundations, showing (1) that the notion of divergence agrees with the intuitive meaning that we ascribe to the concept and (2) that this notion fulfils the epistemological requirements that govern the asymptotical behavior of inference. In addition, we have stressed the philosophical presupposition of this informational approach and its implications for the problem of inference from experimental evidence to the specific theory, including the analysis of the role of the apparatus. We conclude by listing some topics of general philosophical interest.

The above analysis of typical sequences and the McMillan theorem can be extremely useful in comprehending certain aspects of the forecast concept. In order to have a forecast, two elements are necessary: in the deterministic case, these are knowledge of a state of the system and knowledge of its laws of evolution. These are the physical requirements for a phenomenal forecast, but there is also a more refined epistemological one. In order to make the forecast possible, the system must not behave in an odd way, changing its laws of evolution over time and without a definable rule. This principle has sometimes been called the space–time invariance principle and it specifies that the laws of physics must not vary in space and time without a rule. Actually, this is a philosophical principle, which requires the system to behave in a complex, but also somewhat regular way. This principle makes induction possible and, likewise, the understanding of nature.

Is there an equivalent of this forecast problem in the field of statistics as well? The issue of typical sequences suggests the following analysis. Let ( be the set including all the possible behavioral patterns of a system, so that the system is said to be statistically predictable if and only if it is possible to indicate a subset (( of (, which, after some time, (1) will contain fewer and fewer elements and (2) will exhibit a total probability that is concentrated among the elements of ((. As in the scientific experiment, physical systems are addressed, a sequence with length r can be called the ‘behavioral pattern’ of the system. The McMillan theorem guarantees that, under certain conditions, the two above(mentioned requirements can be fulfilled. While in the deterministic case, it was necessary to assume a stability principle for the evolution of the system, here a statistical stability principle is demanded. This principle is already clear in the McMillan theorem, which is valid only for ergodic sources. Thus ergodicity plays the same role as does the space–time invariance principle and is generally a condition of comprehension of the stochastic physical system. 

II. A more in(depth analysis of experimental error can be developed. To perform an observation means to record the appearance of a certain experimental state as a y(sequence of signals. Clearly, such an observation is not completely neutral, but presupposes a theory. In particular, the level of detail of observation has to be determined. Aside from this point, the observation is independent of us. Our observation is guided by presuppositions, but its content is objective. An observation is part of an experiment. The essential part of an experiment is the connection between the observation of an experimental state and a certain theoretical state, namely decoding. Consequently, an experiment is completely determined by the theory. In order to perform decoding, two conditions are necessary: (a) the theoretical set(up must be realized within the experimental set(up, namely the latter must embody the former and (b) the distribution of probability of the theoretical states deriving from those experimental states must be invariable according for decoding. This second condition is more often violated in the case of experimental error. The probabilities are understood in a dispositional sense, that is they depend on the system set(up. The noise caused by environmental variables present in the experimental set(up directs two different messages to the same signal, thus causing an alteration in probability distribution. This error can only be corrected via certain precautions in the coding. The first condition, however, is more fundamental and concerns the same concept of experiment. For these reasons, it is useful to make a distinction between an apparatus with a structural error (if H ( C) and an apparatus with a conceptual error (if H > C). Generally speaking, a structural error can always be adjusted because it depends only on the way in which the channel is linked to the source, while a conceptual error is not adjustable, because the channel is not fulfilling the requirements of the model of the experiment. Such a difference, even if evident to scientists, has been extremely difficult to assert  in other ways.
As a conclusion, we can say that the application of the statistical theory of information has permitted us to form a rule of refutation for scientific theories that is correct both (a) from an intuitive point of view and (b) from an asymptotic point of view. Furthermore, this rule avoids some implicit formal problems in semantic theory and in the Bayesian method. The informational theory previously mentioned is mainly based on the ergodic concept and hence possesses empirical meaning, rather than logical meaning (only). In  addition, the inferential rule we have formulated includes the analysis of the experimental apparatus regarded as a noisy channel. Of course, there are many other unanswered questions. The relationship between theory and experiment involves many epistemological problems, likewise theory of science, history of science and theory of induction. Indeed, the theory presented here needs a more in(depth analysis concerning philosophical presuppositions, the relationship between probabilistic sentences and reality, scientific explanation, just to mention a few problems. This paper should be considered as a basis of a research programme, not its conclusion.
Acknowledgment
I am indebted to Prof. Evandro Agazzi for his encouragement. I am also particular indebted to Prof. Dario Palladino for his patient correction of the manuscript and useful suggestions and to Dr. Mario Valentino Bramè for bibliographical support and interesting remarks.

Notes

�  Cf. (Bar-Hillel, Carnap 1953).


�  Cf. (Hintikka, Pietarinen 1966), (Hintikka 1968) and (Hintikka 1970).


�  Cf. ,for example, note 8 in (Shannon, Weaver 1963, 50).


�  Beginning with the generalization made by Shannon about the concept of entropy, subsequent in-depth research led, in 1958 (thanks to Kolmogorov), to the introduction of this notion into ergodic theory as well. Cf. (Casartelli 1988) and (Petersen 1983, 225–300).


�  The theorems’ lack of mathematical rigor and their limitation to Markov chains were the main shortcomings highlighted by Khinchin in his critique of the Shannon theory (Khinchin 1956, 30–31).


�  (Greeno 1970).


�  (Hanna 1968), 


�  Cf. (Hanna 1978, 534-540).


�  This analysis deals mainly with theory that implies a probability distribution (stochastic theory), even if, for the sake of simplicity, deterministic examples will be used.


�  In the field of semantic theory, this thesis was also maintained by (Rosenkrantz 1970) and (Hilpinen 1970).


�  Cf. (Hanna 1969).


�  Generally, it is the Lebesgue measure function.


�  On this concept see (Levi 1983).


�  Using a propensity interpretation of probability is unusual in information theory (cf. (Jamison 1970)), but as this analysis will address both singular events, and the repetition of events, it seems natural to use propensity theory.


�  This?] result can be obtained by taking into account the concavity of the entropy function and the inequality of Jensen, cf. (Cover, Thomas 1991, 23–27).


�  A general treatise of the notion of entropy in information theory can be found in (Petersen 1983, 227–300).


�  This fact agrees with Hintikka’s fundamental observation that the more ordinate the universe is, the higher the information related to an outcome (Hintikka 1968). Indeed, the maximum of atypicality can be reached only if H = 0, namely if our system is completely ‘ordinate’.


�  In the literature addressing this and/or related problems, all of these analysis have been developed within the semantic framework. We cannot take them into account here, although we will mention some of them in what follows.. For a summary, see (Kyburg 1970, 153-164).


�  Obviously, if we accept the infallibilism thesis, we cannot accept the interpretation of information as removed uncertainty. Thus, only the interpretation of information as theory commitment remains. Hintikka also maintained, in (Hintikka 1968), that the less the entropy, the higher the information connected with (or transmitted by) an observation about an inductive generalization. Accordingly, it seems that the informational value for a general theory does not depend on the removed uncertainty, but rather on the commitment of the theory itself.


�  Cf. (Levi 1983, 34-73).


�  (Greeno 1970, 288-289).


�  (Hanna 1978, 545-546).


�  Cf. (Hintikka, Pietarinen 1966) and (Hintikka 1970, 12-18).


�  Cf. (Hanna 1978, 534).


�  Cf. (Shannon 1948, 45–48).


�  It is clear that this ‘affirmation’ process is often implicit and almost indistinguishable from that of ‘enunciation’. Nonetheless, there is a conceptual difference between them, highlighted by the fact that the ‘affirming’ of a law requires an ‘interpretation’ process, that is not always immediate. 


�  Cf. (Khinchin 1956, 49–51).


� That is to say that function assuming 1 for the elements belonging to W, and 0 for the others. 


�  Cf. (Khinchin 1956, 54 and following).


�  (Rosenkrantz 1970).


�  It is opportune here to highlight a peculiar aspect of information theory that becomes evident when it is applied to scientific experiment. In fact, in (16) the presence of the signal entropy is evident and this considered to be a general concept, extendable to sequences of any length. The very definition of signal entropy suggests a probability distribution among the possible results, but, in the case of an experiment involving the signal alone, one confronts the relative frequencies of the different results obtained by repeated experiments, rather than probability. Thus, an observer is never able to define the real entropy of the signal, although a quasi–entropy may be defined:


	� EMBED Equation.3  ���.


If the source is ergodic and r is high enough, the relative frequencies can then be replaced by the probabilities for the property (13) implied in the Birkhoff theorem. In this and only this case, it is possible to define the so–called experimental entropy, which derives from the experimental results, in order to compare it to the theoretical entropy. It is common in scientific practice to repeat the experiments many times in order to obtain comparable results, but in this case, the aim is to show the correlation between the source ergodicity and the replicability of the experiment. The fact that an experiment can be technically repeated is futile if the experiment is not linked to the affirmation of the theory, that is, if it does not offer statistical stability based on the definition of a deep characteristic of the phenomenon being tested .


�  For further details on the correction of the codes, see (Ash 1965, 87–163).


�  For the proof and for the formulation of the lemma (among the many possible alternatives), see (Khinchin 1956, 93–101). The Feinstein lemma and the McMillan theorem allow the extension of the results that Shannon demonstrated for Markov chains alone. 


�  Cf. (Shannon 1948, 70–74) and (Khinchin 1956, 104–117).


�  Actually, such a perfect code is not useful because, as noted above, the more efficient the code, , the longer the time required for coding. This is why it is usually better to find a reasonable compromise between lost information and length of the coding procedure. 


�  Cf. (Hintikka 1970, 14_15).


�  (Hintikka 1965).


�  Cf. (Hintikka 1970, 18_25).


�  Cf. (Hintikka 1970, 23_25).


�  Like the Hintikka’s rule of acceptance in (Hintikka 1966).
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