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Mathematical languages shape our 
understanding of time in physics
Physics is formulated in terms of timeless, axiomatic mathematics. A formulation on the basis of intuitionist 
mathematics, built on time-evolving processes, would offer a perspective that is closer to our experience of 
physical reality.

Nicolas Gisin

In 1922 Albert Einstein, the physicist, met 
in Paris Henri Bergson, the philosopher. 
The two giants debated publicly about 

time and Einstein concluded with his 
famous statement: “There is no such thing as 
the time of the philosopher”.

Around the same time, and equally 
dramatically, mathematicians were  
debating how to describe the continuum 
(Fig. 1). The famous German mathematician 
David Hilbert was promoting formalized 
mathematics, in which every real number 
with its infinite series of digits is a completed 
individual object. On the other side the 
Dutch mathematician, Luitzen Egbertus  
Jan Brouwer, was defending the view that 
each point on the line should be represented 
as a never-ending process that develops 
in time, a view known as intuitionistic 
mathematics (Box 1).

Although Brouwer was backed-up  
by a few well-known figures, like Hermann 
Weyl1 and Kurt Gödel2, Hilbert and his 
supporters clearly won that second  
debate. Hence, time was expulsed from 
mathematics and mathematical objects  
came to be seen as existing in some  
idealized Platonistic world.

These two debates had a huge impact  
on physics. Mathematics is the language of  
physics and Platonistic mathematics makes  
it difficult to talk about time. Hence, the 
sense of flow of time was also expulsed 
from physics: all events are the ineluctable 
consequences of some ‘quantum fluctuations’  
that happened at the origin of time — the 
Big Bang. Accordingly, in today’s physics 
there is no ‘creative time’ and no ‘now’.

This had dramatic consequences, in 
particular when one remembers that physics 
is not only about technologies and abstract 
theories, but also about stories on the 
workings of nature. Time is an indispensable 
ingredient in all human narratives. As Yuval 
Dolev emphasized, “To think of an event is 
to think of something in time. […] Tense 
and passage are not removable from how we 
think and speak of events”3.

So, it may seem that physics should give 
up telling stories and concentrate on more 
and more abstract theories. But is this really 
the only alternative? Physics is likely to be 
in danger of coming to a halt when faced 
with claims like “time is an illusion”4. Just 
as François Rabelais stated that “Science 
without consciousness is only ruin of the 
soul”, wouldn’t it be appropriate, then,  
to say that “Science without time is only  
ruin of intelligibility”?

The mathematical language that 
physicists use makes it easy or difficult to 
formulate some concepts, like the passage 
of time. The same holds for our notion 
of continuum. In ref. 5 I argued that a 
finite volume of space can’t contain more 

than a finite amount of information and 
concluded that physically relevant numbers 
can’t contain infinite information. I’ve 
since discovered, thanks to Carl Posy, 
that intuitionistic mathematics comes 
surprisingly close to my — and I bet 
many physicists’ — intuition about the 
continuum6,7. In this Comment, I would like 
to share my excitement about this finding, 
and argue that the debates between Einstein 
and Bergson, and Hilbert and Brouwer, 
ought to be revisited.

Bergson never agreed with Einstein’s 
statement, and Einstein himself felt 
uncomfortable with his beloved physics 
lacking the concept of ‘now’ — although, 
admittedly, he didn’t see any way to 

Fig. 1 | Debating mathematicians. David Hilbert (left), supporter of axiomatic mathematics. L. E. J. 
Brouwer (right), proposer of intuitionist mathematics. Credit: Left: INTERFOTO / Alamy Stock Photo; 
right: reprinted with permission from ref. 18, Springer
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incorporate it. He thus concluded that one 
has to live with this state of affairs. Hilbert 
also felt uncomfortable by the infinities 
that his beloved axiomatized mathematics 
introduced, firmly stating that physics 
should never incorporate actual infinities8,9.

In order to illustrate the tension physics 
faces, let us consider classical mechanics. 
This is a very well understood field with 
known limiting cases — relativity and 
quantum theory. One may argue that 
quantum theory is more fundamental and 
is intrinsically indeterministic. However, 
the interpretation of quantum theory is 
still heavily debated and classical physics, 
with its enormous explanatory power, is 
often presented as the ideal of a physical 
description of nature. Hence, for the 
following discussion we will consider only 
classical mechanics.

Although classical mechanics is usually 
illustrated in terms of clocks and other 
cog wheels, almost all classical dynamical 
systems are of a very different nature:  
they are chaotic. Because of the 
hypersensitivity to initial conditions, the 
future of typical classical systems depends 
on far down the series of digits of the initial 
conditions. A simple but relevant example 
of typical classical dynamical systems can 
be modelled as follows. Assume the state 

space reduces to the unit interval and 
consider discrete time steps. The state X is 
thus described by a number formed by an 
infinity of digits bn that follow zero. At each 
time step, going from t to t+1, the digits are 
shifted by one place to the left, with the first 
digit dropping out:

Xt ¼ 0 : b1 b2 b3 b4 ¼ bn ¼

Xtþ1 ¼ 0 : b2 b3 b4 ¼ bn ¼

After n time steps, the most relevant digit 
is bn — the nth digit of the initial condition. 
This digit could, for example, represent 
today’s weather — imagine 0 for pouring 
rain and 9 for bright sun.

If one assumes all digits of the initial 
condition faithfully represent physical reality, 
then, according to our simple model, the 
weather of the entire future is already fully 
determined. This illustrates the absence of 
any ‘creative time’; nothing really happens, 
as everything is determined by the initial 
condition and the deterministic evolution 
equations. At least, this is the consequence of 
representing the points on the line between 0 
and 1 by classical Platonistic mathematics.

But is such a representation truly faithful 
and necessary? My experience is that most 

physicists reject the faithfulness of such 
a representation, but admit — often with 
regret — that they don’t see how one could 
do otherwise. For example, Max Born, one 
of the fathers of quantum theory, stressed 
that “Statements like ‘a quantity x has a 
completely definite value’ (expressed by a 
real number and represented by a point in 
the mathematical continuum) seem to me to 
have no physical meaning”10 (see also ref. 11 
for the view of a computer scientist). This is 
where intuitionistic mathematics can help.

In intuitionistic mathematics, numbers 
are processes that develop in time; at 
each moment of time, there is only finite 
information. One way to understand this 
unusual claim goes as follows. Assume 
nature has the power to produce random 
numbers. One may think of a quantum 
random number generator. That would do, 
but here it is preferable not to think of a 
human-made randomness source, but rather 
as a power of nature: nature is intrinsically 
and fundamentally indeterministic.

Now, this source of randomness feeds 
the digits of typical real numbers, as 
illustrated in Box 1. Let me emphasize that 
the digits of all typical real numbers are 
truly random — as random as the outcomes 
of quantum measurements, as has been 
nicely emphasized for instance by Gregory 
Chaitin12,13. Moreover, typical real numbers 
contain infinite information. This makes 
it possible, for example, to code in a single 
number the answers to all questions one 
may formulate in any human language, as 
noticed by Émile Borel14.

So, we have to choose a perspective. 
Either all digits of the initial conditions are 
assumed to be determined from the first 
moment, leading to timeless physics; or 
these digits are initially truly indeterminate 
and physics includes events that truly 
happen as time passes.

Notice that in both perspectives chaotic 
systems would exhibit randomness. In the 
first case, from the point of view of classical 
Platonistic mathematics, all randomness 
is encoded in the initial condition. In the 
second case, randomness happens as time 
passes — as described by intuitionistic 
mathematics, where the dependence on 
time is essential15. One may object that 
intuitionism doesn’t derive indeterminism, 
but assumes it from the start. That is correct. 
Likewise, classical mathematics assumes 
actual infinite information from the start.

These two views cannot be distinguished 
empirically. One can always claim that 
instead of God playing dice every time a 
random outcome happens, God played all 
the dice at once before the Big Bang and 
encoded all results in the Universe’s initial 
condition. Despite the empirical equivalence 

Box 1 | Choice sequences as real numbers in intuitionist mathematics

A way to understand the continuum in 
intuitionistic mathematics, well suited 
to physicists, assumes that nature has 
the power to produce true randomness, 
here illustrated as a true random number 
generator (RNG) that outputs a digit r(n) 
at each time step n.

At each time step n, a rational  
number α(n) is computed by a function 
f: α(n) = f(α(n−1), n, r(1), …, r(n)), as 
shown in the figure. Different functions 
f define different classes of series α(n). 
The series α(n) is assumed to converge; 
however, at any time, only finite 
information about the series exists, in 
accordance with the basic idea that the 
random number generator is a genuine 
endless process that develops in time.

A first simple example assumes that  
the function f merely adds the random 
digit r(n) as the nth digit of α, that is,  
α(n) = α(n−1) + r(n) × 10−n = 0 . r(1) 
r(2) r(3) … r(n). Usually, it is assumed 
that α(0) is a given initial rational number, 
but that is not essential. Note that if the 
random number generator is actually a 
pseudo-random number generator, then 

α(n) converges to a computable number. 
In other examples, the digits of α(n) are 
correlated, for example, new digits of α(n) 
depend on the previous k random numbers 
r. By choosing suitable functions f, an 
infinity of classes of series can be defined.

Historically, Brouwer, the father of 
intuitionism, did not use random  
number generators, but mathematical 
objects he named choice sequences,  
where the choices were made  
by an idealized mathematician19, and  
what I name ‘classes’ were termed  
‘spreads’ by Brouwer.

True RNG

n = 1 f (1, r (1))

f (α(1), 2, r (1), r (2))

α(1)r (1)

r (2)

r (n)

α(2)

α(n)
n

f (α(n–1), n, r (1), r (2), ..., r(n))

n = 2

...
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of the two views, they present us with very 
different pictures of our world. Somehow, 
the real numbers are the hidden variables of 
classical mechanics16.

But intuitionism goes way beyond the 
description of the continuum. Physicists 
often have the intuition that the present 
is thick — that is, the present is not of 
measure zero. This corresponds naturally 
to the intuitionistic concept of the viscous 
continuum: the continuum cannot be 
sharply cut in two. When trying to cut it, 
something sticks to the knife.

This aspect of intuitionistic mathematics 
is closely related to the law of the excluded 
middle, which does not hold in intuitionistic 
logic. In intuitionist logic, a proposition P 
could be neither true nor false. This is very 
difficult to swallow for today’s scientists, 
who have been educated within the remit 
of classical mathematics. But think of a 
proposition about the future, for example, “It 
will be raining in exactly one year time from 
now at Piccadilly Circus”. If one believes in 
determinism, then this proposition is either 
true or false, though it might be impossible 
in practice to know which alternative holds. 
But if one believes that the future is open, 
then it is not predetermined that it will rain, 
hence the proposition is not true, and it is 
not predetermined that it will not rain, thus 
the proposition is also not false.

There are similar examples using choice 
sequences α(n) (Box 1). Assume that 
random numbers are not digits, but binary 
r(n) = ±1, and let α(n) = 1/2 + r(n) × 10–n. 
This goes on until, by chance, the last  
n/2 consecutive r take the same value  

(and n is even and larger than 2), after which 
the series terminates and all future α(n) 
remain constant. Since at each time step 
the probability that the series terminates 
decreases exponentially, there is a finite 
probability that α(n) oscillates forever 
between below and above 1/2. Accordingly, 
as long as the series did not terminate, the 
proposition α < 1/2 is neither true nor false. 
Hence the continuum is viscous6,7: it can’t be 
sharply cut in two, above and below 1/2.

In these two examples, the law of the 
excluded middle holds only if one assumes 
a look from the ‘end of time’, that is, a God’s-
eye view. But at finite times, intuitionism 
states that the law of the excluded middle 
is not necessary, that time truly passes and 
the future is open. Looking at the law of the 
excluded middle in this way makes its absence 
in intuitionistic mathematics easily acceptable 
and makes the present naturally thick.

Let me emphasize that classical 
formal mathematics and real numbers 
are marvellous tools that should not be 
abandoned. However, their practical use 
should not blind the physicists; after all, 
their use does not force us to believe 
that “real numbers are really real”5. In 
other words, one should not confuse the 
epistemological usefulness of classical 
mathematics with the ontology, which  
might well be better described by 
intuitionistic mathematics.

Furthermore, in practice one never uses 
real numbers with all their infinitely many 
digits. Think, for example, of computer 
simulations that necessarily at each time 
only consider finite information numbers. 

Scientists working on weather and climate 
physics explicitly use finite-truncated 
numbers and stochastic remainders17.

All those who speak more than one 
language know that some concepts are easier 
to express in one language than in another. 
I believe the same is true of the language of 
physics. Which mathematics we adopt when 
‘talking physics’ will influence the possibility 
of indeterminism in physics (Table 1).

I believe that the notion of a deterministic 
and timeless world does not arise from 
the huge empirical success of physics, but 
from considering Platonistic mathematics 
as the only language for physics. Physics 
can be as successful if built on intuitionistic 
mathematics, even if this breaks its 
marriage to determinism. Contrary to usual 
expectations, I bet that the next physical 
theory will not be even more abstract than 
quantum field theory, but might well be 
closer to human experience. ❐
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Table 1 | intuitionist mathematics as a language for indeterministic physics

indeterministic physics intuitionistic mathematics

Past, present and future are not all given at once Digits of real numbers are not all given at once

Time passes Numbers are processes

Indeterminism Numbers contains finite information

The present is thick The continuum is viscous

The future is open No law of the excluded middle: a proposition 
about the future can be neither true nor false

Becoming Choice sequences

Experiencing Intuitionism

Concepts that appear natural in indeterministic physics are easily expressed in terms of intuitionist mathematics.
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