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Abstract

How long does a quantum particle take to traverse a classically forbidden energy barrier?
In other words, what is the correct expression for quantum tunneling time? This seemingly
simple question has inspired widespread debate in the physics literature. By drawing an
analogy with the double-slit experiment, I argue that we should not even expect the
standard interpretation of quantum mechanics to provide an expression for quantum
tunneling time. I explain how this conclusion connects to time’s special status in quantum
mechanics, the meaningfulness of classically inspired concepts in different interpretations of
quantum mechanics, and the prospect of constructing experimental tests to distinguish
between different interpretations.
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1 Introduction

We have a naive classical intuition that our best theories should be able to tell us about the durations of
physical processes. Motivated by this simple classical picture, physicists have asked, how long does a
quantum particle take to tunnel through a classically forbidden energy barrier? In other words, what is
the correct expression for quantum tunneling time? Unlike its classical counterpart, this question does
not seem to admit a straightforward answer, and has inspired widespread debate in the physics literature.

Physicists have proposed various expressions for quantum tunneling time. Some track internal
properties of the tunneling system, while others rely on coupling between the tunneling particle and an
external physical system. In general they all provide different values — reconciling only in certain limits —
and they are weighed against each other on mostly pragmatic grounds. Yet some authors do still talk as
if there is a clear and unique expression to be found, or at least as if some proposed expressions are
inherently more meaningful than others.

Many see the apparent ambiguity as stemming from the way that quantum mechanics treats time in
general: as a parameter, not an operator. Others have emphasized the interpretative dimension of the
debate, going so far as to describe tunneling time as meaningless within the standard interpretation of
quantum mechanics.

And yet the confusion and ambiguity only persists within the standard ‘orthodox’ or ‘Copenhagen’
interpretation — all authors who consider the traditional form of de Broglie-Bohm’s ‘pilot-wave’
interpretation, in which a quantum state consists in physical de Broglie-Bohm particles guided by the
evolution of the wavefunction, agree that it provides a clear and unambiguous expression for tunneling
time. This has led to speculation over whether an experimental test of quantum tunneling time could
act as an experimental test of de Broglie-Bohm theory in its traditional form.

The state of the literature on quantum tunneling time therefore leads naturally to three questions of
both physical and philosophical import. First, does the confusion about tunneling time really stem from
the more general “problem of time” in quantum mechanics — namely, the fact that time lacks an
operator? Second, is tunneling time really a meaningless concept in the standard interpretation of
quantum mechanics? If so, why? And finally, is it possible, in principle, to use an experimental test of
quantum tunneling time as an experimental test of the de Broglie-Bohm interpretation?

This paper aims to aims to answer each question in turn. Throughout I restrict myself to the
traditional version of de Broglie-Bohm theory in which tunneling time is made clear and unambiguous —
other proposals for the ontology underlying the pilot wave program, although fascinating in their own
right, do not bear on the conceptual points I aim to make. In the first half of the paper, Section 2, I
provide an overview of the existing literature on quantum tunneling time. Section 2.1 explains the
physical scenario on which discussions of tunneling time are based. In Section 2.2, I describe some
features of time’s status in quantum mechanics in general, and I show how those features have been used
to blame the confusion over quantum tunneling time on the more general “problem of time” in quantum
mechanics. In Section 2.3, I describe the link between tunneling time and interpretations of quantum
mechanics, and I show how this link has been used to motivate two kinds of claims: claims about the
meaningfulness of tunneling time in the standard interpretation, and claims about the possibility of
using tunneling time as a ‘crucial’ experimental test of the Bohmian program.

In the second half of the paper, Section 3, I present my own analysis, arguing for answers to the
three questions posed above. I begin by establishing an analogy between the tunneling problem and the
well-known double-slit experiment. I show that an attempt to establish a tunneling time specific to
transmitted particles is analogous to an attempt to identify whether a detected particle went through
the left or right passage of the double-slit (Section 3.1). This simple yet powerful analogy will form the
conceptual basis for the rest of the paper.

Answers to the three questions then follow, in Sections 3.2, 3.3, and 3.4. As to whether the apparent
confusion and ambiguity surrounding quantum tunneling time can be traced back to the more general
problem of time in quantum mechanics, I argue ‘No’: the real source of the confusion is superposition,
and tunneling time would therefore be ambiguous and controversial in the standard interpretation of
quantum mechanics even if time could be represented by an operator (Section 3.2). As to whether
tunneling time is meaningless in the standard interpretation of quantum mechanics: I argue that it is no
more or less meaningless than asking whether a particle went through the left or right slit of a
double-slit experiment (Section 3.3). Finally, as to whether it is possible in principle to use quantum
tunneling time as an experimental test of the de Broglie-Bohm interpretation: I aim to provide a simple
explanation for why it is not possible. It is not possible to experimentally measure the tunneling time
predicted by de Broglie-Bohm theory any more than it is possible to measure whether a particle went
through the left or right slit and leave the interference pattern on the screen intact (Section 3.4).

These answers are not all new. Each has been hinted at in the literature, but they have not yet been
tied together — and where they do appear, they are inserted as brief comments within much longer



technically-focused expositions. To the extent that I am presenting new ideas, I aim to show how the
tunneling time problem can shed new light on the relationship between de Broglie-Bohm theory and
other, trajectory-free, interpretations of quantum mechanics. To the extent that I am drawing together
ideas that have already been expressed, I aim to offer a simple and focused explanation of why those
ideas are correct, using the double-slit analogy as a conceptual guide. I will offer this explanation
without undertaking a full-scale assessment of the measurement problem: it will be enough to rely on
the contrast between the standard interpretation, broadly construed, and de Broglie-Bohm theory.

The variety of different expressions to be discussed in the standard interpretation, contrasted with
the simplicity and clarity of the problem in de Broglie-Bohm theory, might suggest that I am using
tunneling time as a platform to argue against the standard approach. That is not my aim. In no way do
I wish to advocate, explicitly or implicitly, for either interpretation. Instead I hope to draw three broad
lessons from the analysis I present, one for each question and answer pair. First, not every conceptual
problem involving time in quantum mechanics can be explained by the distinction between parameters
and operators. Second, the superposition of states that is central to standard quantum mechanics can
make a wide range of classically-motivated questions meaningless — in this case, the intuition that we
should be able to answer the question, “how long did a particle spend in a region of space given that it
ended up here rather than there?”. Finally, and perhaps most importantly, it is not only abstract
concepts like trajectories that can have a different status within different interpretations of quantum
mechanics, while leaving the empirical equivalence of those interpretations intact. A quantity can be
well-defined in some, and ill-defined in others, and yet leave their empirical equivalence intact.

2 The variety of tunneling times

2.1 Quantum tunneling time

Here I summarize the physical system on which discussions of tunneling time are based. The system has
two components: a free particle with momentum k& > 0 and initial position ¢ < x1, and a classically
forbidden barrier extending from x = z1 to x = 2.

For z < x1, the wavefunction ¢ (z,t) of the particle is a wavepacket sharply peaked around some
value of momentum ko, but containing various momentum components:

W, t) = / Age' PRt g, (1)

When the wavefunction 1 (z,t) reaches the barrier, in general it splits into a reflected part and a
transmitted part. An expression for quantum tunneling time is then an expression for the time spent in
the region x1 < x < x2 by the transmitted part — by particles that are eventually transmitted through
the barrier.

The stationary components of the wavepacket take the following form:

e 4 RpePre T if g < gy
Y(x, k) = § Cre"™ + Dre™"® if 11 < < 22 (2)

The'r ke if x > xo.

Ry is the reflection coefficient for energy component k and T} is the transmission coefficient for energy
component k. |Rg|? and |Tx|? are the proportion of particles described by (z, k) that will be reflected
and transmitted, respectively.
Bringing time back into the picture, the tunneling process can be broken into three steps (see Figure
1):
1. The particle is approaching the barrier. The support of the wavefunction is located entirely to the
left of the barrier region.

2. The particle is interacting with the barrier. The amplitude of the wavefunction is nonzero in the
barrier region.

3. The particle has completed its interaction with the barrier. The wavefunction is once again
negligible within the barrier region. The full wavefunction now has two peaks: one peak to the left



Step 1

— w0
—— Potential energy barrier

—
x1 x2
Step 2
— gl
—— Potential energy barrier
x1 x2
Step 3
— Iy
—— Potential energy barrier
—
x1x2

Figure 1: The three steps of the tunneling process.




of the barrier, moving to the left, and one peak to the right of the barrier, moving to the right:
oo By —ikx _ihkZ, s
Yr(z,t) = f_oo Rre*fre e "omtdk if x < x1
Y(x,t) =10 if 1 <z <2 (3)
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Yr(z,t) = [T Tretke*e =t omtdk  if x> xo.

A good expression for tunneling time should provide the time spent in the region z1 < & < x2 by
particles detected at x > x2. But the question is: how can that kind of expression be extracted from the
behaviour of ¥(z,t)?

We will see in section 2.3 that within the standard interpretation, this is a contentious question
without a clear or widely accepted answer; but within the de Broglie-Bohm interpretation, it is a
well-posed question with a clear answer. In the second half of the paper, I will argue that on the
standard view it is not even a well-posed or meaningful question to ask.

2.2 Time in quantum mechanics

Time is an outlier in quantum mechanics because, unlike most measurable quantities like position and
momentum, it cannot be represented by a self-adjoint operator.!

A self-adjoint operator corresponds to a projection-valued measure (PVM) (a special kind of
positive-operator valued measure (POVM) for which the observable outcomes are strictly mutually
exclusive). It was Pauli who showed that time cannot be represented by a PVM for any system with a
bounded Hamiltonian.? Since physical Hamiltonians are always bounded below, this means it is
impossible to construct a self-adjoint time operator for physical systems.

Pauli’s theorem can be summarized as follows. If H is the Hamiltonian, then for T" to be a PVM
that tracks the time parameter ¢, H and T would need to be related in the following way:

etHt/hp —iHt/h _ mp +t,Vt €R. ()

This can be shown to be equivalent to

T/ R =T/ _ pr +bI,Vh € R. (5)

H + bl is just a unitary transformation of H, and unitary transformations are spectrum preserving, so
H must have the same spectrum as H + hI. Since h can take any value on the real line, this means that
the spectrum of H must be the entire real line — a contradiction for any bounded Hamiltonian (Roberts
2013; Pashby 2014, 75; Butterfield 2013, 235).3 I will call this result the “problem of time” in quantum
mechanics.

Various authors have blamed the apparent ambiguity of quantum tunneling time on this more
general problem of time. Abolhasani and Golshani (2000, 1) write, “In quantum mechanics, time enters
as a parameter rather than an observable (to which an operator can be assigned). Thus, there is no
direct way to calculate tunneling times.” Challinor et al. (1997) write, “There have been many attempts
to define a physical time for quantum mechanical tunnelling processes... Orthodox quantum theory is
unable to give a definite answer to this problem since time is not an observable (in the sense of being
represented by an Hermitian operator) in the conventional formulation.” This list is far from exhaustive;
almost every paper on tunneling time mentions time’s status as a parameter as at least part of the
reason for the existing controversy.*

But in recent years it has become clear that the problem of time in quantum mechanics is not as
severe as it might first appear. Although it is not possible to define a PVM for time, it is possible to
track time using a more general POVM. In fact, POVMs have been used to define both quantum clocks
(see chapter 6 of Pashby (2014)) and event time operators (see chapters 7 and 8 of Pashby (2014)) ever
since the 1980s and 1990s, when POVMs were brought into the physics literature on time in quantum

1. For an extensive overview of time in quantum mechanics and the various issues it presents, see e.g. Muga,
Mayato, and Egusquiza (2008), or Hilgevoord (2005).

2. Strictly speaking, Pauli’s original formulation permitted some loopholes (see, for example, Roberts (2013)).
His result is only definitively established by more modern versions of the theorem, like the version I summarize
here.

3. For further discussion of this result, see e.g. Pashby (2014, Chapter 4), Busch (1990, Section 3.1), or Busch
(2008, Section 3.2.3).

4. See e.g. Challinor et al. (1997, 143), Leavens (1990, 923), Lunardi, Manzoni, and Nystrom (2011, 415), and
Peres (1980, 552).



mechanics.®> They have since been discussed in the philosophy literature on time by Butterfield (2013),
Pashby (2015b, 2014, 2015a, 2017), and Fleming (2015), among others. Quantum clock observables are
permitted, as long as we accept that their successive states will not be strictly orthogonal (Pashby 2014,
123-124).

The confusion over quantum tunneling time must therefore be based on something more than just
time’s status as a parameter; quantum clocks and event time operators can be defined to track time, and
as we will see in the next section, these kinds of structures have been used in attempts to address the
quantum tunneling time problem. But tunneling time, in the standard interpretation, still seems
confused and ambiguous. My first aim in the second half of this paper will be to argue that this state of
ambiguity is not due to the more general “problem of time”. Rather, it is due to how superposition
features in the standard interpretation.

2.3 Tunneling time and interpretations

An interpretation of quantum mechanics is a description of the relationship between quantum
mechanical phenomena and the mathematical framework by which those phenomena are described and
predicted. Various interpretations seem consistent with our observations but each provides a different
account of the processes that underlie those observations.

In the next three sections (Sections 2.3.1, 2.3.2 and 2.3.3), I will show how tunneling time depends
on the difference between two interpretations in particular: the standard ‘Copenhagen’ — or ‘orthodox’ —
interpretation, and de Broglie-Bohm theory.

2.3.1 Dwell time

One well-established notion related to tunneling time that does not depend on the difference between
the standard interpretation and the de Broglie-Bohm interpretation is the dwell time 74. It is an
expression for the average time spent in the barrier by an incident particle of well-defined energy
regardless of whether it is eventually transmitted or reflected (Hauge and Stovneng 1989, 920):

i) = [ ot 0P (). (©)

T m
(920)

The dwell time is a well-established and uncontroversial expression on both the standard interpretation
and the de Broglie-Bohm interpretation. It essentially exploits the elementary relationship between
velocity, distance, and time within the barrier region — namely,

time = (distance travelled)/(velocity of travel), (7

but with the distance f;f dx weighted by the probability density |1(x,t)|? in the barrier region (Leavens
and Aers 1989, 1202).

Although well-established and uncontroversial, 74 it is not a contender for tunneling time, because it
does not distinguish between transmitted and reflected particles. The dwell time provides a
time-spent-in-the-barrier-region for all particles described by 1 (z,t), but tunneling time is meant to be a
time-spent-in-the-barrier-region for only those particles which will be eventually transmitted.

Leavens has argued on this basis that it is precisely the attempt to distinguish between particles that
will be eventually transmitted and particles that will be eventually reflected that has led to so much
confusion about tunneling time within the standard interpretation. He writes, “Since expression (5) [i.e.
our equation (6)] for the mean dwell time is well established, it appears from the above considerations
that it is the ambiguity (within ‘conventional’ quantum mechanics) in the decomposition into
transmitted and reflected components that is at the heart of the ‘tunneling time problem’” (Leavens
1996, 127). Leavens is, however, a de Broglie-Bohm theorist, so it perhaps should not be surprising that
he believes the conventional approach to tunneling time suffers from a fundamental problem.

In the second half of the paper, I will argue that he is correct, not just from the perspective of de
Broglie-Bohm theory, but in general. Even adherents of the standard interpretation should agree that,
within the standard interpretation, there is a fundamental problem with any attempt to decompose the
wavefunction into transmitted and reflected components.

First, in Sections 2.3.2 and 2.3.3, I will describe the proposed expressions for tunneling time in both
the standard approach and the de Broglie-Bohm approach in more detail.

5. POVMs were introduced to this literature by Werner (1986), Busch, Grabowski, and Lahti (1994), and Gian-
nitrapani (1997), among others.



2.3.2 Tunneling time in the standard interpretation

Most work on tunneling time — like most physics in general — uses the standard interpretation, according
to which quantum particles do not have well-defined trajectories, and collapse indeterministically to
seemingly determinate values only when they are measured. This is also the interpretation that seems to
make tunneling time, the average time spent in the barrier region by an eventually-transmitted incident
particle of sharply-peaked energy, confused and ambiguous.

In the standard interpretation, a quantum mechanical state is — of course — a normalized
wavefunction ¢ (x,t). While it is not being measured, it evolves deterministically according to the
Schrédinger equation. When it is disturbed at some time ¢y by a measurement process corresponding to
some operator @, it collapses indeterministically to one of Q’s eigenstates, 1q;.

Thus the initial superposition

G(a,t) = cq, (), (2) (8)
J
collapses at time to to

1/)(-’”7 to) = ij/ (ZE) (9)
with probability

Prob(result ¢;) = ‘CQJ_,(tO)lQ. (10)

This probability is the most we can say, before a measurement of () is performed, about what value
that measurement will reveal, since we cannot predict which eigenstate the wavefunction will collapse to
in any individual measurement.

Several notions of tunneling time have been put forward by authors who subscribe to the standard
interpretation, including the phase time, the Larmor clock time, the Biittiker-Landauer time, the
Salecker-Wigner-Peres clock time, a complex time based on evaluating Feynman path integrals,
Steinberg’s weak-measurement time, and a time based on tracking the progression of a discontinuity in
the incident wavepacket.

None of these expressions have been unanimously accepted as ‘correct’ — in general they contradict
each other, and are reconciled only in certain limits. Authors assess proposed expressions based on their
desirable and undesirable properties: based on their generality, experimental accessibility, convergence
on classically expected results, on whether they involve a stationary or time-dependent treatment, an
asymptotic or local treatment, the absence or presence of the Hartman effect, the satisfaction or
violation of a weighted average identity that reduces to the dwell time, and on whether the values they
yield are real or complex.®

Although many authors have suggested that the problem might not admit a unique solution within
the standard interpretation of quantum mechanics, some still write as if such a solution should be
sought, making the need for a conceptual clarification of the existing ambiguity even more acute.”
Calgada, Lunardi, and Manzoni (2009, 1), for example, working within the standard interpretation,
claim that “An unambiguous definition of tunneling time is an important problem in quantum
mechanics, due to both its applications and its relevance to the foundations of the theory.” I will give an
overview below of some of the proposed expressions for tunneling time within the standard
interpretation, beginning with the phase time.

6. For a consideration of generality, see e.g. Sokolovski and Baskin (1987). For experimental accessibility, see e.g.
Potnis (2015), Steinberg (1995b), and Landauer and Martin (1994). For convergence on classically expected results,
see e.g. Davies (2005) and Sokolovski and Baskin (1987), and for stationary vs. time-dependent treatment, see e.g.
Lunardi, Manzoni, and Nystrom (2011), Winful (2006), Falck and Hauge (1988), and Hauge, Falck, and Fjeldly
(1987). The importance of asymptotic vs. local treatment is considered by e.g. Lunardi, Manzoni, and Nystrom
(2011), Davies (2005), Leavens and McKinnon (1994), Leavens (1993), Hauge and Stovneng (1989), Falck and
Hauge (1988), and Biittiker (1983), and the Hartman effect is considered by e.g. Lunardi, Manzoni, and Nystrom
(2011), Calcada, Lunardi, and Manzoni (2009), Winful (2006), and Leavens (1990). A weighted average identity
that reduces to the dwell time is discussed by various authors, including e.g. Lunardi, Manzoni, and Nystrom
(2011), Calgada, Lunardi, and Manzoni (2009), Steinberg (1995b), Hauge and Stovneng (1989), and Leavens and
Aers (1989). The merits of real vs. complex values are discussed by e.g. Lunardi, Manzoni, and Nystrom (2011)
and Hauge and Stovneng (1989).

7. For authors who argue that we should not expect to find a unique expression within the standard interpretation,
see, for example, Hauge and Stovneng (1989, 917), Muga, Mayato, and Egusquiza (2008, 21), and Sokolovski and
Baskin (1987, 4604).



(a) Phase time

The phase time is one of the oldest proposals for tunneling time within the standard interpretation.®
It uses the stationary phase approximation to associate tunneling time with the phase that the
eventually transmitted peak 7 (z,t) seems to have picked up when it emerges on the right hand side of
the barrier in step 3 of the tunneling process (see Figure 1 in Section 2.1). Because it is the most
straightforward of the existing proposals, I include a derivation:

(P1) In the notation of equation (3), the eventually transmitted peak can be written as
o pk2
Yr(z,t) = [T Theiok eihm e =it gk,
(P2) We assume T}, is sharply peaked at ko, so that the incident free particle state has a sharply defined
momentum.

(P3) The stationary phase approximation: if the integrand is a sharply peaked function A(k) multiplied
by a sinusoidal function e*/*) the only component of the integrand that will substantially
contribute to the integral is the one corresponding to the maximum of A(k) for which the phase of
the sinusoidal function, f(k), is constant.

(C1) This means we can extract the behaviour of the peak of the transmitted wavepacket by first
setting the derivative of the phase of 11 (z,t) equal to zero, and then evaluating that expression at

k = ko. The phase of ¥r(z,t) is equal to (ay + kz — %), so we get:

d;tTkh?:ko + xpeak:(t) - %t =0= xpeak(t) = 7%‘]6:]{:0 + %t-

(C2) Since h—:f is the velocity we would expect for a free particle peaked at k = ko, %'k:ko is a spatial
delay that the particle picked up from its interaction with the barrier.

(C3) This spatial delay can be converted to a value for time spent interacting with the barrier by using
the elementary relation between position, velocity, and time:

day,
_ e hko _ —di lk=kq _ m dag
V=5 T = 5t =6t = hko dk |k=ko-

(Hauge and Stovneng 1989, 919-920)

The time spent travelling between some point x, < x1 to the left of the barrier and some point
xp > x1 to the right of the barrier is taken to be the §t from (C3) above plus the time that a free particle

hkg 4

traveling with speed = would have spent travelling an equal distance. This provides an expression 7.

for tunneling time:

m dog
Ly dow g 11
hko oo — @ dk [k=ko (11)

Although appealing in its apparent simplicity as a pen-and-paper analysis of the tunneling time
problem, this expression has been deemed unsatisfactory for several reasons. First of all, and most
importantly, when x; is set to x2 and x, is set to x1, the value of T?(xl, %2, k) includes the effects of
interference during the wavefunction’s approach to the barrier — interference between front-end
components that have already been reflected and tail-end components that have not yet reached the
barrier (926). T$ is therefore unable to provide an accurate value for the time spent in the barrier region
by eventually transmitted particles; it can only provide an accurate value for the time spent in a much
wider region that includes the barrier.

In addition to this serious failure to answer the question at hand, the phase time comes along with a
counterintuitive feature: it predicts that tunneling time will approach a constant value as the width of
the barrier increases towards infinity, implying faster-than-light tunneling for particles traversing a wide
barrier. This effect, known as the ‘Hartman effect’, seems to be in considerable tension with the core
postulate of relativity theory (Hartman 1962).

T:;f(ma,a:b,ko) =

(b) Larmor clock time

The Larmor clock time uses spin rather than phase as the marker of duration. A weak magnetic field
is applied in the direction perpendicular to the wavepacket’s direction of travel — in the z direction for
the system I have described — throughout some region (zq,zs) including the tunneling barrier. A
particle whose spin is initially polarized in the x direction will then precess at a constant rate in the
plane perpendicular to the applied field — in this case, the z-y plane — as it moves between x, and x.

8. The phase time also becomes equivalent to many of the more recent proposals in certain limits — see, for
example, Hauge and Stovneng (1989, 919-920).



In the limit where the characteristic frequency of the field wy, goes to zero, the expectation value of
the spin acquired by the eventually transmitted wavepacket, (Sy)r, defines a time (Hauge and Stovneng
1989, 921; Landauer and Martin 1994, 225)9:

T (Ta, To, k) := lim Sz

. 12
wr,—0 —%hu)L ( )

T;:T(ZB@, Zp, k) is interpreted as the time the particle spent travelling through the barrier — the tunneling
time — plus the time it spent travelling as a free particle through the magnetic field on either side of the
barrier.

Supporters of the Larmor clock time emphasize that it makes tunneling time accessible to
experiment, not just pen and paper analysis (Landauer and Martin 1994, 217, 218). Landauer and
Martin (1994, 218) write of clock times in general, “The strength of the clock approach: It is not only a
path to analysis, but also tells us how to do experiments.”

However, the Larmor clock time suffers from the same central problem as the phase time:
interference effects on approach to the barrier mean that it is only accurate as an expression for the time
spent traversing a distance much wider than the barrier region. So in a serious way, it fails to answer the
question it set out to answer (Hauge and Stovneng 1989, 932; Falck and Hauge 1988, 3288).' This
perhaps should not be surprising, given that the Larmor clock time reduces to the phase time to first
order, when applied to a wide region (x4, zs) (Falck and Hauge 1988, 3287, 3292).

It also suffers from various other problems, despite its intuitive appeal. The community has not
reached a consensus on how the Larmor clock should to be constructed — for example, on how wide the
barrier region needs to be, compared to the width of the incident wavepacket, and on whether the
system can be treated as approximately stationary or requires a time-dependent treatment (Falck and
Hauge 1988; Hauge, Falck, and Fjeldly 1987; Lunardi, Manzoni, and Nystrom 2011).

Furthermore, when the tunneling particle interacts with the magnetic field, there are really two
relevant time scales. As explained above, T;:T is the time scale corresponding to the spin’s precession in
the plane perpendicular to the direction of the applied field. But there is another time scale 7,7
corresponding to the spin’s tendency to align with the applied field:

L _ . <SZ>T
T (Ta, o, k) = wlngo 7_%}11% .

(13)

(Hauge and Stovneng 1989, 921)

It is not immediately clear why TZL:T((L'G, Zp, k) should be an irrelevant time scale, yet the Larmor clock
time completely fails to take it into account.
Biittiker (1983, 6181) has proposed an alternative expression, 72, which accounts for both TiT and

L .
Ty,T'

(17 ") = () + (7). (14)
However, this time — known as the ‘Biittiker-Landauer time’ — has its own problems. Other authors have
argued that “The basis for an interpretation of these objects [the TjT’s] as times intrinsically
characteristic of the tunneling process is not clear”11’12(Hauge and Stovneng 1989, 921).

(c) Salecker-Wigner-Peres (SWP) clock time

The Salecker-Wigner-Peres (SWP) clock time, like the Larmor time, couples the motion of the
tunneling particle to an external observable. In fact, the SWP clock is equivalent to the Larmor clock in
the limit of large spin (Sokolovski and Connor 1993; Sokolovski 2017).'* But where the Larmor clock

9. wy, = ggBO, where g is the gyromagnetic ratio, ¢ is the charge of the particle, m is the mass of the particle,
and By is the magnitude of the applied magnetic field.

10. For a modern experiment that uses the Larmor clock to measure tunneling time in spite of this problem, see
(Potnis 2015).

11. T?L can be derived by invoking an oscillating barrier and associating tunneling time with a transition between
low-modulation-frequency and high-modulation-frequency behaviour (Biittiker 1983; Hauge and Stovneng 1989,
922-923).

12. In an experimental work that employs the Larmor clock time, Potnis (2015, 54) expresses a similar view,
writing “The out of plane rotation angle ¢ introduces another timescale 7, = ¢/w; and its interpretation is not
immediately clear.”

13. Note that this implies equivalence between the SWP clock time and the phase time for large spin and (x4, xp)
much wider than (z1,z2), based on the equivalence between the Larmor clock time and the phase time for (zq, xp)
much wider than (z1,z2).




applies a small magnetic field in the barrier region and tracks the resulting spin precession, the SWP
clock applies a small z-independent addition Vsw p to the height of the barrier in figure 1.

This additional potential energy changes the particle’s phase, and the average change in phase due to
the presence of the SWP barrier for particles detected on the right hand side of the barrier is read off as
the SWP clock reading (Peres 1980; Calgada, Lunardi, and Manzoni 2009; Lunardi, Manzoni, and
Nystrom 2011). The details of the clock Hamiltonian and the tunnelling time derivation are complex, so
only a rough outline is given below. For more details, see Peres (1980) and Lunardi, Manzoni, and
Nystrom (2011).

Using a Taylor approximation of the phase ay as a function of the additional barrier height Vsw p,
centered around Vswp = 0, the addition of a small potential Vsw p to the original barrier potential V'
will affect the phase of eventually transmitted particles in the following way:

da(Vswp) )
OVswp

The second term in this expansion represents the additional phase imparted to eventually transmitted

particles by the extra barrier height Vsw p, and this forms the basis for the SWP tunneling time 72" 7

SWP_ (8ak(VSWP))

arx(Vswp) = ar(Vswp)|vew p=0 + Vswp ( (15)

Vsw p=0

OVswp (16)
The SWP clock time, just like the previous two proposals for tunneling time on the standard
interpretation, suffers from serious problems. Sokolovski (2017, 1,2) argues that the SWP clock ends up
destroying interference between different possible values of tunneling time, and concludes:
“overinterpretation of these results, by treating the SWP times as physical time intervals, leads to
paradoxes and should be avoided.”!*

Vsw p=0

(d) Other proposals and the overall outlook

The expressions described above are just three of the main contenders for tunneling time on the
standard interpretation — there are many more. A time based on Feynman path integrals is supported
by Sokolovski and Baskin (1987, 4611), among others, as “the natural generalization of the classical
traversal time”, but in general it yields complex times (Sokolovski and Baskin 1987; Hauge and
Stovneng 1989, 922; Pollack and Miller 1984; Pollack 1985). A time based on the ideas of
weak-measurement theory has been developed by Steinberg, “assuming only Bayes’s theorem and
standard quantum theory” (Steinberg 1995a, 32), but it also yields complex values (Steinberg 1995a, 33;
1995b, 2406, 2407). The Biittiker-Landauer time 7" (related to 7,'r and 77¢ by equation (14)), has
been disputed, as we saw above (see Section 2.3.2 (b)). The Stevens procedure (Stevens 1980) measures
tunneling time by tracking the movement of a discontinuity in the wavepacket, but its accuracy has been
undermined by later work (Hauge and Stovneng 1989, 920).

It should be clear by now that within the standard interpretation of quantum mechanics, no
proposal for tunneling time has been accepted as the ‘correct’ expression for tunneling time, except in its
authors’ own eyes. Authors approach the various candidate expressions in different ways, for different
reasons; at the very least, the situation is one of confusion and ambiguity.

This state of confusion has led some authors to dismiss tunneling time as meaningless within the
standard interpretation. Dumont and Marchioro (1993, 85) write that the question, “How much time
does a tunneling particle spend under the barrier?... has no meaning as it requires the simultaneous
measurement of incompatible observables.” Leavens and Aers (1996, 137) write, “There is no consensus
among proponents of conventional interpretations on whether or not transmission and reflection times
are meaningful concepts. The point of view that they are not meaningful appears to be a consistent one
within conventional interpretations.” Leavens expresses the same view in Leavens (1993, 781). But not
everyone agrees. Sokolovski (2017, 11) writes, “we disagree with the final conclusion of [37] [i.e. Leavens
(1993)] that ‘it is only the dwell time, which does not distinguish between transmitted and reflected
particles, that is a meaningful concept in conventional interpretations of quantum mechanics. The dwell
time is, we argue, just a special case of the complex time and is no more, and no less, meaningful than
the tunneling and reflection times in Eqgs. (62) and (63).”” And the claims about the meaninglessness of
tunneling time on the standard interpretation are dominated by Leavens, who himself advocates a de
Broglie-Bohm perspective. In the second half of the paper, in Section 3.3, I will argue that tunneling
time is indeed meaningless within the standard interpretation, by that interpretation’s own lights.

14. Furthermore, although this has not been explicitly stated in the literature, there is no reason why the SWP
clock time should be able to avoid the central problem that the previous two times faced: due to interference effects
on approach to the barrier, it should not be able to provide a value for time spent in the barrier region only.



But first, the next section, Section 2.3.3, will show that tunneling time clearly is meaningful within
the de Broglie-Bohm interpretation of quantum mechanics. De Broglie-Bohm theorists do not need to
resort to judging candidate expressions based on pragmatic criteria, because they have access to an
expression for tunneling time which is natural, unique, and uncontroversial within their chosen
interpretation.

2.3.3 Tunneling time in the de Broglie-Bohm interpretation

By reinterpreting the wavefunction and postulating the existence of underlying point particles, de
Broglie-Bohm theory (in its traditional form) is able to maintain the mathematical formalism of the
standard interpretation but simultaneously adopt a completely deterministic underlying dynamics.

The wavefunction is reinterpreted as a field that guides the time-evolution of underlying localized
quantum particles, but simultaneously conceals information about which trajectory any particle is
actually following. Only a measurement can reveal that information; and the collapse that we see during
measurement is thereby demoted from a genuine indeterministic change in the state of the system to
something that only seems indeterministic because it reveals information about the system that we
previously did not have epistemic access to.

Thus there are two sides to the underlying dynamics, both of which can be derived by mathematical
manipulation of the standard formalism: the wave dynamics, and the particle dynamics. In three spatial
dimensions, they are given by:

1. The wave dynamics

The wavefunction ¥ (z,t) evolves according to the Schrodinger equation, as in
the standard interpretation:

m% _ _%VQw(m,t) + V(@) ). (17)

2. The particle dynamics
Subject to the assumption that the probability distribution of underlying
particles matches the density of the wavefunction®® — i.e.

p(x,t)dx = |1p(x, t)|>dx — each underlying quantum particle follows a trajectory
&(t) (see e.g. Bohm (1961, 169-172)):

ﬁ = E[Im(

dt  m

Vip(z,t)
W)Hz=£(t)~ (18)

For ¢ (,t) of the form v (x,t) = A(x, t)e'® /" this reduces to:

¢ 1
dt ~ m

The wave ¢(x,t) guides the motion of the particle, since % depends on ¢(x,t). However, a given
1 (x,t) permits various particle trajectories £(t), leading to the epistemic ignorance that allows de
Broglie-Bohm theory to reproduce standard results. Quantum mechanics looks indeterministic,
according to the de Broglie-Bohm theorist, because we have epistemic access only to the behaviour of
the wavefunction, and the wavefunction on its own does not tell us which trajectories the underlying
particles are following. But each underlying particle is in reality following a perfectly well-defined and
deterministic trajectory.

The tunneling time problem, when viewed through this lens, becomes much more tractable. For a
given wavefunction ¢ (x,t), tunneling time can be clearly and simply defined as the average time spent
within the barrier region for de Broglie-Bohm trajectories that eventually continue past the barrier
(Leavens 1990, 924-925). See Figure 2 for a space-time diagram showing the distribution of these
trajectories, including both eventually reflected and eventually transmitted paths.

Following Leavens (1990, 924-925) and Leavens and Aers (1996, 112-114), a particle initially at
position zo will later spend a time in the region (a, b) given by:

VS(@, t)]|w=gr)- (19)

(0, a,b) = / " dt0[€(zo, t) — Ol — &(z0,1)] (20)

where © is the unit step function, i.e.

15. It is disputed whether this assumption needs a dynamical justification or should just be taken as a matter of
postulate. For a recent review, see Valentini (2019).
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Figure 2: “Space-time diagram showing a representative sample of possible particle trajectories
for the case of a plane-wave packet incident from the left on a rectangular potential barrier.” Note
how some trajectories lead to reflection away from the barrier and others lead to transmission
through the barrier. Both image and caption are reproduced with permission from Norsen (2013,
264).
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and &(zo, t) is the position of the particle as a function of time ¢ and its initial position xg.
This can be used to construct an expression for tunneling time, simply by setting a = 1 and b = x2
and taking the expectation value <>7 of t(xo, a,b) only over the subensemble of initial positions z¢ that

lead to transmission through the barrier'S:

RiB . —« t(zo, 1, x2) > . (22)

This expression is unique and uncontroversial within de Broglie-Bohm theory; it has even been called
“trivial” (Muga, Mayato, and Egusquiza 2008, 9). The de Broglie-Bohm interpretation, in its traditional
form, therefore provides a clear and unique answer to a question that the standard interpretation has
not been able to answer clearly or uniquely.

This has led to speculation about whether tunneling time could be used as an empirical test of de
Broglie-Bohm theory. Cushing (1995, 274-277) made the most substantial such suggestion in his paper
‘Quantum Tunneling Times: A Crucial Test for the Causal Program?’. There he argues that since
tunneling time is well-defined in de Broglie-Bohm theory, an experimental test of tunneling time should
in principle function as a test of whether de Broglie-Bohm’s predictions are empirically adequate.'”

He even proposes a rough sketch of an experimental setup: a detector placed to the left of the
barrier, designed to ‘click’ when the incident particle is released towards the barrier, and a detector
placed to the right of the barrier, designed to ‘click’ when hit by an eventually transmitted particle. The
idea is that the average difference in time between these ‘clicks’ will either match or deviate from the
time 7E4E predicted by de Broglie-Bohm theory, thereby providing an empirical means to test the
predictive accuracy of the interpretation.

Various authors have expressed similar views, albeit without proposing an experimental set-up for a
possible test. Acufia (2019, 21) writes: “what is observable (in principle) can vary from one theory to
another — average tunneling times gives us an example. It is not inconceivable that with theoretical and
experimental ingenuity, plus the development of experimental technology, an evidential tiebreak may
result.” Abolhasani and Golshani (2000, 1) write: “It is expected that with the availability of reliable
experimental results in the near future, an appropriate definition can be selected from the available ones,
or that the ground would be prepared for a more appropriate definition of the transmission time.”

Other authors — including Cushing himself in later work — have come to doubt the possibility of
constructing a crucial test of de Broglie-Bohm theory based on tunneling time. But they do not all
provide the same explanation. Bedard (1997), in a direct response to Cushing, argues that even if his
experimental proposal could measure de Broglie-Bohm tunneling time, its outcome would not be able to
falsify de Broglie-Bohm theory without simultaneously falsifying the standard interpretation. This is
because, she argues, the two interpretations “(for all practical purposes) make the same predictions)”;
they only differ in their interpretation of experimental results (186). Thus, although quantum tunneling
time in the standard interpretation and quantum tunneling time in de Broglie-Bohm theory are “two
different properties which are not coextensive and are perhaps measurable in different ways” (186), an
experiment designed to measure tunneling time in one interpretation is still a well-defined experiment in
the other interpretation — an experiment to which both interpretations ascribe the same predicted
outcome. If it produces an unexpected outcome, it has provided a falsification of both interpretations.

Belousek (2005, 680) seems to agree: “Regarding the question of whether the ‘transit’ or ‘tunneling’
times in Bohmian mechanics constitute excess empirical content over ‘orthodox’ quantum mechanics (cf.
Ref. 31), I am of the view that, while the ontology of particles following definite trajectories does
constitute surplus physical content, this does not generate any excess empirical content in the sense of
novel predictions. Instead of novel prediction, Bohmian mechanics allows a more detailed interpretation,
and perhaps a more satisfactory explanation, of the measurement outcomes of certain experiments in
terms of the dynamical quantities definable within its own theoretical framework. What one has here is
a case not of excess empirical content but rather of the well-known ‘theory-ladenness of observation.””

Cushing, in a response published as a postcript to Bedard’s paper, agrees that his original proposal
is unviable, but for a slightly different reason. The problem is not, he says, with how to interpret a
successful observation of de Broglie-Bohm tunneling time. Rather, the problem is with whether de

16. Since this expectation value is taken only over the eventually transmitted components of the original wave-
function, it needs to be renormalized by a factor inversely proportional to the probability of transmission |T'|2. This
renormalization factor is absorbed into my notation for the restricted expectation value, <>7.

17. Cushing entertains the same possibility, although in less detail, in Chapter 4 of his 1994 book on the historical
dominance of standard quantum mechanics over de Broglie-Bohm theory (see pages 54-55 and 72-75 of Cushing
(1994) in particular).
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Broglie-Bohm tunneling time is observable at all (Bedard 1997, 186). He expresses a similar view in
Cushing and Bowman (1999, 92-93): “for Bohm all measurements are ultimately position measurements
and the distribution of these results [i.e., results for tunneling time] must be given by |¢|?, both in Bohm
and Copenhagen. Hence, this does not appear to be a promising avenue for the resolution of our
underdetermination.”

In section 3.4, motivated by an analogy with the double-slit experiment, I will aim to reveal a simple
underlying explanation for why we should not expect to be able to construct a crucial experimental test
of de Broglie-Bohm theory based on tunneling time. That explanation will align most closely with
Cushing’s last word on the subject: his original proposal is unviable as a matter of principle, because as
a matter of principle de Broglie-Bohm theory provides epistemic access only to the behaviour of the
wavefunction.

3 The source of the variety

This marks the beginning of the second half of the paper, where I move from describing the state of the
existing literature to arguing for answers to the three philosophically-motivated questions about
quantum tunneling time that I announced in the Introduction. By establishing an analogy between the
double-slit experiment and the tunneling time problem (Section 3.1), I assess the relationship between
tunneling time and time’s status as an operator (Section 3.2), the meaningfulness of tunneling time in
the standard interpretation of quantum mechanics (Section 3.3), and the possibility of using tunneling
time as the basis for a crucial test of de Broglie-Bohm theory (Section 3.4).

3.1 A double-slit analogy

The double-slit experiment examines the pattern produced on a detection screen by an ensemble of
quantum particles prepared in identical states and sent one at a time towards two narrow slits in an
otherwise opaque wall, with the detection screen placed beyond the wall. The particles produce an
interference pattern on the screen because they are described by a wavefunction that, at the location of
the slits, has a nonzero amplitude corresponding to the left slit and a nonzero amplitude corresponding
to the right slit. These two components of the superposition state interfere to produce a striped pattern
of light and dark bands on the screen, with light bands corresponding to constructive interference and
dark bands corresponding to destructive interference. This effect, first demonstrated by Tonomura et al.
(1989) using single electrons, has since been experimentally confirmed for a variety of particles, from
neutrons to C'°° molecules.'®

The experiments, and the theory, show that if any attempt is made to measure which slit a given
particle is going through, the interference pattern is destroyed. The presence of a measurement
apparatus at the slits amounts to an observation which affects the subsequent evolution of the system,
leading to a form of “quantum decoherence”: it becomes impossible to measure which slit the particles
are going through without affecting the pattern they will eventually trace out on the screen.'®

I will argue that this double-slit scenario is so highly analogous to the tunneling time problem that
we can use our well-established understanding of the former to inform our understanding of the latter.
Both cases begin with a single particle, travelling freely towards an obstruction: towards the double-slit,
or towards the tunneling barrier. In both cases, the obstruction splits the wavefunction into a
superposition of two states that our classical intuition would like to think of as mutually exclusive: a
superposition of |left > and |right > states for the double-slit experiment, and a superposition of
leventually transmitted > and |eventually reflected > states for the tunneling problem. And in both
cases, the particle is detected, long after it has finished interacting with the barrier, in some final state
that our classical intuition would like to think of as being correlated with its state while it was
interacting with the barrier.

The behaviour of the wavefunction in the two set-ups is therefore entirely analogous — the only
difference is in whether we think of the wavefunction as representing a left vs. right interaction, or a
transmitted vs. reflected interaction. We can therefore use our understanding of what the standard
interpretation and de Broglie-Bohm theory say about the double-slit experiment to inform our
understanding of what they should say about the tunneling time problem.

It is uncontroversial that in the standard interpretation the particle did not go through either slit.
Rather, it passed through the double-slit as a superposition of |left > and |right > states. Until it

18. For the double-slit experiment conducted on neutrons, see e.g. Zeilinger (1999, 288-289); for C'%° molecules
see e.g. Arndt et al. (1999).

19. For a more detailed overview of decoherence in the double-slit experiment, see e.g. Kincaid, McLelland, and
Zwolak (2016). For more on decoherence in general, see e.g. Schlosshauer (2007).
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collapsed into some localized state on the screen, it genuinely existed as a delocalized probability
amplitude, with a non-zero peak corresponding to the right slit and a nonzero peak corresponding to the
left slit. Any attempt to try to measure which slit a given particle is going through destroys the
interference pattern on the screen, because the presence of the measurement apparatus collapses the
wavefunction to either |left > or |right > when it used to be in a superposition of |left > and |right >
states.??

De Broglie-Bohm theorists believe instead that each particle went through either the left slit or the
right slit, on a localized, deterministic trajectory. It is only epistemic ignorance that blocks us from
being able to see, by tracking a particle’s behaviour at the double-slit, which slit it is going through: as
agents we only have access to the behaviour of the wavefunction, which permits both left-slit and
right-slit trajectories. Any attempt to try to measure which slit a given particle is going through
destroys the interference pattern on the screen, because the measurement apparatus interacts with the
underlying wave field 1, and the resulting change in the evolution of the wave field changes the evolution
of the particle trajectories.?!

In the same way, a tunneling particle in the standard interpretation did not exist in the barrier
region as an eventually transmitted state or as an eventually reflected state; rather it passed through the
barrier as a superposition of |eventually transmitted > and |eventually reflected > states. Until it is
detected either far to the left of the barrier or far to the right of the barrier, it genuinely exists as a
delocalized probability amplitude, with a nonzero peak corresponding to eventually transmitted and a
nonzero peak corresponding to eventually reflected.

But in de Broglie-Bohm theory, each tunneling particle travelled through the barrier in a state that
was destined to end up being transmitted, or in a state that was destined to end up being reflected. It is
only epistemic ignorance that blocks us from being able to see, by looking at a particle’s behaviour in
the barrier region, whether it is destined to be transmitted or reflected: as agents we only have access to
the behaviour of the wavefunction, which permits both eventually transmitted and eventually reflected
trajectories.

This conclusion will be the key to what follows in Sections 3.2, 3.3, and 3.4: in the standard
interpretation, a tunneling particle interacts with the barrier in a superposed state of eventually
transmitted and eventually reflected components, whereas in de Broglie-Bohm theory, it makes sense to
speak of a particle interacting with the barrier in a state that is destined to be eventually transmitted.

Before moving on to consider the implications of this state of affairs, I should make a final point of
clarification about my strategy in employing a double-slit analogy. The analogy, in this section and in
what follows, is not indispensable to the arguments I present; I emphasize that exactly the same
conclusion could have been established without appeal to any analogy, by thinking in abstract terms
about the role of superposition in both interpretations. The analogy is intended to be important and
useful only to the extent that it provides a clear and familiar avenue for thinking about that role, based
on ideas that are much more well-established than the tunneling problem itself.

3.2 Why the trouble is not with the status of time in quantum
mechanics

As we saw in Section 2.2, many authors suggest that tunneling time is difficult to define on the standard
interpretation precisely because time is difficult to define in quantum mechanics in general. It is a
parameter, rather than an self-adjoint operator.

This may initially seem plausible, since the standard interpretation has not faced obstacles in
formulating a clear and unique expression for each of the familiar quantities that can be represented by
a self-adjoint operator. It allows us to perform position measurements, and when we perform those
measurements we say we are performing position measurements, not just measurements of different
expressions for position. Similarly for momentum. It is therefore natural to wonder whether tunneling
time is made particularly ambiguous by the standard interpretation precisely because, unlike other
quantities like position and momentum, it lacks a self-adjoint operator.

But this view becomes less plausible when three other considerations are taken into account. First,
as explained in Section 2.2, it is possible to define quantum clock observables: they just cannot be
represented by PVMs. And as we saw in Section 2.3.2, various quantum clocks have been applied to the
tunneling time problem — but within the standard interpretation, tunneling time remains controversial.

20. Of course, there are still controversies within the standard interpretation about what this collapse really
means. As I indicated in the Introduction, a discussion of these broader interpretative issues will not be the focus
of this paper.

21. For more details on the double-slit experiment in de Broglie-Bohm theory, see e.g. Bricmont (2016, 134-137)
and Gondran and Gondran (2014, Section 3).
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Second, quantum theory has no problem providing a clear and unique expression for other
duration-based concepts — for example, the time of flight of a free particle. In most cases it is possible to
simply exploit functional relationships between time and other quantities like position and momentum
that can be represented by self-adjoint operators.

Third, and finally, the time spent within the barrier region is not ambiguous even for tunneling,
provided no attempt is made to distinguish between eventually reflected and eventually transmitted
particles. As shown in Section 2.3.1, the dwell time is an uncontested expression for the average time
spent in the barrier by an incident particle regardless of whether it is eventually reflected or transmitted.
The confusion arises when an attempt is made to specify the earlier behaviour of a quantum state based
on the state in which it is eventually measured.

The conclusions established in Section 3.1 confirm that the confusion over quantum tunneling time
in the standard interpretation should not be attributed to the fact that time lacks a self-adjoint
operator. Rather, it should be attributed to the classically counter-intuitive status of superposition on
the standard interpretation.

Again, we can use the double-slit experiment as a conceptual guide. For the double-slit experiment,
we are motivated by classical intuition to ask: given many individual runs that produce an
interference-pattern-shaped probability distribution on the detection screen, which of the two slits did
each individual particle go through? For the tunneling time problem, we are motivated by classical
intuition to ask: given that a particle is detected on the right hand side of the barrier, on average how
much time did it spend in the barrier region? Both are questions about how to infer information about a
quantum particle’s previous behaviour given information about the state to which it collapsed on
measurement.

But the standard interpretation explicitly prohibits this kind of inference. It claims that knowledge
of the collapsed state of a quantum particle does not give us any extra information about which
component of its previous superposition state was “veridical”, because all of the components of its
previous superposition state were veridical. The particle’s previous state was no more and no less than
the amplitude of its wavefunction, and cannot be separated into eventually transmitted and eventually
reflected behaviour for the tunneling time problem, any more than it can be separated into went through
left slit and went through right slit behaviour for the double-slit experiment.

The standard interpretation does not deny us the information we usually rely on to calculate
expectation values for position, or momentum. In general, it does not even deny us the information we
need to track duration — once again, recall the unambiguous expression for dwell time. But it does deny
us exactly the information we need to distinguish between eventually transmitted and eventually
reflected behaviour within the barrier region, just like it denies us the information we need to distinguish
between went-through-left-slit and went-through-right-slit behaviour in the double-slit experiment.

The ambiguity of tunneling time in the standard interpretation can therefore be traced back to
problems about distinguishing between eventually reflected and eventually transmitted particles —
vindicating several authors’ claims to that effect (see the end of section 2.3.1).

3.3 Tunneling time: meaningful or not?

As discussed in section 2.3.2, several authors have called tunneling time “meaningless” in the standard
interpretation — but are they correct, and if so, what do they mean by “meaningless”? We are now in a
position to answer that tunneling time is meaningless in the standard interpretation in the same sense
that it is meaningless in the standard interpretation to ask whether a particle went through the left or
right slit in a double-slit experiment.

In the standard interpretation, the state of a tunneling particle evolves as outlined in Figure 3 below.
The particle interacts with the barrier as a complex probability amplitude, and then evolves into a state
with two peaks: one to the left of the barrier and one to the right of the barrier. On detection, this state
collapses to a sharp peak at some point where the previous state had nonzero amplitude. If the point of
collapse is to the left of the barrier, we appear to have detected a particle that reflected from the barrier.
If the point of collapse is to the right of the barrier, we appear to have detected a particle that tunneled
through the barrier. But during its interaction with the barrier and all the way up to the moment before
detection, the particle had not reflected or tunneled — it genuinely existed as a complex probability
amplitude including a reflected peak and a transmitted peak.

An analogous sequence of steps applies to the double-slit experiment within the standard
interpretation. The particle interacts with the left and right slits as a complex probability amplitude,
and travels towards the screen beyond the barrier in a superposition of |left > and |right > states. On
detection at the screen, the state collapses to a sharp peak at some point where the previous state had
nonzero amplitude. If the point of collapse is far to the left side of the screen, our classical intuition
wants to tell us that the particle most likely travelled through the left slit. But during its interaction
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with the slits and all the way up to the moment before detection, the particle was not in a |left > or
|right > state — it genuinely existed as a complex probability amplitude including nonzero amplitude for
|left > and nonzero amplitude for |right >.

Any proposal for extracting tunneling time from the standard interpretation will therefore suffer
from a fundamental problem: properties corresponding to a particle detected on the right hand side of
the barrier were attained not by a particle destined to be detected as such, but by the probability
distribution in the ‘During interaction with barrier’ step of Figure 3.

The existing proposals, reviewed in Section 2.3.2, are clear offenders. The phase time associates time
spent in the barrier region by eventually transmitted particles with the average extra phase picked up by
particles that are eventually detected as transmitted — but in the standard interpretation, a particle
eventually detected as transmitted did not pick up its extra phase as a particle that would be eventually
transmitted. The Larmor clock time associates tunneling time with the average spin picked up by
particles eventually detected as transmitted — but, again, in the standard interpretation, a particle
eventually detected as transmitted did not pick up its spin as a particle that would be eventually
transmitted.

It is in this sense that tunneling time is meaningless on the standard interpretation. It requests an
answer to a question that the theory is simply unable to provide, having committed itself to the state of
a particle just being its wavefunction, even if that wavefunction is a superposition with respect to the
quantity of interest.

Within the de Broglie-Bohm interpretation, tunneling time is not meaningless in this sense, simply
because the de Broglie-Bohm interpretation does not commit itself to the wavefunction being a full and
complete description of a particle’s state. Rather, it posits an underlying dynamics that includes
deterministic and localized trajectories.

It might be natural to object that experiments have been conducted to measure tunneling time on
the standard interpretation, based on the various candidate expressions outlined in Section 2.3.2, and
that these experiments have produced results. How can an expression for a concept that is meaningless
in the interpretation in which it is being examined produce experimental results? Take the Larmor clock
time, for example. Particles detected on the right hand side of the barrier are associated with a
particular average value of spin, a value that is in general different from the average value for particles
detected to the left of the barrier. In every other case spin precession in a magnetic field is correlated
with time spent in that field — why should tunneling time be any exception? And if these experiments
are not measuring tunneling time, then what are they measuring?

The answer is that each attempt at an experimental test gives results relative to a certain notion of
tunneling time. It is possible to construct an experiment that applies a weak magnetic field across the
barrier region and measures precession of the tunneling particle’s spin as it traverses the barrier. Potnis
(2015) does exactly that. However, such an experiment only shows how the Larmor clock time behaves.
It does not give any information about whether the Larmor clock time provides the correct value for our
intuitive pre-theoretic notion of tunneling time.

In particular, the particle did not pick up its spin as an eventually transmitted particle: it picked up
its spin as a superposition of eventually transmitted and eventually reflected states. The problem
therefore lies not in the results of spin measurements — or other clock measurements — but in the
interpretation of those results. The classical notion that spin picked up while precessing through a
magnetic field should be correlated with time spent precessing in that field only holds if the particle
follows a continuous precession trajectory from its start-point to its end-point. In our case, the tunneling
particle approaches the barrier as a single well-defined peak, but splits into two peaks following its
interaction with the barrier, and continues to evolve as a probability amplitude with two peaks until
measurement. Therefore the classical relationship between spin precession and duration does not apply.

This gives us a response to Perovi¢ (2017, 21), who fittingly wonders about the tunneling time
problem: “diverse experiments, combined with diversity of approaches and their mutual disagreements,
raise the question of what exactly is being measured in each.” The answer, I suggest, is that a different
expression for tunneling time is being measured in each. Although various expressions for tunneling time
have been made precise in the standard interpretation, we should not expect any of those expressions to
be either correct or erroneous expressions for a single underlying pre-theoretic notion of tunneling time.
The standard interpretation of quantum mechanics simply does not admit such a notion.

3.4 No crucial test

We saw in the end of Section 2.3.3 that various authors have suggested using tunneling time as the basis
for an experimental test of de Broglie-Bohm theory. Their suggestions are inspired by the clarity,
naturalness, and uniqueness of the expression for tunneling time within the de Broglie-Bohm

16



During interaction with barrier

—— State of particle
—— Potential energy barrier

x1x2

v

Before detection

—— State of particle
—— Potential energy barrier
—
x1x2
After detection After detection
—— State of particle —— State of particle
— Potential energy barrier — Potentil energy barrier

e 2

Figure 3: The standard interpretation’s account of the state of a particle interacting with a
classically-forbidden barrier, in three stages: during interaction with the barrier, after interaction
with the barrier but before detection, and after detection.
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interpretation, and the proliferation of mutually inconsistent and controversial candidate expressions for
tunneling time within the standard interpretation.

The topic has been controversial — even Cushing, the first to provide a detailed proposal for such an
experiment, eventually gave up the idea. But some speculation remains, at least among the philosophy
community. And besides, where authors have dismissed the possibility they have not always based their
arguments on the same reasoning (see Section 2.3.3 for relevant references and more details).

I suggest that there is a simple underlying explanation. The possibility of a tunneling-based
experimental test of de Broglie-Bohm theory is in principle precluded by exactly the same feature that
preserves its empirical equivalence with the standard interpretation in other contexts: namely, the fact
that epistemic agents only have access to the indeterministic behaviour of the wavefunction, not the
underlying deterministic dynamics (see Section 2.3.3).

An analogy, once again, is helpful. In the double-slit experiment, de Broglie-Bohm theory tells us
whether a particle went through the upper or lower slit based on where it appears on the screen far
beyond the slits. But it is still not possible to put a detection device at the slits, to measure which slit
each individual particle is going through, without changing the particle trajectories and destroying the
interference pattern on the screen. Even though the theory distinguishes left-slit from right-slit
trajectories, we cannot experimentally isolate either set of trajectories without running into exactly the
same problems that we would run into in the standard interpretation.

The situation is the same for tunneling time. De Broglie-Bohm theory tells us, based on whether a
particle ends up being detected as eventually transmitted or eventually reflected, how long on average it
spent in the barrier region. But it is still not possible to use a measurement device to pick out the
eventually transmitted particles before they have been transmitted, and track their duration behaviour,
without changing the particle trajectories themselves. Even though the theory distinguishes between
eventually transmitted and eventually reflected trajectories, we cannot experimentally isolate either set
of trajectories and keep the underlying dynamics intact.

This aligns closely with Cushing’s own last word on the topic. He writes: “for Bohm all
measurements are ultimately position measurements and the distribution of these results must be given
by |#|?, both in Bohm and in Copenhagen. Hence, this does not appear to be a promising avenue for the
resolution of our underdetermination” (Cushing and Bowman 1999, 92-93).

4 Conclusion

Quantum tunneling time is a clear example of a simple, classically-motivated concept that becomes
confused and fraught with controversy in quantum mechanics. But as with many classically-motivated
concepts, its interpretation remains clear within de Broglie-Bohm theory, and the ambiguity lies within
the standard interpretation.

I have used well-established ideas about how superposition features in the standard interpretation of
quantum mechanics, guided throughout by an analogy with the double-slit experiment, to argue for
answers to three controversial questions about tunneling time.

Motivated by the links that have been drawn in the literature between the tunneling time problem
and the more general “problem of time” in quantum mechanics (see Section 2.2), I asked whether the
confusion and ambiguity surrounding tunneling time on the standard interpretation can really be traced
back to time’s status as a parameter rather than an operator (Section 3.2). I argued ‘No’: the confusion
is about quantum superposition, not the fact that time cannot be represented by a self-adjoint operator.
In fact it does not have much to do with time at all.

Motivated by claims in the literature about the meaninglessness of tunneling time on the standard
interpretation (see Section 2.3.1), I asked whether tunneling time is in fact meaningless on the standard
view, and if so, in what sense. I argued that it ¢s meaningless on the standard view, in exactly the same
way that it is meaningless on the standard view to ask whether a particle went through the left or right
slit of a double-slit experiment.

And finally, motivated by discussion of tunneling time as a possible experimental test of the de
Broglie-Bohm interpretation, I asked whether it is possible, in principle, to test de Broglie-Bohm theory
by conducting an empirical test of quantum tunneling time. I argued that it is not possible for exactly
the same reason that it is not possible for a de Broglie-Bohm theorist to measure which slit each particle
is going through without destroying the interference pattern that those particles will produce on
detection. When faced with quantum tunneling, even de Broglie-Bohm theorists are dealing with
particles that look, for all experimental intents and purposes, as though they do not travel through the
barrier in states destined to be eventually transmitted.

These three conclusions emphasize the central role that superposition plays in uprooting our classical
intuitions about how particles should behave. Time raises various conceptual problems in quantum
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mechanics, but it is really superposition that makes the status of tunneling time so confused in the
standard interpretation — so much so that tunneling time becomes meaningless in a significant sense.
And even though de Broglie-Bohm theory provides a deterministic underlying dynamics, it is only the
wavefunction that we can experimentally access. Thus it is not only the status of abstract concepts like
trajectories that can depend on the differences between two interpretations but nonetheless pose no
threat to their empirical equivalence. Empirical equivalence can persist between two interpretations even
when one provides a clear quantitiative value for a theoretical concept of interest, and the other makes
that very same concept quantitatively ill-defined.
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