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Abstract

A longstanding question is the extent to which ‘reasonable doubt’ may be
expressed simply in terms of a threshold degree of belief. In this context, we
examine the extent to which learning about possible alternatives may alter
one’s beliefs about a target hypothesis, even when no new ‘evidence’ linking
them to the hypothesis is acquired. Imagine the following scenario: a crime
has been committed and Alice, the police’s main suspect has been brought
to trial. There are several pieces of evidence that raise the probability
that Alice committed the crime. Her attorney’s defense strategy is not to
challenge this evidence, but instead to provide personal details about Alice’s
neighbour, Jane. While Jane is one of many people the police spoke to, they
saw no reason to investigate her further. You now learn that Jane, too, had
access to the shed where the murder weapon was stored, just like Alice. To
what extent should this alter your beliefs about Alice’s guilt? In this paper,
we provide a formal description of the problem and a solution indicating
circumstances under which learning about Jane will more or less impact
beliefs about Alice.

1 Introduction

Central to the criminal trial in the anglo-american world is the notion of “rea-
sonable doubt”: criminal conviction requires certainty beyond reasonable doubt.1
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1In fact, the U.K.’s Crown Court has given up the phrase “beyond a reasonable doubt” in its
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But what makes doubt reasonable and how can this notion be formalised? This
question has implications far beyond the legal context: society faces the question
of whether scepticism is ‘reasonable’ for a whole host of fundamental issues ranging
from vaccination debates to anthropogenic climate change. On the one hand, there
is a long tradition that has held that ‘scepticism’, and hence doubt, is integral to
‘critical thinking’ [5, 13]. Taken at face value, such a view might suggest that
doubting is always reasonable. However, it is hard to think of a man faced with
a hungry tiger ready to pounce as ‘reasonable’ when embarking on a prolonged
deliberation about whether what looks and sounds like a tiger really is a tiger, or
whether tigers really are dangerous.

An obvious starting point for a formal treatment of ‘reasonable doubt’ is to
view the notion as expressing a kind of threshold, that is, a degree of belief beyond
which continued ‘doubt’ becomes ‘unreasonable’. This seems reminiscent of epis-
temological notions such as ‘full belief’ [21], with their attendent problems [12, 23]
on the one hand, and of decision-theoretic thresholds for action on the other (see
e.g., [8]). In the context of the latter, where the appropriate threshold lies, is
determined by the utilities in question: Faced with a question of whether or not
to take action, the consequences of uncertainty in our beliefs need to be resolved.
Given that the normative framework of utility theory stipulates that we adopt the
course of action that maximises expected utility, an implicit belief threshold exists
for any set of actions such that beyond this threshold we are convinced enough to
act. This threshold corresponds to the degree of belief that needs to be exceeded
for the expected utility of an option to exceed the alternative possible actions.
Given that expected utility is probability-weighted utility, changing those utilities
will necessarily move the threshold.

Consequently, more severe outcomes will have different thresholds than will
less severe ones. And for extreme outcomes, such as potentially disastrous conse-
quences of climate change, the severity of the outcome may completely dominate
the probability component (see so-called Dismal Theorems in [22]). While it may
be useful to think about belief thresholds like this in many contexts, it is unclear
that this is exactly the notion that legal systems have in mind [3, 15]. In the recent
trial of former Trump campaign manager Paul Manafort, the jury submitted to the
presiding judge a formal question asking for a definition of ‘reasonable doubt’. In
response, U.S. District Judge T.S. Ellis replied that reasonable doubt was “doubt
based on reason”.2 This does not sound like a belief threshold; in fact, it does not
sound like a belief simpliciter at all. Rather it makes reference to the process of
belief formation itself.

Does this extend to our intuitions about reasonableness beyond the court-
room? Arguably, one would consider the doubt (or, conversely, the belief) of an
agent ‘unreasonable’ where that agent failed to fully incorporate her evidence into
her beliefs. Faced with two positive and two negative pieces of evidence, an agent

make the jury sure that [the defendant] is guilty” to prove guilt, and that “nothing less will do”.
[2]

2See https://uk.reuters.com/article/uk-usa-trump-russia-manafort-jury/jury-in-manafort-
trial-asks-about-reasonable-doubt-as-it-ends-first-day-idUKKBN1L12HW
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who underweighted the positive evidence, or ignored it entirely, even though they
believed that evidence to be diagnostic in principle, clearly falls short of the de-
mands of a rational, Bayesian agent. As a result, her beliefs will be less accurate
than they could (or should) be [14, 16], and it seems appropriate to deem that
agent ‘unreasonable’.

This case, where evidence has already been obtained, seems clear. But what
about the case where the search for evidence was somehow restricted. Imagine,
for example, a criminal investigation where police and prosecutor focused only on
a single obvious suspect from the outset. Might this limitation be sufficient to
create ‘reasonable doubt’, and could it do so even where the evidence against that
suspect merits a high posterior degree of belief in the suspect’s guilt?

To sharpen intuitions here, we provide a formal, Bayesian treatment of the
belief dynamics in such cases. Specifically, we assume a case such as the following:
a crime has been committed and Alice, the police’s main suspect has been brought
to trial. There are several pieces of evidence that raise the probability that Alice
committed the crime. Her attorney’s defense strategy is not to challenge this
evidence, but instead to provide personal details about Alice’s neighbour, Jane.
While Jane is one of many people the police spoke to initially, they did not pursue
further investigation of her or her possible connections with the crime. You now
learn that Jane, too, had access to the shed where the murder weapon was stored,
just like Alice. To what extent should this alter your beliefs about Alice’s guilt?

We provide a formal description of this problem and then detail a solution.
This formalization distinguishes those circumstances under which learning about
Jane will impact beliefs about Alice, and those, in which it will not. We next
present the model and formal treatment, before we return to its implications for
the wider debate on rational scepticism and the reasonableness of doubt.

The remainder of this article is organized as follows. Section 2 presents our
baseline model and discusses what follows from it. Section 3 then refines the
baseline model and shows under which conditions something we call the ‘focal
fallacy’ obtains. Section 4 discusses our findings and makes some more general
observations. Finally, Section 5 summarizes our main results and suggests some
future work.

2 The Baseline Model

Abstracting from the concrete case mentioned above, we consider the following sit-
uation. There is a hypothesis H (“Alice committed the crime”) which is supported
by a piece of evidence E (“Alice had access to the shed where the murder weapon
was stored”). There may, however, also be alternative hypotheses. For example, it
could be known that n people where in the area at the time the crime took place.
The agent therefore assumes that there are n alternative hypotheses H1, . . . ,Hn.
Formally, these alternative hypotheses are contained in the “catch all” hypothesis,
i.e.
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H E1

Figure 1: The Bayesian network representation of the relation between H and E1.

¬H ≡ H1 ∨ · · · ∨ Hn. (1)

Here we assume that exactly one of the hypotheses H,H1, . . . ,Hn is true.3 These
are the values of the n+ 1-valued propositional variable H.4

Next we introduce the binary propositional variable E1 which has the values
E1: “There is evidence that suspect no. 1 committed the crime” and ¬E1: “There
is no evidence that suspect no. 1 committed the crime”. The relation between the
propositional variables H and E1 is represented in the Bayesian network in Figure
1.

The prior probability distribution P (after having learned E, that is the evi-
dence implicating the focal suspect Alice, which the present analysis considers to
be part of the background knowledge) over H and E1 is given by

P (H) = h , P (Hi) = h/n (2)

and

P (E1|H1) = 1

P (E1|Hi) = α for i = 0, 2, . . . , n, (3)

with n ≥ 2 and α ∈ (0, 1). We have also used the convenient definitions h := 1−h
and H0 := H.5

Here α is the probability of a false positive [6] that is, the probability that the
seeming evidence against suspect no. 1 obtains even though another suspect, i.e. if
no. 0 or no. 2, 3, . . . or n committed the crime. Note that this likelihood is the same
for suspect no. 0 and the other suspects: The agent who assigns these likelihoods
does not distinguish between suspect no. 0 (who has already been investigated by
the police) and the other suspects who are, so far, unknown to the police.

Next, the agent learns E1. In other words, evidence against alternative suspect
no. 1 (say, Jane) is put forward. How shall the agent update her beliefs? The
following proposition specifies the new probability distribution P ′ which follows
from Conditionalization on E1, i.e. (in this case) P ′(·) = P (·|E1).

3Note that the model can be modified if the agent assumes that two hypotheses are true, that
is, for example, if the agent assumes that two people jointly committed the crime.

4Here and in the remainder we denote propositional variables in italics and their values in
roman script.

5It is plausible to assume that h > 1/(n+1) as the probability distribution under consideration
resulted from an update on other evidence supporting H. We will see that the qualitative results
stated in the propositions below do not depend on this assumptions. Our quantitative results,
however, depend on the value of h, as we will discuss below.

4



Proposition 1 An agent considers the propositional variables H and E1 with
a prior probability distribution P defined in eqs. (2) and (3). The agent then
learns E1 and updates P to P ′ using Conditionalization. Then P ′(H) < P (H),
P ′(H1) > P (H1) and P ′(Hj) < P (Hj) for j = 2, . . . , n.

We see that evidence for the claim that suspect no. 1 (i.e., in our case, Jane)
committed the crime will always decrease the probability that one of the other sus-
pects, including no. 0 (i.e., in our case, Alice herself), committed the crime.6 At
the same time, and not surprisingly, the probability that suspect no. 1 committed
the crime increases. Hence, if Alice’s defence attorney succeeds in providing evi-
dence for the claim that Jane committed the crime, then Alice’s chances increase
that she will not be convicted. Note, however, that this result presupposes that
the probability that the seeming evidence against Jane obtains is the same given
that any one of the other suspects actually committed the crime (i.e. Alice or
any one of the nameless n − 1 further suspects). Finally, we note that it would
be even better for Alice if the probability that one of the remaining suspects (i.e.
nos. 2, . . . ) committed the crime also increased. We will see that this happens
in some of the scenarios considered in the next section. Before we consider such
scenarios, however, we generalize Proposition 1.

Let us assume that Alice’s defense attorney does not only provide evidence for
the claim that Jane committed the crime, but also that several other suspects such
as Bob, Clarence and Dave committed the crime in order to raise doubts about
Alice having committed the crime. For example, the defense attorney could point
out that all five suspects (and not only Alice and Jane) had access to the shed
where the murder weapon was stored. We ask: what is the posterior probability
that Alice committed the crime in this case? Do we get qualitatively the same
results as in the case of Proposition 1, or does one find some new behavior?

To address these questions, we consider the situation where the agent learns
E1, . . . ,Ek with 1 ≤ k ≤ n and assume that the corresponding propositional vari-
ables Ei are conditionally independent of each other given the value of the hypoth-
esis (see Figure 2). Generalizing eqs. (3), we furthermore assume

P (Ej|Hj) = 1 for j = 1, . . . , k

P (Ej|Hi) = α for i = 0, . . . , n and j = 1, . . . , k and i 6= j. (4)

The following proposition specifies the new probability distribution P ′.

Proposition 2 An agent considers the propositional variables H and E1, . . . , Ek

with 1 ≤ k ≤ n with a prior probability distribution P defined in eqs. (2) and
(4) and Ei ⊥⊥ Ej|H for i 6= j = 1, . . . , k. The agent then learns E1, . . . ,Ek and

6It is interesting to see (from the proof of Proposition 1) that the posterior probability of
H can be smaller than the original prior probability, i.e. 1/(n+ 1), if α < h/(h+ n2 h− n).
This is the case, e.g., if α < 1 for h = 1/n or if α < (n− 1)/(2n− 2) for h = 1/(n− 1) or if
α < 1/(n− 1)2 for h = 1/2. Plugging in numbers for n, one sees that the posterior probability
of H can be smaller than the original prior probability of H for relatively large values of α.
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Figure 2: The Bayesian network representation of the relation between H and
E1, . . . , Ek.

H
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R

Figure 3: The Bayesian network representation of the relation between H,E1 and
R.

updates P to P ′ using Conditionalization. Then P ′(H) < P (H), P ′(Hj) > P (Hj)
for j = 1, . . . , k and P ′(Hj) < P (Hj) for j = k + 1, . . . , n.

We conclude that bringing up evidence against other subjects does not change
the qualitative results of Proposition 1. That is, the probability that one of the
specific suspects now highlighted by the defense attorney (i.e. no. 1, . . . , k) com-
mitted the crime increases and the probability that any one of the remaining
suspects (including Alice) committed the crime decreases. However, the amount
of change depends on the number k of these newly prominent suspects. We see,
for example, from the proof of proposition 2 that the new probability of H is a
decreasing function of k/n (see Appendix). Similarly, the new probability of Hj

(for j = k+ 1, . . . , n) is proportional to its prior probability (i.e. h/n) and to k/n.
In closing this section, we would like to generalize Proposition 1 in another

respect and allow the evidence to be the testimony of a witness. That is, we
assume in our example that the witness claims that Jane committed the crime.
(This witness could be Alice’ defense attorney who states that Jane committed the
crime.) It is then up to the judge to take this witness report properly into account.
Here we assume that the witness is a partially reliable information source. This
is a strong assumption which may not hold. Our model therefore represents a
baseline indicating what is possible in the ideal case for Alice.

Following the witness model discussed in [1, ch. 3], we introduce the additional
binary propositional variable R (which stands for the reliability of the witness
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and has the values R–the witness is fully reliable–and ¬R–the witness is fully
unreliable) and assume that the relation between the three variables is represented
by the Bayesian network in Figure 3. To proceed, we specify the prior probabilities
of all root notes, i.e.

P (H) = h , P (Hi) = h/n (5)

and
P (R) = r (6)

and the conditional probabilities of the child node E1, given the values of its
parents:

P (E1|H1,R) = 1

P (E1|Hk,R) = 0 for k = 0, 2, . . . , n,

P (E1|Hi,¬R) = a for i = 0, 1, . . . , n, (7)

Here we have assumed that the witness is a truth-teller if she is (fully) reliable,
and that she randomizes with a probability a (the randomization parameter) if she
is (fully) unreliable. Note that this model does not allow for a systematic bias
against H1. With this one can show that the same qualitative results obtain as
the ones stated in Proposition 1.

Proposition 3 An agent considers the propositional variables H,E1 and R with
a prior probability distribution P defined in eqs. (5), (6) and (7). The agent then
learns E1 and updates P to P ′ using Conditionalization. Then P ′(H) < P (H),
P ′(H1) > P (H1) and P ′(Hj) < P (Hj) for j = 2, . . . , n.

Proposition 3 generalizes Proposition 1 as the prior probability distribution
used in Proposition 1 obtains if one sets a = 1.7

3 Biases and the Focal Fallacy

The Baseline Model makes two important assumptions. First, it assumes that
P (E1|Hi) = α for i = 2, . . . , n. This is a reasonable assumption as there is no reason
to differentiate between the various suspects. They are all basically unknown to
the judge and it is therefore reasonable to assign both the same prior probability
to them and to also assume that the likelihoods P (E1|Hi) are the same for all of
them. The evidence against Jane is equally likely to obtain for each of them.

Second, the Baseline Model assumes that P (E1|H) = α, i.e. that the likelihood
that the evidence against neighbour Jane would obtain given that she did not
actually commit the crime would be the same regardless of whether it was, in fact,
Alice or any one of the other suspects that committed the crime. This is clearly
a controversial assumption and a judge may not want to make it. There are, in

7To see this, we calculate P (E1|H1) = r + a r and P (E1|Hi) = a r for i = 0, 2, . . . , n and note
that this coincides with the prior probabilities specified in eqs. (3) if a = 1 and α = r.
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fact, reasons for setting P (E1|H) to a higher or lower value than P (E1|Hi). For
example, the judge may recognize that Alice is a special suspect. The police found
evidence against her and knows much more about her. Alice is different from
the other suspects, which justifies assigning her a different prior and a different
likelihood on the new evidence (against Jane). More specifically, one would expect
the prior to be greater than 1/(n+ 1) as this prior is the posterior conditional on
the evidence E that obtained against Alice.

Concerning the likelihood P (E1|H), there are reasons to set it to a higher or to
a lower value than P (E1|Hi) (for i = 2, . . . , n). For example, one may set P (E1|H)
to a rather low value as the judge sees no reason why E1 should obtain if Alice
is guilty. P (E1|Hi), on the other hand, may be set to a higher value as the judge
does not know much about the other suspects so it may well be possible that
E1 obtains if one of them committed the crime. But there is also a different
consideration: the judge may not trust Alice’s defense attorney and consider it
to be more likely that the evidence against Jane obtains if Alice committed the
crime than if one of the other suspects committed the crime. In this case the judge
would set P (E1|H) > P (E1|Hi).

In short, there are any number of reasons to assume that these likelihoods could
plausibly be different. Consequently, we next study in detail the consequences of
assuming that P (E1|H) and P (E1|Hi) differ. To do so, we set

P (E1|H) =: α , P (E1|Hi) =: β (8)

for i = 2, . . . , n and α, β ∈ (0, 1). The rest remains as in Section 2. Obviously, the
Baseline Model is a special case of the present model if α = β.

We can then show the following proposition:

Proposition 4 An agent considers the propositional variables H and E1 with
a prior probability distribution P defined in eqs. (2) and (8). The agent
then learns the proposition E1 and updates P to P ′ using Conditionalization.
Then P ′(H) < P (H) iff α < β + xn β, P ′(H1) > P (H1) and P ′(Hi) < P (Hi) iff
α > β − yn(h) β for i = 2, . . . , n with xn = 1/n and yn(h) = h/(nh).

Figure 3 summarize the main insights from Proposition 4. In this phase
plot, the blue line represents the curve α = β + xn β and the orange line rep-
resents the curve α = β − yn(h) β. The phase plot exhibits three regions: In
region I, P ′(H) > P (H) and P ′(Hi) < P (Hi). In region II, P ′(H) < P (H) and
P ′(Hi) < P (Hi). Note that region II is the region around the diagonal α = β
(not plotted) familiar from Proposition 1. In region III, P ′(H) < P (H) and
P ′(Hi) > P (Hi).

It is interesting to note that the blue line is independent of the prior of H
(i.e. h). The orange line, however, does depend on the prior. To illustrate the
dynamics here, Figure 4 shows the point β0 where the orange line meets the x-axis
as a function of h for n = 5, 10, 30 and 100.8 One sees that β0 moves further to

8It is easy to see that β0 = h/ [1 + (n− 1)h].

8



�

�� ���

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: The α vs. β-phase plot for n = 5 and h = .6. (Note that β is plotted on
the x-axis and α on the y-axis.)

the left the larger h is. That is, the area of region III increases with increasing h
and therefore more assignments of α and β lead to a decrease of the probability
of H and an increase of the probability of the other Hi’s.

Note also that, as n increases, the blue line and the orange line in Figure 3
move closer and closer to the diagonal α = β (as xn and yn(h) go to zero in the
limit). In this case, region II disappears from Figure 3 and P ′(H) < P (H) and
P ′(Hi) > P (Hi) iff α < β.

In short, once the possibility of differential likelihoods is taken into account,
judging the overall impact of evidence for a new suspect becomes considerably
more complicated, and it seems all too easy to get the consequences wrong. The
best strategy for Alice’ attorney is to suggest that α is small and in any case
smaller than β. That is, Alice’ attorney should talk about the other suspects and
not leave it to the imagination of the judge how to assess the probability of the
observation that the evidence against Jane obtained if in fact one of the other
suspects committed the crime. This is an important quantity and it has to be
taken into account. Neglecting β may lead to an undesired result.

At the same time, it is difficult to assess β, especially for the judge who may not
know much more about the other people than their total number. After all, the
police regarded these people as not suspect and decided to not investigate them
further. So what is a rational assignment of β? Should the judge simply assume
that β is low? This is problematic as β is independent of the prior probability of
Hi: The prior probability that one of the other people committed the crime may
be low (which is the conclusion the police arrived at), and yet the probability that
evidence against Jane obtains given that, say, Dave committed the crime may be
large. Neglecting to properly assess this likelihood amounts to committing the
focal fallacy. In this case, the judge and the police are too concerned with Alice
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Figure 5: β0 as a function of h for n = 5 (blue), n = 10 (orange), n = 30 (green),
and n = 100 (red).

and do not properly assess the likelihood of E1 given Hj with j ≥ 2 after having
established that the prior probability that one of these people committed the crime
is low.

4 Discussion

In this paper, we examined formally the impact of considering a new piece of
evidence against a suspect previously outside the main focus of the investigation.
This formal analysis reveals multiple interrelated ways in which an undue focus
on a single prime suspect can make conclusions about guilt unreliable. Learning
that an alternative suspect who was previously considered only as part of a “catch
all” alternative hypothesis may be linked to the crime can substantially alter the
probability that the initial, focal suspect committed it. It is thus not enough to
simply consider how strong the evidence is regarding that focal suspect, while
not considering other possibilities. We refer to failures to reckon properly with
alternative suspects as committing the focal fallacy.

One may commit the focal fallacy by focusing too much on one key suspect (or
hypothesis) in a number of ways:

(i) By setting the number of serious alternatives at too low a value. The reason
for this might be that one settles too quickly on the first serious contender.

(ii) By setting the value of β at too low a value (or even to 0). The reason for
this might be a confusion of the prior probability of the hypothesis with the
likelihood. However, the prior and the likelihood are independent.
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At the same time, the belief dynamics of including new evidence about al-
ternative suspects are complex and themselves easy to get wrong. In particular,
without formal analysis it seems impossible to discern that, as the prior (based on
other evidence) for the focal suspect increases, learning evidence that implicates a
specific alternative suspect is less and less likely to uniquely raise the probability
of that alternative suspect alone (see Figure 3). Instead it becomes more and more
likely that either the probability of the initial focal suspect committing the crime
decreases but that of other potential suspects in the “catch all” actually increases
or the probability for the focal suspect actually goes up, while it decreases for
those in the “catch all”.

In other words, while the intuitive strategy of a defense attorney which points
out that “others could have done it” does have a normative basis on our analysis, it
is also too simplistic to assume that merely pointing out that some other individual
has a potential evidential link with the crime is enough to cast doubt on the guilt
of the focal suspect. Pointing out such new evidence may, as Proposition 4 above
shows, actually increase the probability that the focal suspect committed the crime,
depending on the underlying likelihoods assigned. Merely identifying evidence that
implicates an alternative suspect may ‘backfire’ and raise the probability that the
focal suspect is guilty instead, if only the likelihood that the evidence could arise
also if a member of the remaining “catch all” is deemed high enough.

All of this raises multiple issues for both threshold theories of ‘reasonable doubt’
and for attempts to normatively reconstruct the judgment practice of the criminal
trial in broadly Bayesian terms more generally. The proper relationship between
Bayesianism and legal reasoning, in particular evidential reasoning has a long and
chequered history which we cannot do justice here (see e.g., [10, 19, 20]). However,
given the links between Bayesianism and the accuracy of our beliefs (see [14]) it is
hard to see how consideration of belief dynamics in Bayesian terms would not, at
the very least, fall under the scope of “reasonable” as introduced by trial judge Ellis
in our Introduction above. That, in and of itself, would seem to make the various
different kinds of responses to alternative evidence outlined by the belief dynamics
of our Bayesian formalisation ‘fair game’. But this, in turn, arguably challenges
the appropriateness of a simple threshold view of belief. Bayesian inference simply
cannot proceed without consideration of alternative ways in which the evidence
may have come about, and the specific application to ‘unpacking’ of a ‘catch all’
hypothesis examined here, simply serves to underscore that general fact. In that
sense, Bayesianism seems much more attuned to considerations of due process
that legally seek to preclude a criminal procedure that too readily “makes up its
mind” than legal commentators typically assume. However, a Bayesian analysis,
as conducted here, guards also against undue scepticism by indicating how and
why not every alternative raised will meaningfully undermine belief in a focal
hypothesis. Rational belief formation, from a Bayesian perspective, requires that
all relevant likelihoods are appropriately reckoned with.

Here, the analyses of the present paper contain a broader, cautionary note.
The outcome of Bayesian inference often, though not always (see e.g., [11]), hinges
critically on what those likelihoods are, and estimating the likelihoods associated
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with false positives generated by an unexplicated “catch all” hypothesis, or alterna-
tively, a set of generically defined alternatives, seems even harder than estimating
the likelihood of the evidence if, in fact, the hypothesis is true (on the general issue
of estimating likelihoods see [7]).

The problems associated with the “catch all” hypothesis, including its poten-
tial practical intractability, have been discussed before. In particular, Salmon
([17]) has argued that, in a science context, estimating the catch all probability
amounts to guessing the future of science an endeavour with little to no realistic
constraint. Moreover, the mere possibility of future, perfectly diagnostic, evidence
for as yet unconceived, alternative, hypotheses renders the calculations based on
extent evidence meaningless wherever that evidence is less than perfectly diag-
nostic. One solution, here, is to abandon posteriors in favour of posterior odds
between presently considered, known alternatives. This solution, which is the one
advocated by Salmon for science, may or may not be considered a practically ad-
equate solution in its own right. We do not take a stand on this question here.
Rather, we point out that a theoretical focus on posterior odds obscures important
new questions about belief dynamics questions that themselves raise other norma-
tively relevant issues. As we argue here, a new focus on normative consequences of
unpacking contributes to the understanding of ongoing questions about the nature
of reasonable doubt, undue scepticism, and burdens of proof. These questions have
both theoretical and practical relevance in a wide range of domains.

5 Conclusion

In closing, we would like to mention that the implications of our discussion may
be even more acute for science than for law, given that here there is an arguably
even stronger case for the relevance of a Bayesian normative perspective (see e.g.,
[9, 18]). Applied to the scientific context, our results suggest that in order to
properly assess a scientific theory, scientists should not only have justified beliefs
about the number of alternative theories (see the discussion of the no alternatives
argument in [4]), but also about the likelihoods of the alternatives as the posterior
probability of the theory in question crucially depends on them. Given that one
does not know much about these alternatives and has at best some mildly justified
beliefs about their number, this is a difficult task. In any case, our discussion
reminds us that it is unreasonable to settle on the first working theory that is
found and focus on it come what may if one’s goal is to find the true theory. It
will be interesting to explore the consequences of our discussion for the scientific
realism debate. We leave this for another occasion.9

9For various reasons, the scientific case is much harder to analyze than the legal case. For
example, alternative scientific theories typically do not form a partition (as they may overlap)
which is one of the assumptions we made in the present analysis.
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A Appendix

A.1 Proof of Proposition 1

Setting again H0 := H, we first calculate

P (E1) =
n∑

l=0

∑
Hl

P (E1|Hl)P (Hl)

= hα +
h

n
[1 + (n− 1)α]

=
1

n
(nα + hα).

With P ′(Hi) = P (Hi|E1) = P(E1|Hi) P(Hi)/P(E1) (for i = 0, . . . , n) we can now
calculate

P ′(H) =
nhα

nα + hα

P ′(H1) =
h

nα + hα

P ′(Hj) =
αh

nα + hα
,

for j = 2, . . . , n. Next, we calculate

P ′(H)− P (H) = − hhα

nα + hα
< 0.

Similarly,

P ′(H1)− P (H1) =
(n− h)hα

n (nα + hα)
> 0.

Finally, for j = 2, . . . , n,

P ′(Hj)− P (Hj) = − h
2
α

n (nα + hα)
< 0.

This completes the proof of Proposition 1.

A.2 Proof of Proposition 2

As before, we first calculate

P (E1, . . . ,Ek) =
1

n
(nα + k hα).
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With this, we calculate

P ′(H) =
nhα

nα + k hα

P ′(Hi) =
h

nα + k hα

P ′(Hj) =
hα

nα + k hα
,

for i = 1, . . . , k and j = k + 1, . . . , n. Hence,

P ′(H)− P (H) = − hhα

nα + k hα
< 0

P ′(Hi)− P (Hi) =
h (n− h k)α

n (nα + k hα)
> 0

P ′(Hj)− P (Hj) = − k h
2
α

n (nα + k hα)
< 0,

for i = 1, . . . , k and j = k + 1, . . . , n. This completes the proof of Proposition 2.

A.3 Proof of Proposition 3

Setting again H0 := H, we first calculate

P (E1) =
n∑

l=0

∑
Hl

∑
R

P (E1|Hl, R)P (R)P (Hl)

= a r h+ (r + a r)
h

n
+ (n− 1) a r

h

n

=
1

n
(n a r + r h).

With P ′(Hi) = P (Hi|E1) =
∑

R P (E1|Hi, R)P (R)P (Hi)/P (E1) (for i = 0, . . . , n)
we can now calculate

P ′(H) =
a r n h

n a r + r h

P ′(H1) =
(r + a r)h

n a r + r h

P ′(Hj) =
a r h

n a r + r h
,
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for j = 2, . . . , n. Next, we calculate

P ′(H)− P (H) = − hh r

nα + hα
< 0.

Similarly,

P ′(H1)− P (H1) =
(n− h)h r

n (n a r + r h)
> 0.

Finally, for j = 2, . . . , n,

P ′(Hj)− P (Hj) = − h
2
r

n (n a r + r h)
< 0.

This completes the proof of Proposition 3.

A.4 Proof of Proposition 4

As before, we first calculate

P (E1) =
1

n

(
n (hα + hβ) + hβ

)
.

With this, we can now calculate

P ′(H) =
nhα

n (hα + hβ) + hβ

P ′(H1) =
h

n (hα + hβ) + hβ

P ′(Hi) =
hβ

n (hα + hβ) + hβ
,

for i = 2, . . . , n.
Next, we calculate

P ′(H)− P (H) =
hh ·

[
n (α− β)− β

]
n (hα + hβ) + hβ

.

Similarly,

P ′(H1)− P (H1) =
h ·
[
nhα + (n− 1)hβ

]
n
(
n (hα + hβ) + hβ

) > 0.

Finally, for i = 2, . . . , n,

P ′(Hi)− P (Hi) = −
h ·
[
nh (α− β) + hβ

]
n
(
n (hα + hβ) + hβ

) .
From this, Proposition 4 follows immediately.
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