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Abstract 

The free energy principle provides an increasingly popular framework to biology and 
cognitive science. However, it remains disputed whether its statistical models are scientific 
tools to describe non-equilibrium steady-state systems (which we call the instrumentalist 
reading) or are literally implemented and utilized by those systems (the realist reading). We 
analyse the options critically, with particular attention to the question of 
representationalism. We argue that realism is unwarranted and conceptually incoherent. 
Conversely, instrumentalism is safer whilst remaining explanatorily powerful. Moreover, we 
show that the representationalism debate loses relevance in an instrumentalist reading. 
Finally, these findings could be generalized for our interpretation of models in cognitive 
science more generally. 
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1 Introduction 
The free-energy principle (FEP) provides a theoretical framework that primarily aims to unify 

biological and cognitive science approaches to life and mind (Friston, 2013). Yet it also has 

ambitions to underwrite classical and quantum mechanics so as to become a theory of every ‘thing’ 

(Friston, 2019).1 In essence, it serves as a mathematical description of life, and states that any living, 

non-equilibrium steady-state system can be associated with the minimization of free energy.2 

Moreover, a state space description of an organism can be associated with what is called a generative 

model to the extent that a generative model is a joint distribution over (hidden) states and 

observation (statistical observation). We will explain the specifics of the FEP in more detail below 

in Section 2.  

For now, it is important to note that the generative model has played a key role in certain 

process theories associated with the FEP, such as predictive coding and processing (Hohwy, 2013; 

Clark, 2016) and active inference (Ramstead, Friston, Hipólito 2020; Friston et al. 2020; Tschantz 

et al. 2020; Parr, 2020), yet its status remains unclear.3 According to predictive processing theories, 

the generative model is literally implemented by a human brain to calculate the potential states of 

the environment (termed a realist approach), whereas other approaches take it to be an insightful 

statistical description that a non-scientifically trained organism has no access to (termed an 

instrumentalist approach). There is another debate as to whether this model is representational in 

nature or not (Gładziejewski, 2016; Gładziejewski and Miłkowski, 2017; Kiefer and Hohwy, 2018; 

Bruineberg et al., 2016; Kirchhoff and Robertson, 2018). The representations debate is associated 

with the general debate in the cognitive sciences regarding the concept of representation as a useful 

posit (Ramsey, 2007; Hutto and Myin, 2013, 2017). The idea is that going non-representationalist 

may save the generative model’s causal efficacy, albeit technically via the generative process 

(Ramstead et al., 2019). In this paper, we shall engage with both debates, and argue that the 

representationalism debate is not relevant to the FEP. Realism is doomed to fail regardless of 

whether it is representationalist or not, and, conversely, instrumentalism can thrive either way, or 

so we shall argue. 

Neuroimaging techniques offer important insights into the nervous system, such that we 

can develop explanations from patterns of activity and/or neuronal structures. However, patterned 

 
1 Every ‘thing’ as a system that can be modelled at non-equilibrium steady-state (NESS), such as typhoons, electrical circuits, stars, galaxies, 
and so on. NESS is a physical term that denotes any system that is far from equilibrium, and in a steady state with its environment. We 
elaborate on this in the next section. 
2 Our paper is neutral on the unifying ambitions of the FEP, and this discussion outside of the scope of this paper. Furthermore, there is an 
opposite proposal that focuses on entropy maximization instead (Vitas and Dobovišek 2019; Matyushnev and Seleznev 2006; Ziegler 
1963).Yet these discussions are outside the scope of this paper. 
3 We discuss the relation between the FEP and its associated process theories in Section 2. 
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activity will not answer the question of whether or not it is representational. Indeed, experimental, 

neuroimaging data per se cannot answer the question of whether in its activity and interactions, 

the brain represents anything. This would be analogous to conducting experimental research to 

know whether or not objects represent the law by which they fall. The answer for ontological 

questions is not in empirical experiments. Thinking that the nervous system represents by the same 

properties as those we use to explain thus means taking a philosophical standpoint. To do that, we 

need to offer a sound philosophical argument. Thinking that it does, or does not, is a philosophical 

standpoint.  

Inheriting from debates in philosophy of science around instrumentalism vs. realism, 

analytic philosophy of mind debates whether or not mental activity should be conceived of as 

representational. Scientific realism would prescribe that the technical terms used in modelling a 

target system also exist in the target system. Realism about Bayesian inference would thus dictate 

that the activity in the nervous system entails or is an intellectual representation that results from 

calculus between posteriors, likelihoods and priors (Rescorla, 2016). Instrumentalist thinking would be 

sceptical to accept the metaphysical assumption that the nervous system employs any of the tools 

used by scientists to model its activity. For instrumentalists, our capability to model, say, the 

auditory system, with prediction formalisms such as Bayesian inference, does not imply that the 

auditory system itself operates by applying Bayesian inference.  

The aim of this paper is to show that, philosophically, instrumentalist thinking is less 

controversial, yet remains explanatorily powerful and can yield important insights in organism-

environment dynamics. An instrumentalist attitude about the FEP is a safer bet without losing the 

potentially high returns. After briefly describing the FEP in Section 2, we assess two proposals 

made in the realist logical space, that of Representationalist Realism (RR), and Non-

Representationalist Realism (NRR) in Section 3. We reject both of them and in Section 4 we 

proceed to offer positive reasons to embrace instrumentalism about the FEP. Given the activity-

dependence feature of neuronal activity, Dynamic Causal Modeling (DCM), under the FEP, seems 

to be the most suitable and promising set of instruments to preserve the character of neuronal 

activation as we empirically know it to be – activity in coupled systems. From this angle, realist 

arguments look like forcing the world to conform with the anthropomorphic instrumental lens we 

use to make sense of it.  
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2 Free Energy Principle: essentials 
The FEP is a mathematical formulation that states that a self-organising system is a dynamical 

system that minimises its free-energy. The FEP is based on three aspects. First, the observation of 

self-organisation, which refers to our observation of patterns, in time and space from interacting 

components, plays a crucial role in life sciences (Wedlich-Söldner and Betz, 2018; Hipólito 2019; 

Levin 2020; Fields and Levin 2020). A self-organised system can be described in terms of the 

structured dynamics of its behaviour. These patterns can be thought of by the light of density 

dynamics. That is, the evolution of probability density distributions over ensembled states (known 

as variational Bayes). A self-organising system is a system that, far from equilibrium, is in a steady 

state with its environment, or in non-equilibrium steady-state (NESS). To be in a steady state is to 

be in one specific state, typically averaged out over time. ‘NESS’ thus implies environmental 

exchange to maintain steady states. As such, living systems are considered to be at NESS, because 

their exchanges with the environment allow them to maintain their physical and structural integrity 

(considered their ‘steady’ state). Of course, living systems are in constant flux and thus are only by 

approximation in NESS. This brings us to the important feature doing the explanatory labour: 

entropy. Entropy, as measure of how things are, where low entropy indicates maintenance of 

integrity (states concentrated in small regions of the state space), and high entropy, its dissipation 

(states dissipated in the state space). So, the FEP focuses on entropy reduction.  

This brings us to the second aspect: living organisms can be described as (stochastic) 

dynamical systems possessing attractors. A phase space is a space in which all possible states of a 

system are represented, where each possible state corresponds to one unique point in the phase 

space. The gain of energy translates to the expansion of the phase state. Conversely, the loss of 

energy formally parallels the contraction of the phase space, meaning an increase of certainty and 

minimisation of entropy or the maximisation of dissipation of energy in the system. 

Thirdly, the states in which the self-organising system is at a point in time can be identified 

by the interactive role they play within the (multilevel) self-organisation scheme. States within the 

state space can be statistically differentiated by the application of a Markov blanket (Friston, 2020; 

Hipólito, Baltieri et al. 2020; Hipólito, Ramstead et al. 2020). By this formalism, we can partition 

the system into internal, external, active, and sensory states. Although internal and external states 

do not statistically influence one another (as they are conditionally independent), active and sensory 

states do statistically influence one another to the extent blanket states (internal, sensory, and 
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active) describe the patterned activity of an organism. By these lights, a system that is in NESS 

possesses a Markov blanket, though as a technical construct.  

How can we formally account for the three aspects? The FEP prescribes the patterned 

activity of organisms in terms of minimisation of the free-energy as per Figure 1. 

 
Figure 1. Minimisation of the free-energy by internal states and blanket states (B), comprehending 
sensory states and active state; and external states, which can be described by the equations of 
motion, as the function of (hidden states) of the world (η), active states (𝛼), and noise or random 
fluctuations (𝜔). 
 

 Free-energy is a formal way of measuring the surprisal on sampling some data, given a 

generative model. Surprise refers to the “unlikeliness” of an outcome, as a measure of unlikeliness, 

within or in respect to a certain generative model. Mathematically, it qualifies how likely an 

outcome is, by measuring differences between posterior and prior beliefs of the observer. 

Technically, surprisal is the difference between accuracy (expected log likelihood) and complexity 

(i.e. Bayesian surprise or salience, as the informational divergence between the posterior probability 

and prior probability). Surprisal thus refers to the extent to which new data is ‘surprising’ to the 

prior model (surprisal should not be confused with psychological surprise in a day-to-day life 

setting or in information theory). 

It is important to clarify that although the FEP is related to theories such as the Bayesian 

brain hypothesis (e.g. Knill and Richards 1996) and predictive coding (e.g. Hohwy 2013, Clark 

2016), it does not entail them (at times a confusion in philosophy of mind). The FEP differs from 

predictive coding or the Bayesian brain hypothesis in a crucial aspect. The Bayesian brain 

hypothesis is the view that the brain performs inference according to Bayes’s theorem, integrating 

new information in the light of existing models of the world. To do so, prior probability and 

likelihood are computed simultaneously to obtain the posterior probability. Predictive coding 
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(Hohwy, 2013) differs from the Bayesian brain hypothesis since it implies that prediction comes 

first, and is then corrected or updated by data. In this setting, two representations, bottom-down 

prediction, and bottom-up error signal, either match or mismatch (but see Orlandi and Lee 2018). 

The FEP differs from both the Bayesian brain hypothesis and predictive coding, by having at its 

target the reduction of entropy, rather than the maximisation of hypothesis likelihood given 

sensory data. The FEP does not join the discussion about the nature of computational processes 

(whether synchronous or sequential), because the FEP is a framework of states, not processes. 

The Bayesian brain hypothesis and predictive coding are process theories about how the principle 

is realised (Hohwy, 2020). The FEP, on the contrary, is a principle that things may or may not 

conform to. In this regard, the FEP, thus, stands in clear contrast with process theories such as 

the Bayesian brain hypothesis, predictive coding, or active inference. 

The FEP is thus best seen as a research heuristic, a particular lense through which we can 

view and carve up the world. Associated process theories, then, are concerned with how the FEP 

is realized in real-world systems.4 This crucial distinction sets us to realise that the FEP the FEP 

does not imply process aspects or features, such as representations, pertaining to the theoretical 

processes that aim to explain how the principle is realised. Yet the FEP does not in itself imply the 

representational tools employed by these process theories. Prior probabilities and likelihoods are 

tools used to explain the process by which variational free-energy is minimised. The FEP thus 

does not answer questions about the implementation of computational processes. Instead, the 

FEP targets the formal understanding of self-organising behaviour, not computational processes. 

It aims at explaining and understanding a system’s behaviour from observing the self-organising 

system’s patterns and making sense of them in terms of minimisation of variational free energy 

and entropy reduction. 

3 Getting real about representations and models 
The FEP provides powerful mathematical tools for the description and analysis of dynamic, self-

organizing systems. However, the implications of these analyses are disputed. It is unclear what 

exactly they mean, what they say of the world or what we can do with them. Here we discuss the 

FEP along two axes, each with two possible values: 1) instrumentalism or realism, and 2) 

 
4 One could of course defend a predictive coding view of neural processing without subscribing to the FEP’s grand ambitions, see Rao & 
Ballard (1999). 
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representationalism or non-representationalism, so that there are four possible lines of 

interpretation, i.e. combinations of philosophical takes on models in the FEP (see table 1). 

 

FEP options Realism Instrumentalism 

Representationalism REP-REA REP-INS 

Non-representationalism NRP-REA NRP-INS 

 
Table 1: Philosophical combinations under the models of FEP. Representationalist realism 
(REP-REA), non-representationalist realism (NRP-REA), representationalist instrumentalism 
(REP-INS), and non-representationalist instrumentalism (NRP-INS). 
 

Realism and instrumentalism, here, concern the models and statistical manipulations that make up 

the FEP, and whether they are thought to be used and manipulated by the systems under scrutiny, 

independent of scientific inquiry (REA), or, conversely, whether they are thought to be scientific 

tools, wrought by humans in specific sociocultural environments to study particular systems (INS). 

Representation is a famously contested term in (philosophy of) cognitive science. Here, we shall 

use it to refer to at least something with representational content. That is, anything that represents 

some target system, does so in a way that the target system may not be so (Travis, 2004). This 

implies that representational content minimally has two aspects: 1) directedness, and 2) truth, 

accuracy or correctness conditions. First, we shall discuss the realist types: REP-REA and NRP-

REA, before turning to the instrumentalist approach in Section 4. 

 

3.1 Representationalist realism doesn’t work 
REP-REA is the view that the models and statistical calculations we use in the FEP formalism are 

literally employed by either a brain or an organism in its navigation of the world.  

Prime examples of the REP-REA view come in the form of process-theoretic offshoots 

of the FEP, such as predictive coding, predictive processing, or, more generally, PEM theories of 

cognition (see for accessible introductory texts Hohwy, 2013; Clark, 2016). By employing Bayesian 

epistemology, scientists refer to the model of the nervous system by using technical terms 

pertaining to the Bayes’ theorem: 
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Such that, the posterior, as the probability of “A” being true, given that “B” is true is equal to the 

likelihood, as the probability of “B” being true given that “A” is true, times the prior, as the 

probability of “A” being true, divided by the probability of “B” being true.5  

A realist description of the model in Bayesian technical terms involves the assumption that 

the activity of the nervous system itself entails the representational properties of the model. That 

is, the activity of the nervous system aims at an intellectual representation that results from 

combining posteriors, likelihoods, and priors. The use of this technical wording is so customary, that 

some scientists apply it interchangeably for the brain and the model of the brain. This is the case 

of Pouget and colleagues (2013) stating that “there is strong behavioural and physiological evidence 

that the brain both represents probability distributions and performs probabilistic inference” (p. 1170, 

emphasis added). This causes many philosophers to take for granted that the technical terminology 

used in models of the brain is applicable to the brain itself, helping to paint a picture of the brain 

as an “inference machine” or the “Bayesian brain hypothesis”. (Helmholtz 1860/1962, Gregory 

1980; Dayan et al. 1995; Friston 2012; Hohwy 2013; Clark 2016). According to these views, the 

agent ( sometimes considered to be the brain, sometimes the organism, see Hohwy, 2016; 

Corcoran et al., 2020) is essentially a prediction machine. Subpersonally — that is, unbeknownst 

to the acting individual — the system predicts, in accordance with Bayes’ theorem, what is most 

likely to occur next, given the current state of affairs and its knowledge of the world. According 

to PEM’s best bet, this knowledge is thought to be of the causal-probabilistic structure of the 

world, and stored in a ‘structural-representational’ format (Gładziejewski, 2016; Gładziejewski and 

Miłkowski, 2017; Kiefer and Hohwy, 2018). As we will see, to get explanatory bite out of the brain 

as (literally) an inference machine, philosophers on the realist bench need to use the full force of 

the technical terms employed in the model. Terms such as posteriors, likelihoods, and priors, then 

directly refer to the nervous system, both in representational (Kiefer and Hohwy 2019; Clark, 2016; 

Hohwy 2018), and non-representational, or seemingly enactivism inspired proposals (Kirchhoff, 

2018; Hohwy, 2018; Ramstead et al. 2019; Hohwy 2020).  

At issue in the debate is whether the intellectual process that we apply by using scientific 

tools in the investigation of a target phenomenon needs necessarily to be supposed as an 

ontological feature of the target phenomenon. Indeed, Linson and colleagues (2018) attentively 

 
5 See how Baltieri & Buckley (2017) address a similar issue. 
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note that as convenient as it may be, expressions such as “the brain “is” Bayesian or “implements” 

Bayesian models can lend itself to misunderstanding cognition’s ontological commitments” (p. 14). 

Although representational language is often used by scientists, it remains to be seen whether this 

is explanatorily additive or a mere gloss (Cheremo, 2009). The proposed structural-representational 

format is intended to address these worries, yet, as van Es and Myin (2020) argue, does not seem 

to solve the well-known problems of invoking representation in cognitive science.  

Consider Ramsey’s (2007) job description challenge: a representation must minimally fulfil 

its explanatory role qua its representational status (Ramsey, 2007). A representation as used in 

cognitive science, it is thought, must fit the job description of what representations do. That is, the 

representation is to be explanatorily powerful in virtue of being a representation (and not, say, a 

covariation relation with an inoperative representational gloss). Further, a representational relation 

is a three-part relation: 1) a target system, which is represented by 2) a representational vehicle, 

which in turn is used as such by 3) a representation-user with access to (1) and (2) and the 

representationally exploitable relations between the two (Nunn, 1909-1910, as cited in Tonneau, 

2012). This is closely related to the mereological fallacy (Bennett and Hacker, 2003). In slogan-

form, this says that ‘brains don’t use models or representations, agents do.’  

With regards to the two latter points, most of the REP-REA work relies on the 

philosophical assumption of the organism or the brain as the representation-user with access to 

the target system and the representational vehicle. Indeed, this assumption permeates much of the 

technical work and philosophical thinking of the nervous system, made popular as an analogy 

between the brain and scientist (Helmholtz 1860/1962, Gregory 1980; Hohwy 2013; Clark 2016; 

Yon, Lange and Press 2019). The longstanding Helmholtzian view (1860/1962), that ‘unconscious 

inferences’ are much like the inferences scientists draw, is also supported by Clark (2016): 

 

the experimenter is here in roughly the position of the biological brain itself. Her 
task – made possible by the powerful mathematical and statistical tools – is to take 
patterns of neural activation and, on that basis alone, infer properties of the stimulus 
(p. 95).  

 

One must be on guard in this respect. Organisms or brains, unlike scientists6, do not possess a 

perspective of an external observer. Thinking that it does, requires a sound argument that is not 

 
6 See Bruineberg, Kiverstein and Rietveld (2018) for a similar approach. 
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yet offered in the literature. In fact, the hypothesis for the brain as an ideal observer has been often 

rejected in literature, most recently (Brette 2019; Hipólito et al. 2020) as a bad metaphor (Mirski 

and Bickhard 2019; Reeke 2019). In agreement with this, Mirski et al. (2020) call for encultured 

minds in replacement of error reduction minds. Finally, there is what Hutto and Myin (2013, 2017) 

have termed the hard problem of content. This, very essentially, is the problem with grounding 

representational content in a naturalistic manner.  

 It may be fruitful to briefly rehearse here the attempt to meet the job description challenge, 

and why it fails (Gładziejewski, 2016; van Es and Myin, 2020). Essentially, the positive account is 

that structural representations as used in, for example, predictive coding, can meet the job 

description challenge, and solve the hard problem of content (Gładziejewski, 2016; Gładziejewski 

and Miłkowski, 2017; Kiefer and Hohwy, 2018). Gładziejewski uses the compare-to-prototype strategy, 

which he borrows from Ramsey (2007). He, first, analyzes a prototypical representation — in this 

case, a cartographic map — and distinguishes 4 features that make a cartographic map the 

representational tool that it is, and, second, argues step by step how each feature is present in the 

predictive coding account of structural representation. Cartographic maps, he argues, are structural 

representations of the terrains they represent, because they (1) exhibit structural similarities to the 

target, “(2) guide the actions of their users, (3) do so in a detachable way, and (4) allow their users 

to detect representational errors” (Gładziejewski, 2016, p. 566). 

 A counterexample shows why this analysis fails at capturing what makes a cartographic 

map a representation in the first place. Specifically, van Es and Myin (2020) show that a cardboard 

box and a table top could meet the four conditions, without engaging in any sort of representation 

whatsoever. Say that you’re walking, holding a cardboard box that you hope to place on the table 

top when home. The cardboard box is structurally similar to the table top at least in terms of its 

relatively flat surfaces. Indeed, structural similarity comes cheap, so condition (1) is met. This 

structural similarity is exploitable, as Gładziejewski stresses (see also Shea, 2007), and can be used 

to guide actions of the user. In this case, the structural similarities between the cardboard box and 

the tabletop can be exploited so that the box can be successfully placed on the tabletop. Moreover, 

the structural similarities are a fuel to success so that, counterfactually, had they not been in place, the 

actions would be unsuccessful (Gładziejewski and Miłkowski, 2017). Had the cardboard box’s 

surfaces not been similarly flat, but instead convex, the box would not afford to be placed on the 

tabletop stably, and the box may have ended up falling off instead. As such, condition (2) is met. 

Detachability requires that the exploitable structural similarities are exploitable in some way in the 

absence of the target system. The map can be used at home to plan a trip, what turns to take where, 

in the absence of the terrain it represents, for example. Similarly, the exploitable structural 



This is a pre-print;	this paper is currently under review. 

11 

similarities between the cardboard box and the tabletop can be used to plan where to place the 

box, whilst walking home and thus in absence of the tabletop. This means that condition (3) is 

met. Finally, error detection requires that the agent can detect when the supposed representation has 

erred in representing the target system. A cartographic map may be dated and not properly 

represent the current state of a city’s roads. It is then the manner in which the structural similarities 

between the map and the terrain do not hold that fuels the failure of the navigational activity, which 

can be detected by way of feedback from the real world: you may not be able to take a turn that, 

following the map, you need to take to arrive at your destination. Returning to our cardboard box, 

a misalignment in the relations between the surface shape of the respective items, say, if the table 

top is convex or tilted and slippery, will result in a falling box. Surely, we can detect the fall by way 

of feedback from the real world. We may see it, it may fall on our feet, it may make a noise, etc. 

As such, the job description challenge was set up mistakenly, so van Es and Myin (2020) argue. It 

is not these four features that (conjointly) make a cartographic map a representation — lest a 

cardboard box represents a tabletop for the same reason. As such, REP-REA’s best attempt at 

standing up to the job description challenge cannot get off the ground. 

This also places pressure on the extent to which the other issues can be deemed resolved. 

The aforementioned brain as a representation-user problems remains unsolved. Further, the hard 

problem of content is about correctness or veridicality conditions, yet the ‘error’ detection 

minimally required here is met by a misaligned surface relation between a cardboard box and a 

tabletop, which falls short of representational error detection. After all, we may fail at doing 

something, without this being representational in nature.  

 

3.2 Non-representationalist realism doesn’t work 
Acknowledging the deeply rooted issues with representations, there is a strand of FEP that 

advocates a non-representationalist approach. Though it is not always clear whether specific 

accounts are to be placed in instrumentalist or realist camps (see van Es, 2020 for discussion), we 

shall discuss here a realist interpretation of the relevant literature, and explain exactly why it cannot 

work. We associate the NRP-REA literature with the slogan that the brain does not have a model, 

the organism is a model (Friston, 2013; Ramstead et al., 2019; Hesp et al., 2019). Here we will take 

‘to be a model’ to mean that, essentially, the organism is, embodies or instantiates a model relative 

to its phenotype, the type of organism that it is, independently of our human, sociocultural 

modelling practices. This is to say that the model really exists, and is actively being used, 

manipulated or ‘leveraged’ by any and all self-organizing systems to minimize their free energy. 
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 Kirchhoff and Robertson (2018) argue that the FEP falls short of ascribing 

representational models to acting organisms. Their target is Kiefer and Hohwy’s (2018) notion that 

the agent has a measure of misrepresentation in terms of the KL-divergence between the prior 

probability distribution and the posterior probability distribution. The prior probability 

distribution here refers to the state before encountering new evidence, and the posterior probability 

distribution here refers to the state after encountering new evidence. Upon encountering new 

evidence, the model’s probability distribution will be updated to reflect the newfound evidence 

and how it affects the different aspects of the model. In a sense, then, the difference between the 

prior and the posterior will be a measure of the extent to which the model has been changed in 

the updating process. This is then, for the system, a measure for the extent to which its initial 

model was misaligned. Further, if we take the generative model to be representational in nature, 

the KL-divergence becomes a measure of the extent to which the system misrepresented. Yet, 

Kirchhoff and Robertson point out that the model comparison in the KL-divergence only 

measures Shannon covariance, not representation (2018). Barring a representational assumption, 

this means, they suggest, that this falls short of providing a measure of misrepresentation, and only 

succeeds in providing a measure of covariational misalignment (Bruineberg and Rietveld, 2014; 

Bruineberg et al., 2019; Kirchhoff and Robertson, 2018). As such, what actually does explanatory 

work in FEP is the minimization of negative covariance, not the minimization of (representational) 

prediction error. 

 If we cannot invoke representations in our realist account of the FEP machinery, what 

does this leave us with? Key terms in the FEP conceptual toolkit are the generative model, a 

probability distribution over sensory states parameterized by the internal states, the generative process 

by which it is placed into contact with external states via active states, and Bayesian updating of 

the model (Corcoran et al., 2020; Ramstead et al., 2019; Friston, 2013). Without representations, 

one may wonder, can we still have a generative model? For this, we need to briefly explore what it 

takes for anything to be called a model. In the current discourse in philosophy of science, there is 

a wide variety of accounts with regard to what makes a model, and how it is that they can tell us 

anything about their target systems. 

 There are many varieties of models in use in a scientific context, such as scale models, 

analogous models, idealized models and more. Standardly conceived, each of these is a model of 

its target in virtue of representing that target (Frigg and Hartman, 2020). Bayes’s theorem itself is a 

placeholder, that when furnished with relevant information becomes a model that affords 

predicting the activity or behavior of the target system given certain conditions. Minimally, a model 

such as Bayes’ theorem, is required to have three features: (1) access (furnishing information or 
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data); (2) a target (neuronal activity); (3) structural similarity (similar causal relations). If we would 

create a Bayesian model of, say, neuronal activity, then access is accounted for by the furnishing 

information or data, the target is neuronal activity and structural similarity needs to hold by way 

of a dynamical covariational relation so that if X would wiggle in the registered neuronal activity, 

something needs to wiggle in the model as well. 

If we take a model to be essentially representational, it should be clear, a mere covariation 

relation is insufficient to warrant model status. Moreover, Bayesian inference can be seen as the 

implementation of Bayes’ theorem on a specific Bayesian model in light of new evidence. In light 

of this, it seems that without representation, the generative model’s status as a model needs to be 

revoked. This presents a serious problem to those defending NRP-REA (such as Kirchhoff et al., 

2018; Ramstead et al., 2019; Bruineberg et al., 2016). 

Let us consider this more closely. A generative model is a probabilistic mapping of 

potential external states relative to the internal states. If we have a multi-dimensional state space 

that describes a particular system’s internal states, with an axis for each variable associated with 

the system, then the generative model is what tells us, given this state space description, the 

probability of the possible values for each variable of the external states. This can be extremely 

useful because each of those variables represents one or some behavioural features of the target 

system it is a description of. A description, of course, is a form of representation. If we are to take 

away the representational characteristics of the generative model, the variables over which it is a 

probability distribution do not actually represent anything at all7. It would be a probability 

distribution over variables that in no way stand in or are to be seen as surrogates for real-world 

characteristics or features.8 It thus seems that, without representation, the generative model is no 

model at all, and thereby unfit to aid an agent in navigating its environment, as NRP-REA would 

have it. 

NRP-REA seems like a no-starter. Unless, there would be a way of making sense of 

surrogacy, of something standing in for something else without reference to representation or 

representational content. Luck has it that Guilherme Sanchez de Oliveira challenges the 

representational capacity and motivation even for scientific models. Prima facie, this seems like the 

exact way out NRP-REA’s generative models require: modeling without representation (2018, 

2016). Yet de Oliveira’s work may not be the hero they need. He argues that scientific modelling 

isolates a model from its context, and in doing so, “constrains our ability to see how the nature of 

 
7 We discuss one strand of definitions of 'model': the representational one. Nonetheless, this makes up the bulk of the philosophical 
literature on the efficacy and ontological status of models. Below we discuss the only outlier position. 
8 This point can be understood in Wittgenstein’s understanding of ‘nonsensical’ propositions, where variables would be radically devoid of 
meaning, that is to say, transcend the bounds of sense. If we remove the representational characteristics of the generative model, the 
variables over which it is a probability distribution do not have any referent, i.e. are ‘nonsensical’ propositions. 
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the phenomenon is shaped by what brings it about (the individual scientists, the research context, 

disciplinary traditions, and technological possibilities in addition to properties of the target)” (de 

Oliveira 2016, p. 96). The challenge to representational properties is that “we get caught up on 

ethereal metaphysical concerns that have nothing to do with the phenomenon in the real world of 

scientific practice” (de Oliveira 2016, p. 96). Moreover, elsewhere de Oliveira argues that to judge 

models’ epistemic virtue and their ontological status in terms of their representational relation to 

a target system is contradictory (2018). In a nutshell, if a model is inherently representational, and 

if modelling is thus a representational activity, this means that:  

scientists can use models to learn about target phenomena because models 
represent their targets, and that models represent their targets because scientists use 
them as representations of those targets—in short, this would mean that the reason 
scientists can use models to study real-world phenomena is that they do use them to 
study real-world phenomena. (de Oliveira, 2018, p. 14, emphasis in original)9 

Vicious circularity ensues. Essentially, the use of models is justified in terms of their 

representational status, yet the representational status itself is grounded in our use thereof. 

Whether de Oliveira is correct in this analysis of modelling practices in science is irrelevant to our 

current debate, yet his proposed alternative is relevant. 

A non-representational approach to models as de Oliveira (2018) suggests, keeps only what 

is essential to our modelling practices. There are at least two features we can distinguish: a model 

is 1) mediative or surrogative in that it mediates between the modeller and the target system or 

stands in (or surrogates) for the target system to the modeller, and 2) requires training in specific, 

socioculturally embedded modelling practices (de Oliveira, 2018). He further notes that mediation 

nor surrogacy are necessarily representational in nature: consider our use of toy guitars or 

miniature-sized footballs as surrogates for their professional counterparts. These surrogates, 

further, aid in the ‘skill-development and learning transfer’ practices. As it is for the toy guitar, so 

it is for the model, de Oliveira argues (2018). Indeed, scientific models result mostly from 

procedures and processes of negotiations materially extended across laboratories in the world, and, 

thereby, across cultures, and from experts to students. We use models to learn about complex 

systems, and use this knowledge in our manipulation of the target systems indirectly by, for 

example, informing policy makers. As such, in our scientific endeavours, models can be naturalistic 

and useful, whilst only counting as representational when embedded, manipulated, and viewed 

within the appropriate sociocultural practice (Hutto and Myin, 2013, 2017). Here too, it is 

important to note that these models are devised, employed and explored by agents, not by their 

 
9 This argument is directed at ‘mind-dependent’ views of the representational relation of models, according to 
which, our use of models as representations is crucial to their representational status. See de Oliveira (2018, p. 9-
12) for a discussion of mind-independent view that has long gone out of fashion. 
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brains. Conversely, a scientific model outside of social practices is simply a device with contingent 

relations to another system that in itself is senseless (in the Fregean sense) and, thereby, holds no 

explanatory capacity. 

Now that we have sketched de Oliveira’s motivation for an account of a non-

representational approach to models, we need to see whether this helps NRP-REA’s predicament. 

It essentially comes down to whether FEP’s generative models display both (1) the mediative or 

surrogative, and (2) the skill development and learning transfer features of models, if they are 

ascribed to (or used, implemented, instantiated, or leveraged by) any free energy minimizing 

system. Feature (1) is easily shown, as the generative model (but more specifically the generative 

process by which the model is brought into contact with the external world) is considered crucial 

in determining action policies (Ramstead et al., 2019). Feature 2, however, is, as emphasized above, 

clearly sociocultural in nature. It is by becoming enculturated in a scientific ecosystem, being 

trained by experts in the practice, that we attain the relevant sensibilities with regards to construing 

and manipulating a model, as well as how to leverage it to further our understanding of the target 

system. The generative model, in NRP-REA, is to be used in some way or another by any free 

energy minimizing system, unconsciously. That is to say that the way the generative model is 

envisioned to be leveraged by an organism does not take into consideration the practice that a 

trainee would need to undergo to become skilled at using complex, statistical models. 

In sum, regardless of whether a model is to be seen as a representational device or not, the 

generative model, if it is to be given a realist reading as is done in NRP-REA, cannot reasonably be 

said to be a model taking into consideration the current state of the literature on the ontological 

and epistemic status of models. In this section we have first discussed the KL-divergence option 

if we take models to be essentially representational. We have argued that for a model to actually 

be about something, refer to something, i.e. it needs to be representational (under this notion), yet 

the KL-divergence approach resists this. Without this, the probability distribution we apply Bayes' 

rule to can't actually get off the ground. We have also discussed de Oliveira's option that models 

are not representational. Yet here too Bayesian inference doesn't hold without learning transfer, 

professional training, and so on. This means that Bayesian inference will not get off the ground. 

After all, Bayesian inference is a particular mode of manipulation of a Bayesian model of a target 

system. These manipulations are performed by agents embedded and trained in sociocultural 

modelling practices unavailable to the NRP-REA theorist’s notion of a generative model as 

leveraged by an organism. Though we have provided a potential way out for NRP-REA by 

considering an account of modeling that does not rely on representation, it turned out to be a dead 

end. This means that NRP-REA, despite carefully avoiding the well-known representationalist’s 
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pitfalls, is incapable of balancing themselves on the Bayesian-enactivist tightrope. If neither 

representationalism nor non-representationalism can make a realist interpretation take off, we may 

need to consider whether instrumentalism fares any better, and if so, what good it actually does to 

go instrumentalist. Why not give up on the FEP project in its entirety if the models it describes 

are not literally employed by the organisms we study? 

4 Why instrumentalism works 
Instrumentalism is, broadly, the idea that the models we use to describe important and interesting 

statistical relations between, among others, organisms and their environments do just that: 

describe. It resists the temptation to conceive of organisms as having access to our human 

sociocultural heritage of making and exploiting models.10 As such, instrumentalism in itself is 

characterized by ontological agnosticism with regards to what actually makes a system tick. Instead, 

it is concerned with accurately describing organism-environment dynamics and the interesting 

relations that may surface. 

In this section, we want to first explicate why instrumentalism does not run into any of the 

issues that realism does. Of interest here is the way in which the question of representationalism 

transforms from being of vital interest to the FEP project to an interesting related question that 

helps conceptualize the framework. Second, we want to delve into how instrumentalism can work 

for us. This is important to emphasize, because otherwise it may seem like we are only losing 

explanatory ambitions, without gaining anything in return. 

4.1 The representational collapse and the safer bet 
In Section 3, we raised a few concerns with the realist perspective on the FEP. The realist 

perspective we considered as the model of the FEP, and thus Bayesian inference, is in one way or 

another literally used, employed, instantiated, embodied, or ‘leveraged’ by any free energy 

minimizing system, or at least organisms. We argued that the position is untenable, regardless of 

whether we take a representationalist or a non-representationalist stance. Bayesian inference using 

a statistical model of a target system is commonly seen as a representational activity, yet there is 

no naturalistically viable answer as to how this works outside of our own socioculturally developed 

representational practices as scientists or philosophers, as we discussed in Section 3.1. 

 
10 Humans, of course, do have access to our sociocultural heritage. Prima facie, this one might consider a ‘humans-only’ approach. However, 
the use of models does not, by way of sociocultural heritage, become innate (Satne and Hutto, 2015). We have been exposed to imagery all 
around us, exponentially so the younger you are, which influences our skillset. Though enculturated in a wide variety of representational 
practices, the particular skill of employing Bayesian inference remains rather niche, making it a tough sell for universality. The distinction 
between activity being conform a computational principle and actually computing according to this principle is relevant, but is outside the 
scope of the current paper. 
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Subsequently, in Section 3.2 we find that the non-representational approach and its covariational 

escape has its explanatory concepts fall one by one. When it concerns essential organismic 

behavior, we show that without representational content, there is no model; without a model, there 

is no Bayesian inference; without Bayesian inference, there is no realism. As such, realism is 

untenable across the board. Yet instrumentalism is not evidently free of worries. 

 Here we shall briefly discuss the issues encountered by realism, why they don’t concern 

the instrumentalist approach, and also why, in general, instrumentalism is a much safer bet. We use 

the same methods, the same conceptual tools, but how they are employed differs wildly. In an 

instrumentalist perspective, Bayesian inference, as well as any potentially associated 

representational activity, is not said to be performed, embodied or leveraged by any system other 

than those humans that have been trained to do so. The same applies to models, and modeling 

activities, but of course also to any other sociocultural activity such as writing, whether that is 

formally, calligraphic or graffiti. In the instrumentalist take, organisms do not model anything in 

and of themselves, but they could potentially be trained by others to engage in certain modeling 

practices that aim to explain and predict scientific phenomena. FEP models, as well as the 

inferences we make with them about their target systems, are specific to our human scientific 

practices of studying the world by way of using idealized surrogates. Where these models originate 

in, and how they can serve as tools that help us understand the world, then, becomes a question 

for the history and philosophy of science, not for the cognitive sciences. 

 We see a similar transformation of the issue of representationalism. In the introduction of 

Section 3, we sketched the possibilities along the two axes of interest: realism vs instrumentalism, 

and representationalism vs non-representationalism, leading to four positions: REP-REA, NRP-

REA, REP-INS and NRP-INS respectively. For the realist position, REP-REA and NRP-REA 

are extremely different accounts of how living and cognitive systems navigate their environment. 

Either the system forms a rich, representational model of (the causal probabilistic structure of) the 

external world (Hohwy, 2013; Gładziejewski, 2016), or the system covaries adaptively with its 

environment by ‘leveraging’ a stipulated generative model (Ramstead et al., 2019; Kirchhoff and 

Robertson, 2018). Notice, however, that qua the FEP, cognitive science, and biology, the 

representationalism question enters the domain of philosophy of science. Indeed, if we go 

instrumentalist, as far as our scientific endeavour is concerned, it doesn’t actually matter whether the 

models we use are representational or not, it just matters that they work (de Oliveira, 2018, pp. 18-

20). As such, instrumentalism does not solve the issues of realism, rather, the issues do not even 

apply to instrumentalism. In fact, they are dissolved. 
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 This is particularly interesting when we consider the non-representationalist view 

presented in the literature (Kirchhoff and Robertson, 2018; Ramstead et al., 2019). In Section 3.1, 

we placed this view in the NRP-REA camp for argumentative purposes, conceding that the 

literature itself can technically be read in multiple ways (van Es, 2020). Yet we can see now that 

arguing for a non-representational take on the models as employed in the FEP, only makes sense 

under realist assumptions. Only if we assume the entire statistical machinery at work in the FEP is 

literally employed by free energy minimizing systems, does it really matter whether these models 

imply representationalism (and the problems this is accompanied by) or not. Consequently, this 

puts the enactivism-inspired ‘no representation, just covariation’ project in the FEP literature in a 

bind. It is either doomed to fail (under realist assumptions) or irrelevant (under instrumentalist 

assumptions). 

 At this juncture, one may either deem instrumentalism the god-given gift without 

philosophical problems, or suspect that there is something deeply worrying about it. Or a bit of 

both, we don’t judge. Yet it’s exactly this lack of judgment that may seem suspect. The realist took a 

plunge, and, or so we argue, failed. They took a risk and came up empty. Yet it may seem the 

instrumentalist just waited by the sideline, and only remained safely untouched because they never 

moved in the first place. That is, it may seem the instrumentalist is only safe from issues because 

it doesn’t actually make any claims about the world. It may seem empirically vacuous, without even the 

promise of helping us understand the world and its distinguishable systems any better. In the 

remainder, we shall argue that despite giving up the realist claims on the world, instrumentalism in 

the FEP has much explanatory capacity to offer with respect to new insights in making sense of 

systems’ interactions in terms of patterned activity. 

4.2 The stakes of instrumentalism or models in neuroscience 
In neuroscience, we use different imaging techniques and formal languages to understand the 

activity of the nervous system. Formal, or mathematical languages are developed and applied to 

make sense of the overwhelming amount of data collected from imaging the brain, where different 

formalisms correspond to different models. If the model shows similar patterns of activation to 

those directly collected from functional neuroimaging, we can obtain not only insights into the 

neuronal activity itself, but also draw and test new hypotheses related to and within that model. 

The model, in scientific practice, is a representation of the nervous system to the extent it holds 

explanatory capacity. This is, as we know, the goal par excellence of computational neuroscience.  
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 Indeed, computational neuroscience simulates the neuronal processes to infer models that 

explain and predict the phenomena. There are two major ways to model neuronal processes. One 

is Structural Causal Models (SCM), which typically applies machine learning or information theory 

to model the system in conformity with the presence or absence of ‘information’. The goal in SCM 

is precisely to display topological maps of brain structures as per the presence or absence of 

‘information’ amongst highly connected (neural) modules or nodes.11 This is the set of techniques 

par excellence of brain mapping.12 The other way of modelling neuronal processes is by Dynamical 

causal models (DCM), employed to explain the activity-dependent patterns found in the nervous 

system. Applied to the FEP is the modelling of activity-dependence in coupled systems by means 

of dynamical formalisms. As simulation models that aim to hold predictive capacity, both models 

– SCM and DCM – apply the statistical tools of Bayesian epistemology13, viz. Bayesian inference.  

4.3 How instrumentalism can work for us 

The main question for the FEP is, not about processes, but self-organising behaviour. As we have 

explained in section 2, the FEP aims at explaining and understanding a system’s behaviour from 

observing the self-organising system’s patterns and making sense of them in terms of minimisation 

of variational free energy and entropy reduction.14 As a principle, the FEP is expected to apply to 

different levels of self-organisation.  

The behaviour of (self-organising) systems can be described as acting to minimise expected 

free energy, and to reduce expected surprisal. Living systems, such as cells in a tissue, neurons in 

a network, brains in organisms, organisms in environments and so on, enacting their environments, 

could be thought of as actions for epistemic affordance. By epistemic affordance we mean actions 

that avoid dissipation (resolve uncertainty and, thereby, expected free energy).15 In order to avoid 

dissipation, opportunities for resolving uncertainty become attractive. Appealing to dynamical 

systems theory, this can be described as a random dynamical attractor: a dynamical system in which 

the equations of motion have an element of randomness or fluctuations to them. An example of 

a random dynamical system is a stochastic differential equation, describing and accounting for the 

 
11 Where the aim is to highlight the structure by determining (predicting the likelihood) of connections between modules in terms of 
information being exchanged between modules - thus by the presence or absence of information. 
12 See Pearl (2001); Spohn (2010); Bielczyk et al. (2019); Borsboom, Cramer Kalis (2019); Straathof et al. (2019). 
13 See (Talbot, 2016).  
14 We do not claim that FEP offers the ultimate answer to all behavior.Yet it may be key in making sense of certain biologically essential 
levels of cognition. 
15 This does not mean that propositional information is extracted from the environment. 
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important aspect of noise. Brown (1827), examining the forms of particles immersed in water, 

“observed many of them very evidently in motion”. Albert Einstein (1905) noted they arose 

directly from the incessant random pushes, or perturbations, to the particle made by molecules in 

the surrounding fluid. Langevin (1908) formulated the first stochastic equation to describe 

Brownian motion emphasising the dynamical behaviours observed in the interplay between 

deterministic processes and noise.16 Randomness or fluctuations (such as Brownian motion, or 

even cell or neuronal activity) are ‘noisy’ to the extent that their origin implies ‘degrees of freedom’. 

Notably, noise can drastically modify the even deterministic dynamics.17 Importantly, this means 

that stochastic dynamical systems, accounting for noise, are equipped, at least in principle, to 

capture how existing states contribute to adaptation. State-space models are among the most 

suitable sets of techniques (Razi and Friston 2016) to model the unfolding activity or behavior of 

a system subject to fluctuations and noise, described by an ordinary differential equation (ODE): 

 

 

 

Where f denotes the coupled dynamical system where 𝜃corresponds to the parameters of the 

influences; x(t) = [x1(t), x2(t),...,xn(t)]T represents the rate of change over the time in state variables 

x(t). And, finally w(t) represents the random influences that can only be modelled probabilistically. 

Although random influences play an important role in ‘stochastic’ systems, they are typically de-

emphasised in most formal applications by being replaced or absorbed into prior distributions over 

parameters. Considering however the relevance of noise, e.g. to stabilize unstable equilibria and 

shift bifurcations18; motivate transitions between coexisting deterministic stable states or attractors; 

or even induce new stable states that have no deterministic counterpart, taking random fluctuations 

as priors, we think, blurs the line between dynamical and deterministic systems. Models, instead of 

aiming to represent something, should be able to capture the essential aspect of random influences 

(the patterns we alluded to above) and thus offering a more comprehensive understanding of 

behaviour. In a real-world scenario, systems, like cells, neurons, or organs, can be described as 

 
16 This is especially relevant under the observation that at the very least noise acts as a driving force exciting internal modes of oscillations 
in both linear and nonlinear systems (where the latter corresponds to the enhanced response of a nonlinear system to external signals, see 
Jung, 1993; Gammaitoni et al., 1998; Lindner et al. 2004).  
17 Even if it is possible to use deterministic equations of motion to study a system subjected to the action of a large number of variables, the 
deterministic equations need to be coupled to a "noise" that simply mimics the perpetual action of many variables. 
18 The parameter value at which the dynamics change qualitatively (Arnold 2003). 
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subject to fluctuations or noisy environments. However these systems ‘act’, can be understood as 

avoiding dissipation (or resolving uncertainty and, thereby, expected free energy).  

There is no reason to think of this form of action as intellectual thinking (i.e. representing). 

The intellectual part of the story is our scientific or philosophical attempt to make sense and 

understand observed behaviour. So, we describe behavior or actions that, from an external 

observer standpoint, look as if the subjects of enactment were asking ‘what would happen if I did 

that’ (Schmidhuber 2010). We can develop and use tools of process theories (e.g. predictive coding, 

predictive processing) to explain how systems resolve uncertainty (and thereby minimise the free 

energy). We can use formal terminology, such as intrinsic value, epistemic value of information, Bayesian 

surprisal, and so on (Friston 2017), to develop models that explain the neuronal processes enabling 

and underlying things becoming salient to a system to resolve uncertainty. For example, to develop 

models that explain neuronal excitatory and inhibitory projections in terms of predictions and 

prediction errors, respectively. In this scientific route, an open question for process theories in 

relation to the FEP is which theory, predictive coding, Bayesian filtering, belief propagation, 

variational message passing, particle filtering, and so on, if any, conforms to the FEP. More 

precisely, which model, if any, conforms with the FEP.  

Yet from the fact that it is possible to model a process, it does not necessarily follow that 

the target phenomenon represents the intellectual tools we use to model it. Consider a moving 

object that can be explained by Newton's Law of Motion. That we can model the movement by 

that formalism, does not follow that the object represents the law by which it falls. Few people 

would claim that the object represents (or embodies, instantiates, implements, employs, leverages) the laws by 

which it moves. Because science does not back this up, those who wish to do so, are committed 

to a philosophical assumption that moving objects, like cells, or organs like the nervous system, 

represent laws, principles, or the intellectual tools we use to describe processes conforming to laws 

or principles (posteriors, likelihoods, and priors). Friston, Wiese and Hobson (2020) are on the guard 

on this matter, pointing that, from the fact that it is possible to map states, “does not mean that 

the resulting descriptions refer to entities that actually exist” (p. 17, emphasis added).  

FEP is not in itself a commitment to the picture that an organism, and/or its nervous 

system literally is a hierarchical system that itself aims at representation (Baltieri and Buckley 2019; 

Gallagher 2020; Hipólito et al. 2020; Williams 2020). This is because the FEP targets understanding 

behavior, from the observation of its dynamical states, in terms of self-organisation towards the 

aim of avoiding dissipation. In the FEP, the notion of salience plays an essential role read according 



This is a pre-print;	this paper is currently under review. 

22 

to the reduction of entropy. What becomes salient is what reduces entropy, put simply. It is these 

enactive and cultural aspects that are lacking from process theories aiming at developing 

representational models. Explaining why things become salient is an explanandum of the FEP. In 

this setting, active inference, as a process theory, is an important FEP associate tool to explore the 

processes enabling and underlying things becoming salient, because it accounts for salience as an 

attribute of the action itself in relation to the lived world. In pushing in this direction, active 

inference seems formally equipped to a more accurate description/model of real-world 

sociocultural scenarios. But active inference is a process theory, i.e. it aims at explaining the processes 

by which things become salient to an agent, not why they become salient - that is a goal of the FEP. 

The instrumentalist account we propose here understands the use of models without the 

need to assume that the target system also engages in a representational activity. From the fact that 

we can generate a high probability value that allows us to draw claims about behaviour, from within 

our model of an enactive system, we are not licenced to assume that the enactive system itself 

represents the laws by which it adapts. Such a claim would imply a further claim: that nature, 

essentially, represents. This does not seem metaphysically reasonable. We think that 

instrumentalism associated with FEP offers sufficient explanatory power without falling into 

problematic realist assumptions. In what follows we explain how the FEP, as a tool, holds 

explanatory capacity for the investigation and understanding of organisms enacting the 

environment. 

In Section 3 on realism, we discussed the KL-divergence argument against representational 

aspects of FEP (Kirchhoff and Robertson 2018). As we attempted to show in Section 4.1, this 

argument against representationalism only holds under a realist assumption. The KL-divergence 

‘solution’ to the problems with representations becomes irrelevant. Indeed, only if the model is 

actually thought to be used, manipulated (or ‘leveraged’) by the organism, does it actually make 

sense to try and resolve representationalist worries. Yet in our instrumentalist account this is a 

non-issue. 

In conclusion, we do not think that there are convincing reasons to believe that organisms 

or systems engage in representation, nor to think that our scientific models are themselves 

necessarily representational. Situated in a sociocultural practice, models allow us to make culturally 

informed inferences about the likelihood of something being the case with the target system (i.e 

ontological claims). So, the instrumentalism we propose does not assume that generative models 

used in the modelling are models that are used by organisms or systems themselves, nor that 
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models are representational outside of the culture they are developed in. Neutral with regards to 

realist ascriptions, our instrumentalist account for the offers sufficient explanatory power to 

explain the behaviour of systems or organisms without falling into unnecessary philosophical 

problems.  

 

5 Conclusion 
In this paper we have defended the instrumentalist take on the FEP, arguing that the realist 

approach is a non-starter, regardless of whether it is representationalist or not. Crucially, the 

question as to whether systems do or do not model their environment will not be decided by 

neuro-imaging studies or the models we employ in interpreting the data. This is a philosophical 

matter that should be dealt with by way of philosophical argumentation. We have argued that the 

representationalist realist (REP-REA) position does not hold up because of the as of yet missing 

naturalistic grounding of representations independent of sociocultural practices, including 

structural representations (van Es and Myin, 2020; Hutto and Myin, 2013, 2017). The non-

representationalist realist position (NRP-REA) purports to solve the issues of REP-REA by 

removing representational content from the story. Yet it does not hold up because without 

content, there is no model and no Bayesian inference. The instrumentalist does not face the same 

problems, as they do not ascribe the modeling activity to the organism under scrutiny. The question 

of representationalism then turns into a general philosophy of science debate on the ontology of 

models in science, on which the validity or usefulness of the FEP does not hinge (de Oliveira, 

2018). The instrumentalist position, then, means that we take the statistical machinery to be a 

helpful description of real life systems, potentially offering deep insights into the relevant statistical 

relations between organism and environment. The instrumentalist does not take the models we 

make of the organisms to be employed by the organisms themselves in virtue of our capacity to 

model them. 

 The difference between realism and instrumentalism is thus primarily ontological in nature: 

in realism, there is an ontological claim with regards to the status of models in living systems, 

whereas in instrumentalism there is no such ontological claim. This may be seen as a weakness, as 

it looks as though the instrumentalist position only gives up explanatory ambitions relative to the 

FEP realist. This is true. However, the ambitions given up on, we argue, are never going to be met. 

If this is on the right track, the realist’s ambition is a fata morgana, if you will. As such, instead of 

chasing ghosts, the instrumentalist position is more realistic in their ambitions. There is, within 
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this more modest framework, still plenty of insight to be gained into the workings of life and 

cognition by way of dynamic causal modeling (DCM). In sum, we argue that modesty and ambition 

go hand in hand when it comes to models and the FEP. 
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