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Abstract

In this note we provide a concise report on the complexity of the causal order-
ing problem, originally introduced by Simon to reason about causal depen-
dencies implicit in systems of mathematical equations. We show that Simon’s
classical algorithm to infer causal ordering is NP-Hard—an intractability pre-
viously guessed but never proven. We present then a detailed account based
on Nayak’s suggested algorithmic solution (the best available), which is domi-
nated by computing transitive closure—bounded in time by O(|V|·|S|), where
S(E ,V) is the input system structure composed of a set E of equations over
a set V of variables with number of variable appearances (density) |S|. We
also comment on the potential of causal ordering for emerging applications
in large-scale hypothesis management and analytics.

Keywords: Causal ordering, Causal reasoning, Structural equations,
Hypothesis management.

1. Introduction

The causal ordering problem has long been introduced by Simon as a tech-
nique to infer the causal dependencies implicit in a deterministic mathemati-
cal model [1]. For instance, let f1(x1) and f2(x1, x2) be two equations defined
over variables x1, x2. Then the causal ordering problem is to infer all existing
causal dependencies, in this case the only one is (x1, x2), read ‘x2 causally
depends on x1.’ It is obtained by first matching each equation to a variable
that appears in it, e.g., f2 7→ x2. Intuitively, this means that f2 is to be
assigned to compute the value of x2—using the value of x1, which establishes

Email addresses: begoncalves@acm.org (Bernardo Gonçalves), fporto@lncc.br
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a direct causal dependency between these two variables. Indirect dependen-
cies may then arise and can be computed, which is specially useful when the
system of equations is very large.

Causal ordering inference can then support users with uncertainty man-
agement, say, towards the discovery of what is wrong with a model for en-
abling efficient and effective modeling intervention. If multiple values of x1

are admissible for a modeler, then as a user of the causal ordering machin-
ery she has support to track their influence on the values of x2. One major
application for that is probabilistic database design [2].

Back in the 50th’s, Simon was motivated by studies in econometrics and
not very concerned with the algorithmic aspects of the Causal Ordering Prob-
lem (COP). Yet his vision on COP and its relevance turned out to be influen-
tial in the artificial intelligence literature. In a more recent study, Dash and
Druzdzel revisit and motivate it in light of modern applications [3]. They
show that Simon’s original algorithm, henceforth the Causal Ordering Algo-
rithm (COA), is correct in the sense that any valid causal ordering that can
be extracted from a self-contained (well-posed) system of equations must be
compatible with the one that is output by COA [3]. Their aim has also been
(sic.) to validate decades of research that has shown the causal ordering to
provide a powerful tool for operating on models. In addition to the result
on the correctness of COA, their note also provides a convenient survey of
related work that connects to Simon’s early vision on causal reasoning.

However, Simon’s formulation of COP into COA—originally in [1], and
reproduced in [3], turns out to be intractable. There is a need to distinguish
Simon’s COA from COP itself. The former still seems to be the main entry
point to the latter in the specialized literature. In fact, there is a lack of a
review on the computational properties of COA—and as we show in this note,
it tries to address an NP-Hard problem as one of its steps. The interested
reader who needs an efficient algorithmic approach to address COP in a real,
large-scale application can only scarcely find some comments spread through
Nayak [4, p. 287-91], and then Iwasaki and Simon [5, p. 149] and Pearl
[6, p. 226] both pointing to the former. Regarding Simon’s COA itself, the
classical approach to COP, it is only Nayak who suggests in words that (sic.)
‘[it] is a worst-case exponential time algorithm’ [7, p. 37]. We discuss this
ambiguity that exists in the most up-to-date literature shortly in §1.2.

COP is significant also in view of emerging applications in large-scale
hypothesis management and analytics [2]. The modeling of physical and
socio-economical systems as a set of mathematical equations is a traditional
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approach in science and engineering and a very large bulk of models exist
which are ever more available in machine-readable format. Simon’s early
vision on the automatic extraction of the “causal mechanisms” implicit in
(large-scale) models for the sake of informed intervention finds nowadays
new applications in the context of open simulation laboratories [8], large-scale
model management [9] and online, shared model repositories [10, 11, 12].

In this paper we review the causal ordering problem (§2). Our core contri-
butions are (§3) to originally show that COA aims at addressing an NP-Hard
problem, confirming Nayak’s earlier intuition; and then (§4) to organize into
a concise yet complete note his hints to solve COP in polynomial time.

1.1. Informal Preliminaries

Given a system of mathematical equations involving a set of variables, the
causal ordering problem consists in detecting the hidden asymmetry between
variables. As an intermediate step towards it, one needs to establish a one-
to-one mapping between equations and variables [1].

For instance, Einstein’s famous equation E = mc2 states the equivalence
of mass and energy, summarizing (in its scalar version) a theory that can be
imposed two different asymmetries for different applications. Say, given a
fixed amount of mass m = m0 (and recalling that c is a constant), find the
particle’s relativistic rest energy E; or rather, given the particle’s rest energy,
find its mass or potential for nuclear fission. That is, the causal ordering
depends on what variables are set as input and which ones are “influenced”
by them. Suppose there is uncertainty, say, a user considers two values to set
the mass,m = m0 or m = m′

0. Then this uncertainty will flow through the
causal ordering and affect all variables that are dependent on it (energy E).

For really large systems, having structures say in the order of one million
equations [13], the causal ordering problem is critical to provide more specific
accountability on the accuracy of the system—viz., what specific variables
and subsystems account for possibly inaccurate outcomes. This is key for
managing and tracking the uncertainty of alternative modeling variations
systematically [8, 13].

1.2. Related Work

COA. Dash and Druzdzel [3] provide a high-level description of how
Simon’s COA [1] proceeds to discover the causal dependencies implicit in a
structure. It returns a ‘partial’ causal mapping: from partitions on the set
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of equations to same-cardinality partitions on the set of variables—a ‘total’
causal mapping would instead map every equation to exactly one variable.

They show then that any valid total causal mapping produced over a
structure must be consistent with COA’s partial causal mapping. Nonethe-
less, no observation at all is made regarding COA’s computational properties
in [3], leaving in the most up-to-date literature an impression that Simon’s
COA is the way to go for COP. In this note we show that Simon’s COA
tries to address an NP-Hard problem in one of its steps, and then clearly
recommend Nayak’s efficient approach to COP as a fix to COA.

COP. Inspired by Serrano and Gossard’s work on constraint modeling
and reasoning [14], Nayak describes an approach that is provably efficient
to process the causal ordering: extract any valid total causal mapping and
then compute the transitive closure of the direct causal dependencies, viz,
the causal ordering. Nayak’s is a provably correct approach to COP, as all
valid ‘total’ causal mappings must have the same causal ordering.

In this note we arrange those insights into a concise yet detailed recipe
that can be followed straightforwardly to solve COP efficiently.

2. The Causal Ordering Problem

We start with some preliminaries on notation and basic concepts to eventu-
ally state COP formally.

For an equation f(x1, x2, ..., xℓ) = 0, we will write V ars(f) , {x1, x2, ..., xℓ}
to denote the set of variables that appear in it.

Def. 1. A structure is a pair S(E ,V), where E is a set of equations over a
set V of variables, V ,

⋃

f∈E
V ars(f), such that:

(a) In any subset E ′ ⊆ E of k > 0 equations of the structure, at least k
different variables appear, i.e., |E ′| ≤ |V ′|;

(b) In any subset of k > 0 equations in which r variables appear, k ≤ r, if
the values of any (r−k) variables are chosen arbitrarily, then the values
of the remaining k variables can be determined uniquely—finding these
unique values is a matter of solving the equations.

Note in Def. 1 that structures are composed of equations, and variables are
only part of them indirectly as part of equations. Accordingly, set inclusion
and all set operations such as union, intersection and difference are computed
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w.r.t. the equations. That is, if S(E ,V) and S ′(E ′,V ′) are structures, then we
write S ′⊂ S when E ′⊂ E . An additional operation for ‘variables elimination’
shall be used. We write T := S ÷ S ′, to denote a structure T resulting
from both (i) removing equations E ′ from E , and (ii) enforcing elimination
of variables V ′ =

⋃

f∈E ′ V ars(f) from E \ E ′.

Def. 2. Let S(E ,V) be a structure. We say that S is self-contained or com-

plete if |E| = |V|.

In short, COP will be concerned with systems of equations that are ‘struc-
tural’ (Def. 1) and ‘complete’ (Def. 2), viz., that have as many equations as
variables and no subset of equations has fewer variables than equations.1

Now Def. 3 introduces a data structure that is an intermediate product
towards addressing COP. We shall state COP formally in the sequel.

Def. 3. Let S(E ,V) be a complete structure.Then a total causal mapping

over S is a bijection ϕ : E → V such that, for all f ∈ E , if ϕ(f) = x then
x∈ V ars(f).

Note that such total causal mapping ϕ induces a set Cϕ of direct causal de-
pendencies (see Eq. 1), which shall give us the causal dependencies (Def. 4).

Cϕ= { (xa, xb) | there exists f ∈ E such that ϕ(f) = xb and xa ∈ V ars(f) } (1)

Def. 4. Let S(E ,V) be a structure with variables xa, xb ∈ V, and ϕ a total
causal mapping over S inducing set of direct causal dependencies Cϕ and
indirectly a transitive closure C+

ϕ . We say that (xa, xb) is a direct causal

dependency in S if (xa, xb) ∈ Cϕ, and that (xa, xb) is a causal depen-

dency in S if (xa, xb) ∈ C+
ϕ .

In other words, (xa, xb) is in Cϕ iff xb direct and causally depends on xa,
given the causal asymmetries induced by ϕ. Then by transitive reasoning on
Cϕ we shall be able to infer the transitive closure C+

ϕ , which is the causal
ordering. Now we can state COP more formally as Problem 1.

1Also, for inferring causal ordering the systems of equations given as input is expected
to be ‘independent,’ i.e., can only have non-redundant equations.
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Problem 1. (COP). Given a complete structure S(E ,V), find a total causal
mapping ϕ over S and derive a set C+

ϕ of causal dependencies induced by it.

In the sequel we shall see two different algorithmic approaches to COP
(Problem 1). First, the classical approach informally described by Simon
in the 50th’s [1], and reproduced recently in [3]; and then Nayak’s one pro-
posed in the 90th’s [4]. We shall present the algorithms and analyze their
corresponding complexities.

3. Simon’s Causal Ordering Algorithm and its Complexity

We introduce now additional concepts that are specific to Simon’s COA.

Def. 5. Let S be a structure. We say that S is minimal if it is complete
and there is no complete substructure S ′⊂ S.

Example 1. Consider structure S(E ,V), where E={ f1(x1), f2(x2), f3(x3),
f4(x1, x2, x3, x4, x5), f5(x1, x3, x4, x5), f6(x4, x6), f7(x5, x7) }. Note that S is
complete, as |E|= |V|=7, but not minimal. There are exactly three minimal
substructures S1,S2,S3 ⊂ S, whose sets of equations are E1={f1(x1)}, E2=
{f2(x2)}, E3={f3(x3)}. 2

Now Lemma 1 and Proposition 1 are stated to back up a ‘disjointness’
assumption that is made by COA upon minimal structures (Def. 5). The
proof we present here for Proposition 1 is a conveniently derived alternative
to Simon’s own proof to his original ‘theorem 3.2’ [1, p. 59].

Lemma 1. Let S1(E1,V1) and S2(E2,V2) be structures. If V1 ∩V2 = ∅ then
S1 ∩ S2 = ∅ (i.e., E1 ∩ E2 = ∅). That is, disjointness of variables is strong
enough to warrant disjointness of equations.

Proof 1. Let V1 ∩ V2 = ∅. Now by contradiction assume S1 ∩ S2 6= ∅, then
there must be at least one shared equation f ∈ E1, E2. Since both S1,S2 are
structures, by Def. 1 we know that |V ars(f)| ≥ 1 and V ars(f) ⊆ V1 ∩ V2.
Yet V1 ∩ V2 = ∅. �. Therefore V1 ∩ V2 = ∅ implies S1 ∩ S2 = ∅. 2

Def. 6. Let S1(E1,V1) and S2(E2,V2) be structures. Then we say that they
are disjoint if V1 ∩ V2 = ∅.
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Proposition 1. Let S be a complete structure. If S1,S2 ⊂ S are any differ-
ent minimal substructures of S, then they are disjoint.

Proof 2. We show the statement by case analysis and then contradiction out
of Defs. 1–2 and Defs. 5–6. See Appendix A. 2

Simon’s COA is also based on a data structure introduced in Def. 7.

Def. 7. The structure matrix AS of a structure S(E ,V), with f1, f2, ..., fn ∈
E and x1, x2, ..., xm ∈ V, is a |E| × |V| matrix of 1’s and 0’s in which entry
aij is non-zero if variable xj appears in equation fi, and zero otherwise.

Elementary row operations on the structure matrix may hinder the struc-
ture’s causal ordering and then are not valid in general [1]. This also empha-
sizes that the problem of causal ordering is not about solving the system of
equations of a structure, but identifying its hidden asymmetries.

3.1. Simon’s Causal Ordering Algorithm

Simon has described his Causal Ordering Algorithm (COA) only informally
at a high level of abstraction [1]. It is given a complete structure S(E ,V) and
computes a causal mapping ϕ. The causal ordering itself is to be obtained
as a post-processing (transitive closure) out of the causal mapping ϕ and its
induced set Cϕ of direct causal dependencies. Example 1 (continued) warms
up for Simon’s algorithm.

Example 1. (continued). Fig. 1a shows the matrix of the structure S given
above in this example. By eliminating the variables identified with the mini-
mal substructures S1,S2,S3 ⊂ S, a smaller structure T is derived to be input
at the next recursive step (see Fig. 1b). This is the main insight of Simon’s
to arrive at his recursive causal ordering algorithm, as described next. 2

Algorithm 1 describes the variant of Simon’s original description that
returns a ‘total’ causal mapping (satisfies Def. 3).2 We refer to its core

2This slight variation takes place in lines 7–10 of RTCM in Algorithm 1, and is irrelevant
to its intractability—which we shall see is due to line 3. Besides, ‘total’ and ‘partial’ causal
mappings are interchangeable [3]. In particular, recovering the latter from the former is
straightforward: just merge ‘strongly coupled’ variables in a cluster. Intuitively, these are
variables whose values can only be determined simultaneously. To be precise, let x1, x2 ∈ V
be variables in a structure S(E ,V). We say x1, x2 are strongly coupled if S is minimal.
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x1 x2 x3 x4 x5 x6 x7

f1 1 0 0 0 0 0 0

f2 0 1 0 0 0 0 0

f3 0 0 1 0 0 0 0

f4 1 1 1 1 1 0 0

f5 1 0 1 1 1 0 0

f6 0 0 0 1 0 1 0

f7 0 0 0 0 1 0 1

(a) Structure matrix.

x1 x2 x3 x4 x5 x6 x7

f1 1 0 0 0 0 0 0

f2 0 1 0 0 0 0 0

f3 0 0 1 0 0 0 0

f4 1 1 1 1 1 0 0

f5 1 0 1 1 1 0 0

f6 0 0 0 1 0 1 0

f7 0 0 0 0 1 0 1

(b) RTCM’s run in 3 steps.

x1 x2 x3

x4 x5

x6 x7

(c) Causal graph Gϕ.

Figure 1: Simon’s RTCM, the core procedure in COA. Fig. 1a: a structure
matrix given. Fig. 1b: minimal substructures detected in each recursive
step k are highlighted in shades of gray and have their diagonal elements
colored. Fig. 1c: Causal graph Gϕ induced by mapping ϕ over structure
S. An edge connects a node xi towards a node xj , with xi, xj ∈ V, iff xi

appears in the equation f ∈ E such that ϕ(f) = xj . As the mapping ϕ
is not unique, accordingly the causal graph Gϕ is not either—e.g., consider
ϕ′ with f4 7→ x5 and f5 7→ x4. The induced graph Gϕ′ would have, e.g., a
connection from x2 to x5 instead. Yet their graph transitive closure is the
same, tc(Gϕ) = tc(Gϕ′), as we shall see in §4.

procedure as RTCM (recursive total causal mapping). It comprises the actual
source of intractability in Simon’s original description, while lines 3-7 of the
COA procedure were not described by himself but only considered as matter
of a post-processing. We illustrate RTCM through Example 1 and Fig. 1.

Example 1. (continued). Let T = S ÷ (S1 ∪ S2 ∪ S3) be the structure
returned by COA’s first recursive step k = 0 for this example. Then a valid
total causal mapping that can be returned at k = 1 (see Fig.1b) is COA(T ) =
{〈f4, x4〉, 〈f5, x5〉}. Since x4 and x5 are strongly coupled, COA maps them
arbitrarily (e.g., it could be f4 7→ x5, f5 7→ x4 instead). Such total causal
mapping ϕ renders a cycle in the directed causal graph Gϕ induced by ϕ (see
Fig.1c), which might not be desirable for some applications. 2

3.2. Hardness of Simon’s Recursive COA

First of all, we state a decision problem associated with finding the mini-
mal structures in a given structure (line 3 of Simon’s RTCM procedure in
Algorithm 1). For short, we shall refer to this problem as the Complete
Substructure Decision Problem (CSDP).
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Algorithm 1 Simon’s Causal Ordering Algorithm based on RTCM.

1: procedure COA(S : structure over E and V)
Require: S given is complete, i.e., |E| = |V|
Ensure: Returns C+

ϕ , the causal ordering of S
2: ϕ← RTCM(S) ⊲ gets total causal mapping ϕ by Simon’s recursive algorithm
3: Cϕ ← ∅ ⊲ initializes set of direct causal dependencies
4: for all 〈f, x〉 ∈ ϕ do

5: for all xa ∈ V ars(f) \ {x} do
6: Cϕ ← Cϕ ∪ {(xa, x)}
7: return TC(Cϕ) ⊲ returns the transitive closure of Cϕ, as described in §4.2
1: procedure RTCM(S : structure over E and V)
Require: Structure S given is complete, i.e., |E| = |V|
Ensure: Returns total causal mapping ϕ : E → V
2: ϕ← ∅, S⋆ ← ∅, D ← ∅ ⊲ initializes
3: identify all minimal substructures S ′ ⊆ S
4: for all minimal S ′ ⊆ S do

5: S⋆ ← S⋆ ∪ S ′ ⊲ aggregates into S⋆ each minimal substructure scanned

6: for all f ∈ E ′, where S ′ do
7: x← any xa such that xa ∈ V ars(f) and xa /∈ D

8: ϕ← ϕ ∪ 〈f, x〉 ⊲ maps to f some variable x ∈ V ars(f)

9: D ← D ∪ {x} ⊲ aggregates into D the variables already ‘matched’

10: T ← S ÷ S⋆ ⊲ removes E⋆; eliminates V⋆ =
⋃

f∈E⋆ V ars(f), where n.b., V⋆ = D

11: if T 6= ∅ then

12: return ϕ ∪ RTCM(T )
13: return ϕ

(CSDP). Given a complete structure S(E ,V) with |E| = |V| = m and an
integer 1 ≤ ℓ < m, does S have a complete substructure S ′(E ′,V ′) with
|E ′| = |V ′| = ℓ?

In this section we carry out an original study on CSDP and show that
it is NP-Complete. We consider a basic observation by Nayak [4] apud.
[14], that there is a correspondence between Simon’s structures and bipartite
graphs. A graph is said bipartite if its vertices can be divided into two
disjoint sets V1 and V2 and every edge connects a vertex in V1 to one in V2

[15]. Moreover it is said to be ℓ-balanced if |V1| = |V2| = ℓ, and is said to be
connected if deg(w) ≥ 1 for all w ∈ V1 ∪ V2. Def. 8 introduces the mentioned
correspondence and provides us some shorthand notation.
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f1 x1

f2 x2

f3 x3

f4 x4

f5 x5

f6 x6

f7 x7

Figure 2: Bipartite graph G of structure S from Example 1.

Def. 8. Let S(E ,V) be a structure, and G = (V1∪V2, E) be a bipartite graph
where V1 7→ E and V2 7→ V, and E 7→ S so that an edge (f, x) ∈ E if and
only if we have x ∈ V ars(f). We say that G is the bipartite graph that
corresponds to structure S, and for short write G ∼ S.

Fig. 2 shows the bipartite graph G ∼ S, where S is the initial structure
given in Example 1.

Def. 9 introduces a bipartite graph property of our interest, and then
Lemma 2 originally establishes an equivalence of two problems: searching for
complete substructures S ′ ⊂ S and searching for specific bipartite subgraphs
G′ ⊂ G.

Def. 9. Let G(V1∪V2, E) be a bipartite graph. We say that G is structural
if, for every V ′

1 ⊆ V1, there is a connected bipartite subgraph G′(V ′
1 ∪ V ′

2 , E
′)

with |V ′
1 | ≤ |V ′

2 |. (Note resemblance with Def. 1).

Lemma 2. Let S(V, E) be a complete structure with |E| = |V| = m and
1 ≤ ℓ < m provide an instance of CSDP. Let also G(V1∪V2, E) be a bipartite
graph G ∼ S. Then S has a substructure S ′ that gives a yes answer to CSDP
if and only if G has a bipartite subgraph G′(V ′

1 ∪ V ′
2 , E

′) such that G′ ∼ S ′

and all of these conditions hold:

(i) Bipartite subgraph G′ is structural;

10



x1 x2 x3 x4

f1 1 0 1 0

f2 1 1 0 0

f3 0 1 1 0

f4 1 1 1 1

(a) COA (2 recursive steps).

f1 x1

f2 x2

f3 x3

f4 x4

(b) Bipartite graph G.

x1

x2

x3

f1

f2

f3

f4 x4

(c) Bipartite complement Gc.

Figure 3: Another example of structure S with its correspondent bipartite
graph G ∼ S.

(ii) For every f ∈ V ′
1 , there is an edge (f, x) ∈ E only if x ∈ V ′

2 ;

(iii) Bipartite subgraph G′ is ℓ-balanced, that is, |V ′
1 | = |V ′

2 | = ℓ;

Proof 3. We establish conditions (i-iii) as the bipartite subgraph properties
that correspond to a yes answer to CSDP. See Appendix B. 2

We now reach the key property in our argument to show COA’s hardness.
A biclique (or complete bipartite graph) is a bipartite graph G = (V1∪V2, E)
such that for every two vertices u ∈ V1, v ∈ V2, we have (u, v) ∈ E [16]. Thus
the number of edges in a biclique is |E| = |V1|·|V2|. A biclique with partitions
of size |V1| = m and |V2| = n is denoted Km,n. For instance, the bipartite
graph G shown in Fig. 2 has a K2,2 biclique, viz., G′(V ′

1 ∪ V ′
2 , E

′), where
V ′
1 = {f4, f5}, V ′

2 = {x4, x5} and E ′={(f4, x4), (f4, x5), (f5, x4), (f5, x5)}. Let
us now consider Example 2.

Example 2. We introduce another structure S, whose structure matrix is
shown in Fig. 3a together with the bipartite graph G ∼ S in Fig. 3b. Let
us consider subgraph G′(V ′

1 ∪ V ′
2 , E

′) in G that has V ′
1 = {f1, f2, f3} and

V ′
2 = {x1, x2, x3}. Observe that we have G′ ∼ S ′, where S ′ ⊂ S is the

complete substructure represented by the shaded 3× 3 matrix in Fig. 3a.
Note also that such bipartite subgraph G′ satisfies the conditions (i-iii) of

Lemma 2 and in fact S ′ is a complete substructure in S. Clearly, G′ ∼ S ′ is
not a biclique, as it is not the case that deg(w) = 3 for all w ∈ V ′

1 ∪ V ′
2 . So

there is no obvious connection between identifying complete substructures in
a structure and bicliques in a bipartite graph. 2
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The key insight to COA’s hardness comes as follows—consider Example 2
and Fig. 3 for illustration. Recall from Lemma 2(ii) that, if we had an edge,
say, connecting (f1, x4) ∈ E, then by Def. 1 the substructure S ′(E ′,V ′) with
E ′ = {f1, f2, f3} would have V ′ =

⋃

f∈E ′ V ars(f) = {x1, x2, x3, x4} instead.
That is, it would no more be a complete substructure. In fact, verifying such a
negative property (Lemma 2.ii) in structural bipartite graphs translates onto
a neat positive property (biclique) in the bipartite complement of bipartite
graph G.

The bipartite complement of a bipartite graph G(V1∪V2, E) is a bipartite
graph Gc(V1∪V2, E

c) where an edge (u, v) ∈ Ec iff (u, v) /∈ E for every u ∈ V1

and v ∈ V2. Given a bipartite graphG(V1∪V2, E), it is easy to see that we can
render Gc(V1 ∪ V2, E

c) in polynomial time—consider, e.g., the biadjacency
matrix of G (viz., the structure matrix in Fig. 3a), and run a full scan on it
to switch the boolean value of each entry in time O(|V1| · |V2|). Moreover,
this operation is clearly invertible, as there is a one-to-one correspondence
between G and Gc.

Fig. 3c shows the bipartite complement graph Gc of the bipartite graph
G from Fig. 3b. Note that Gc has a biclique K3,1 with its vertices shaded
in dark grey. To emphasize the point, if we had an edge (f1, x4) ∈ E (see
Fig. 3b), then such a biclique K3,1 would not exist in Gc (see Fig. 3c). We
would have a K2, 1 biclique instead with all edges in {f2, f3}×{x4}, but note
that 2 + 1 = 3 does not sum up to |V1| = |V2| = m = 4.

We can now establish the result we seek. We introduce below the Exact
Node Cardinality Decision Problem (ENCD), which is a variant of biclique
problem in bipartite graphs that is known to be NP-Complete [17, p. 393].
Theorem 1 establishes its connection with CSDP.

(ENCD). Given a bipartite graph G = (V1 ∪ V2, E) and two positive
integers a, b, does G have a biclique Ka, b?

Theorem 1. CSDP is NP-Complete.

Proof 4. We shall construct an instance of ENCD and describe its poly-
nomial-time reduction to an instance of CSDP. We refer to Def. 9 and
Lemma 2 and present the argument in detail in Appendix C. 2
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Finally, we formulate an optimization problem associated with CSDP. We
refer to it as the Minimal Substructures Problem (MSP). Corollary 1 then
finally establishes the hardness of Simon’s COA based on RTCM.

(MSP). Given a complete structure S(E ,V) with |E| = |V| = m, list all
its complete substructures S ′(E ′,V ′) with |E ′| = |V ′| = ℓ where 1 ≤ ℓ < m
is minimal.

Corollary 1. Let S be a complete structure. The extraction of its causal
ordering by Simon’s COA(S) through its RTCM procedure requires solving
MSP, which is NP-Hard.

Proof 5. Clearly, MSP is the optimization problem that needs to be solved
at each recursive step k of Simon’s RTCM procedure — Algorithm 1, line 3,
“find all minimal substructures S ′ ⊆ S.” But MSP is clearly an optimization
problem that subsumes CSDP, which we know from Theorem 1 that is NP-
Complete by a reduction from ENCD.

In fact, an instance of ENCD ′ (as an optimization variant of ENCD) that
can be reduced to MSP is as follows: given a bipartite graph G(V1 ∪ V2, E)
that bears the complement structural property (cf. Theorem 1) and has |V1| =
|V2| = m, list all bicliques Kℓ,m−ℓ contained in G where 1 ≤ ℓ < m is
minimal. In worst-case scenario, it requires searching for all bicliques Kℓ,m−ℓ

for each of the m− 1 possible values of ℓ.
ENCD is NP-Complete, therefore ENCD ′ is NP-Hard. Accordingly, CSDP

is NP-Complete (cf. Theorem 1) therefore MSP is NP-Hard. 2

COP (Problem 1), nonetheless, can be solved efficiently by means of a
different approach due to Nayak [4], which we describe in next section.

4. Nayak’s Efficient Algorithm to COP

The first part of COP requires finding a total causal mapping ϕ : E → V over
a given complete structure S. While Simon’s RTCM goes into an intractable
step, inspired by Serrano and Gossard’s work [14] on constraint modeling
and reasoning Nayak has found a polynomial-time approach to that task.
We cover it next in all of its steps and see their complexity in some detail.

13



4.1. Total Causal Mappings

Given a structure S, there may be more than one total causal mappings
over S (recall Example 1). So a question that arises is whether the transitive
closure C+

ϕ is the same for any total causal mapping ϕ over S; that is, whether
the causal ordering of S is unique. Proposition 2, from Nayak [4], ensures
that is the case.

Before proceeding, we introduce Def. 10 in order to detach the notion of
‘strongly coupled’ variables from ‘minimal structures’ (Def. 5) and connect
it to the concept ‘causal dependency’ (Def. 4).

Def. 10. Let S(E ,V) be a structure with variables xa, xb ∈ V, and C+
ϕ be the

set of causal dependencies induced by total causal mapping ϕ over S. We say
that xa and xb are strongly coupled if we have both (xa, xb), (xb, xa) ∈ C+

ϕ .

Recall from Example 1 the strongly coupled variables, x4 and x5. Now
we can see it only in terms of causal dependencies.

Proposition 2. Let S(E ,V) be a structure, and ϕ1 : E → V and ϕ2 : E → V
be any two total causal mappings over S. Then C+

ϕ1
= C+

ϕ2
.

Proof 6. The proof is based on an argument from Nayak [4], which we
present in a bit more of detail (see Appendix D). Intuitively, it shows that
if ϕ1 and ϕ2 differ in the variable an equation f is mapped to, then such
variables, viz., ϕ1(f) = xa and ϕ2(f) = xb, must be causally dependent on
each other (strongly coupled). 2

Another issue is concerned with the precise conditions under which total
causal mappings exist (i.e., whether or not all variables in the equations can
be causally determined). In fact, by Proposition 3, based on Nayak [4] apud.
Hall [16, p. 135-7], we know that the existence condition holds if and only
if the given structure is complete. We refer to Even [16] to briefly introduce
the additional graph-theoretic concepts that are necessary here:

• A matching in a graph is a subset of edges such that no two edges in
the matching share a common node.

• A matching is said maximum if no edge can be added to the matching
(without hindering the matching property).

14



• Finally, a matching in a graph is said ‘perfect’ if every vertex is an end-
point of some edge in the matching — in a bipartite graph, a perfect
matching is said to be a complete matching.

Proposition 3. Let S(E ,V) be a structure. Then a total causal mapping
ϕ : E → V over S exists if and only if S is complete.

Proof 7. We observe that a total causal mapping ϕ : E → V over S cor-
responds exactly to a complete matching M in a bipartite graph B = (V1 ∪
V2, E), where V1 7→ E , V2 7→ V, and E 7→ S. In fact, by Even apud. Hall’s
theorem (cf. [16, 135-7]), we know that B has a complete matching iff (a)
for every subset of vertices F ⊆ V1, we have |F | ≤ |E(F )|, where E(F ) is
the set of all vertices connected to the vertices in F by edges in E; and (b)
|V1| = |V2|. By Def. 1 (no subset of equations has fewer variables than equa-
tions), and Def. 2 (number of equations is the same as number of variables),
it is easy to see that conditions (a) and (b) above hold iff S is a complete
structure. 2

The problem of finding a maximum matching is a well-studied algorithmic
problem. The Hopcroft-Karp algorithm is a classical solution [18], bounded
in polynomial time by O(

√

|V1|+ |V2| |E|). It solves maximum matching in
a bipartite graph efficiently as a problem of maximum flow in a network (cf.
[16, p. 135-7], or [19, p. 763]). That is, we can handle the problem of finding
a total causal mapping ϕ over a structure S (see Alg. 2) by first translating
it to the problem of maximum matching in a bipartite graph in time O(|S|).
Then we can just apply the Hopcroft-Karp algorithm to get the matching
and finally translate it back to the total causal mapping ϕ. This procedure
has been suggested by Nayak in connection with his Proposition 3 and its
respective proof [4].

Fig. 4 shows the complete matching found by the Hopcroft-Karp algo-
rithm for the structure given in Example 1.
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f1 x1

f2 x2

f3 x3

f4 x4

f5 x5

f6 x6

f7 x7

Figure 4: Complete matching M for structure S from Example 1.

Algorithm 2 Find a total causal mapping for a given structure.

1: procedure TCM(S : structure over E and V)
Require: S given is a complete structure, i.e., |E| = |V|
Ensure: Returns a total causal mapping ϕ
2: B(V1 ∪ V2, E)← ∅

3: ϕ← ∅

4: for all 〈f,X〉 ∈ S do ⊲ translates structure S to a bipartite graph B

5: V1 ← V1 ∪ {f}
6: for all x ∈ X do

7: V2 ← V2 ∪ {x}
8: E ← E ∪ {(f, x)}
9: M ← Hopcroft-Karp(B) ⊲ solves the maximum matching problem
10: for all (f, x) ∈M do ⊲ translates the matching to a total causal mapping

11: ϕ← ϕ ∪ {〈f, x〉}
12: return ϕ

Corollary 2 and Remark 1 summarize the results presented in this note.

Corollary 2. Let S(E ,V) be a complete structure. Then a total causal map-
ping ϕ : E → V over S can be found by (Alg. 2) TCM in time that is bounded
by O(

√

|V| · |S|).

Proof 8. Let B = (V1 ∪ V2, E) be the bipartite graph corresponding to com-
plete structure S given to TCM, where V1 7→ E , V2 7→ V, and E 7→ S. The
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translation of S into B is done by a scan over it. This scan is of length
|S| = |E|. Note that number |E| of edges rendered is precisely the length
|S| of structure, where the denser the structure, the greater |S| is. The re-
translation of the matching computed by internal procedure Hopcroft-Karp, in
turn, is done at expense of |E| = |V| ≤ |S|. Thus, it is easy to see that TCM
is dominated by the maximum matching algorithm Hopcroft-Karp, which is
known to be O(

√

|V1|+ |V2| · |E|), i.e., O(
√

|E|+ |V| · |S|). Since S is as-

sumed complete, we have |E|= |V| then
√

|V|+ |V| =
√
2
√

|V|. Therefore,

TCM must have running time at most O(
√

|V| · |S|). 2

4.2. Computing Transitive Closure

Finally, recall that the set Cϕ of direct causal dependencies induced by a total
causal mapping ϕ over a given structure S(E ,V) produces to the so-called
‘causal graph,’ i.e., a directed graph (digraph) G(V,E) where V 7→ V and
E 7→ Cϕ. So, computing set C+

ϕ of causal dependencies given Cϕ corresponds
to computing transitive closure (reachability links) on G. Note that |V | =
|V|, and also note that |E| = |Cϕ| = |S|−|V| = O(|S|).

Classical algorithms for such task (e.g., Floyd-Warshall’s) are bounded in
time O(|V|3) [19, p. 697]. Another way to do it is by discovering reachability
links using either one of the popular graph traversal algorithms, breadth-first
search or depth-first search (DFS) [19, p. 603]. Algorithm 3 describes DFS-
based transitive closure over digraph G(V,E). It runs in time O(|V | · |E|),
which means O(|V| · |S|) for a complete structure S(E ,V).

Algorithm 3 DFS-based transitive closure.

1: procedure TC( G(V,E) : digraph) ⊲ where G is such that V 7→ V and E 7→ Cϕ

2: E+ ← ∅

3: for all v ∈ V do ⊲ for all vertices v in digraph G

4: D ← ∅ ⊲ initializes D
5: DFS(G, v,D) ⊲ discovers into D all u, where v is reachable from u
6: D ← D \ {v} ⊲ enforces an irreflexive transitive closure
7: E+ ← ⋃

u∈D{(u, v)} ∪ E+

8: return G+(V,E+)

9: procedure DFS(G : digraph, v : vertex, D : global set of discovered vertices)
10: D ← D ∪ {v} ⊲ labels v as discovered
11: for all u where (u, v) ∈ G do

12: if u /∈ D then ⊲ vertex u is not yet labeled as discovered
13: DFS(G, u,D)

14: return
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Remark 1. Let S(E ,V) be a complete structure. Then we know (cf. Propo-
sition 3) that a total causal mapping over S exists. Let it be defined ϕ ,

TCM(S), which can be done in O(
√

|V| · |S|). Then the causal ordering im-
plicit in S can be correctly extracted (cf. Proposition 2) by computing C+

ϕ , the
set of causal dependencies induced by ϕ, in terms of graph transitive closure
(TC). The latter is bounded in time by O(|V| · |S|), that is, the complexity of
COP is dominated by TC.

In other words, the complete recipe to solve COP consists in replacing
Simon’s RTCM by Nayak’s TCM in COA (Algorithm 1). Transitive closure
(TC) in turn is computed as described in Algorithm 3. 2

5. Conclusions

Causal ordering inference is a classical problem in the AI literature, and
still relevant in light of modern applications [3], e.g., large-scale hypothesis
management and analytics [8]. In this note we have shown that Simon’s
classical algorithm (COA) tries to address an NP-Hard problem; and then
we have given a detailed account on the state-of-the-art algorithms for the
causal ordering problem (COP, stated as Problem 1). The key points are:

• By Theorem 1 and Corollary 1, we know (an original hardness result)
that Simon’s approach to COP requires solving an NP-Hard problem;

• From the seminal work of Simon [1] (cf. §2) and Nayak [4] (cf. §4, and
Propositions 2 and 3), an approach is conveyed to solve COP efficiently;

• By Corollary 2, we know how to process a complete structure into a
total causal mapping in time that is bounded by O(

√

|V|·|S|). This is a
core step to solve COP, which Simon’s COA in turn makes intractable.

• By Remark 1, we know how to extract the causal ordering of a complete
structure in time O(|V| · |S|), that is, in sub-quadratic time on the
structure density (number of variable appearances). The machinery of
causal ordering is then suitable for processing very large structures.
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Appendix A. Proof of Proposition 1

Let S be a complete structure. If S1,S2 ⊂ S are any different minimal
substructures of S, then they are disjoint.

Proof 9. We show the statement by case analysis and then contradiction
out of Defs. 1–5. By assumption both S1,S2 are minimal (hence complete).
Let their size be |V1| = |E1| = ℓ and |V2| = |E2| = m. Let also ℓ ≤ m.
The argument is analogous otherwise but it shall be convenient to keep a
placeholder for the size of the smaller substructure (with no loss of generality).

By Def. 5 (minimal structures), we know that S1 6⊆ S2 and S1 6⊇ S2. Now
suppose S1,S2 are not disjoint. Then by Def. 6 there must be at least one
shared variable x ∈ V1,V2, and thus we must have |V1 ∪ V2| ≤ ℓ+m− 1.

We can then proceed through case analysis by inquiring how many equa-
tions are shared by S1,S2. Since S1 is minimal with |E1| = |V1| = ℓ for
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1 ≤ ℓ ≤ m, the number of equations that are shared with S2 could be any
0 ≤ k < ℓ. (Note that the case of k = ℓ shared equations would lead to the
more obvious contradiction that S1 ⊆ S2, even though S2 is minimal).

Let us start with the case E1 ∩ E2 = ∅ to illustrate the rationale in its
simplest form. In this case, no equations are shared yet at least one variable
is. Then we have |E1 ∪ E2| = ℓ + m, but |V1 ∪ V2| ≤ ℓ + m − 1. Since we
have both S1,S2 ⊂ S, in fact we have their sets of equations E1, E2 ⊂ E as
well and then E1∪E2 ⊆ E . Now, by Def. 1 (valid structure), we know that in
any subset of k > 0 equations of S, at least k different variables must appear.
But rather we have |E1 ∪ E2| = ℓ+m and yet |V1 ∪V2| ≤ ℓ+m− 1. That is,
we reach a contradiction to Def. 1, viz., |E1 ∪ E2| > |V1 ∪ V2|. �.

The next case is when one equation is shared (|E1 ∩ E2| = 1). Note that, if
we had |E1| = |V1| = ℓ = 1 in particular then the only equation f ∈ E1 would
have |V ars(f)| = 1 and be shared with E2, making S1 ⊆ S2 even though S2
is assumed minimal. �. We rather know that |E1| = ℓ ≥ 2. Also, note that
we must have |V ars(f)| ≥ 2 for all f ∈ E1, otherwise there would be some
g ∈ E1 with |V ars(g)| = 1 even though |E1| ≥ 2. That is, we would have a
minimal substructure within S1, although it is minimal.

So, since one equation is shared and for all f ∈ E1 we have |V ars(f)| ≥ 2,
then at least two variables must be shared. Observe then that |E1 ∪ E2| =
ℓ +m − 1 (since exactly one equation is shared) and |V1 ∪ V2| ≤ ℓ + m − 2
(at least two variables are shared). Again, we see the same contradiction in
face of Def. 1, viz., |E1 ∪ E2| > |V1 ∪ V2|. �.

Now we complete the case analysis by making the argument abstract for
any number of shared equations, 0 ≤ k < ℓ (an inductive step, n.b., is
not required because k ∈ N is bounded. Note that, for any such number
0 ≤ k < ℓ, we must have at least k+1 shared variables, otherwise the shared
substructure having k equations, formed out of E1 ∩ E2, would be minimal as
well even though E1∩E2 ⊆ E1, E2 (that is, rendering both S1,S2 non-minimal.
�). However, once more we see that this contradicts Def. 1. �. 2

Appendix B. Proof of Lemma 2

Let S(V, E) be a complete structure with |E| = |V| = m and 1 ≤ ℓ < m
provide an instance of CSDP. Let also G(V1 ∪ V2, E) be a bipartite graph
G ∼ S. Then S has a substructure S ′ that gives a yes answer to CSDP if
and only if G has a bipartite subgraph G′(V ′

1 ∪ V ′
2 , E

′) such that G′ ∼ S ′ and
all of these conditions hold:
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(i) Bipartite subgraph G′ is structural;

(ii) For every f ∈ V ′
1 , there is an edge (f, x) ∈ E only if x ∈ V ′

2 ;

(iii) Bipartite subgraph G′ is ℓ-balanced, that is, |V ′
1 | = |V ′

2 | = ℓ;

Proof 10. First, we consider the ‘if ’ statement—that is, all conditions (i-
iii) together are sufficient. Let G′ ⊂ G be a bipartite subgraph G′(V ′

1 ∪V ′
2 , E

′)
that satisfies all conditions (i-iii), and S ′(E ′,V ′) be a substructure of S with
G′ ∼ S ′. We shall see that such S ′ does give a yes answer to CSDP, that is,
it is a complete substructure with |E ′| = |V ′| = ℓ.

From condition (i) we know that G′ is structural (Def. 9). That is, for
every V ′′

1 ⊆ V ′
1 , there is a connected bipartite subgraph G′′(V ′′

1 ∪ V ′′
2 , E

′′)
with |V ′′

1 | ≤ |V ′′
2 |. Since V ′

1 7→ E ′, V ′
2 7→ V ′ and E ′ 7→ S ′, such property

bears obvious resemblance with Def. 1 (structure). That is, the ‘connected’
bipartite subgraph aspect implies that, for any subset of |E ′′| equations in E ′,
at least |V ′′| ≥ |E ′′| variables appear and each such variable x ∈ V ′′ appears
in some f ∈ E ′′, otherwise x ∈ V ′′

2 would be disconnected in G′′(V ′′
1 ∪V ′′

2 , E
′′).

Condition (ii) ensures in addition that
⋃

f∈E ′ V ars(f) = V ′. That is, the
variables in V ′ are exhaustive w.r.t. E ′. Thus, structure S ′ satisfies Def. 1.
Finally, condition (iii) ensures that S ′ is complete with |E ′| = |V ′| = ℓ.

We consider now the ‘only if ’ statement—i.e., every condition (i-iii) is
necessary. We assume a bipartite graph G′ ∼ S ′ and show that lacking any
one such condition implies that S ′ cannot be complete or cannot be a structure
at all. First, it is easy to see that when condition (iii) does not hold for G′

then a structure S ′ with G′ ∼ S ′ cannot be complete.
Now suppose condition (ii) does not for G′. That is, there is some f ∈ V ′

1

that has incidence with some x ∈ V2\V ′
2. Thus we have V

′
1 7→ E ′ and V ′

2 7→ V ′

but
⋃

f∈E ′ V ars(f) 6= V ′. Therefore either S ′ does not satisfy Def. 1 or we
cannot actually have G′ ∼ S ′. �.

Finally, consider that G′ is not structural (Def. 9). That is, there is some
V ′′
1 ⊆ V ′

1 such that no connected bipartite subgraph G′′(V ′′
1 ∪V ′′

2 , E
′′) exists in

G′ with |V ′′
1 | ≤ |V ′′

2 |. Considering G′ ∼ S ′, that would imply for S ′(E ′,V ′)
either an equation f ∈ E ′ with no variables (a disconnected vertex x ∈ V ′

1), or
a redundant subset of equations—number of equations is larger than number
of variables appearing in it. Either conditions violate Def. 1, so S ′ cannot be
a structure even though G′ ∼ S ′. �. 2
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Appendix C. Proof of Theorem 1

CSDP is NP-Complete.

Proof 11. We shall construct an instance of ENCD and describe its poly-
nomial-time reduction to an instance of CSDP by using Lemma 2.

Constructing an instance of ENCD. Let G(V1∪V2, E) be a bipartite
graph such that, for every V ′

1 ⊆ V1, there is a bipartite subgraph G′(V ′
1∪V ′

2 , E
′)

with |V ′
1 | ≤ |V ′

2 | and deg(f) < |V ′
2 | for all f ∈ V ′

1. Note that this is the
complement property of the structural bipartite graph property (see Def. 9).
It is meant to ensure that the bipartite complement graph Gc(V1 ∪ V2, E

c) of
G is structural—satisfies Def. 9. That is, when we produce Gc, we know that
it can possibly correspond to a structure S such that Gc ∼ S. Let also G have
|V1| = |V2| = m in order to ensure that such structure S will be complete as
well—recall that S given in CSDP is assumed complete indeed.

Now let G and an integer 1 ≤ ℓ < m provide an instance of ENCD for
integers a = ℓ and b = m−ℓ. That is, our problem is to decide whether G has
a biclique Kℓ,m−ℓ. Imposing both of the above properties on G, n.b., incurs in
no loss of generality w.r.t. ENCD as it does not open a pruning opportunity
in searching for a biclique Kℓ,m−ℓ in powerset P(V1 × V2). Such a biclique
Kℓ,m−ℓ, if existing in G, can be denoted C(V ′

1 ∪ V ⋆
2 , K), where |V ′

1 | = ℓ and
|V ⋆

2 | = m − ℓ, and K is a complete set of edges between V ′
1 and V ⋆

2 . Note
also that V ′

1 ⊂ V1 and V ⋆
2 ⊂ V2.

Production of an instance of CSDP from the ENCD one. Let
Gc(V1∪V2, E

c) be the bipartite complement graph of G, where an edge (f, x) ∈
Ec if and only if (f, x) /∈ E for f ∈ V1 and x ∈ V2. Clearly, bipartite graph Gc

can be produced in polynomial time from G—as mentioned in §3.2, consider
the ‘structure matrix’ (biadjacency matrix) of G and run a full scan on it to
switch the boolean value of each entry in time O(|V1| · |V2|) and then get Gc.
Decision problem correspondence. Now we show that a biclique Kℓ,m−ℓ

in G, if existing, corresponds to a bipartite subgraph Gc ′

(V ′
1 ∪ V ′

2 , E
c ′) in Gc

that satisfies the conditions (i-iii) of Lemma 2. That is, we show that a yes
answer to ENCD implies a yes answer to CSDP.

In fact, as Gc is the bipartite complement graph of G, then the biclique
C(V ′

1 ∪V ⋆
2 , K) in G becomes a bipartite subgraph Cc(V ′

1 ∪V ⋆
2 ,∅) in Gc. Now

let Gc ′(V ′
1 ∪ V ′

2 , E
c ′) be such that V ′

2 = V2 \ V ⋆
2 . We observe that:

(i) The presence of biclique C(V ′
1 ∪ V ⋆

2 , K) in G indicates that V ⋆
2 could

not have contributed to satisfy the complement structural property for
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V ′
1, only V ′

2 = V2\V ⋆
2 could. But such property turns into the structural

property in Gc, thus Gc ′(V ′
1 ∪ V ′

2 , E
c ′) must be structural indeed. That

is, condition (i) of Lemma 2 is ensured.

(ii) By the fact that we have Cc(V ′
1 ∪ V ⋆

2 ,∅) in Gc we know that, for all
f ∈ V ′

1 , there can only be an edge (f, x) ∈ Ec if x ∈ V ′
2 indeed. That

is, condition (ii) of Lemma 2 is ensured.

(iii) The presence of biclique C(V ′
1 ∪ V ⋆

2 , K) of form Kℓ,m−ℓ in G implies
that V ′

1 has size |V ′
1 | = ℓ. Besides, V ′

2 will have size |V ′
2 | = |V2|−|V ⋆

2 | =
m − (m − ℓ) = ℓ. That is, we must have |V ′

1 | = |V ′
2 | = ℓ and then

condition (iii) of Lemma 2 is ensured as well.

We have then established that the existence of a biclique C ⊂ G of form
Kℓ,m−ℓ implies the existence of a bipartite subgraph Gc ′ ⊂ Gc, where Gc ′

satisfies the conditions (i-iii) of Lemma 2. That is, we get a yes answer to
CSDP if we find one to ENCD. It remains to show the ‘only if ’ part of the
correspondence.

In fact, suppose no biclique C(V ′
1∪V ⋆

2 , K) of form Kℓ,m−ℓ exists in G(V1∪
V2, E). Clearly, it means that for any V ′

1 ⊂ V1 where |V ′
1 | = ℓ, there is at

least one f ∈ V ′
1 such that an edge (f, x) with x ∈ V ⋆

2 is missing from E.
Accordingly, in Gc(V1 ∪ V2, E

c), we cannot have Gc ′ ⊂ Gc with condition (ii)
of Lemma 2 satisfied.

ENCD is NP-Complete. Thus CSDP must be NP-Complete as well. 2

Appendix D. Proof of Proposition 2

Let S(E ,V) be a structure, and ϕ1 : E → V and ϕ2 : E → V be any two total
causal mappings over S. Then C+

1 = C+
2 .

Proof 12. The proof is based on an argument from Nayak [4], which we
reproduce here in a bit more of detail. Intuitively, it shows that if ϕ1 and
ϕ2 differ in the variable an equation f is mapped to, then such variables,
viz., ϕ1(f) and ϕ2(f), must be causally dependent on each other (strongly
coupled).

To show C+

1 = C+

2 reduces to show both C+

1 ⊆ C+

2 and C+

2 ⊆ C+

1 . We
show the first containment, and the second is understood as following by
symmetry. Closure operators are extensive, X ⊆ cl(X), and idempotent,

24



cl(cl(X)) = cl(X). That is, if we have C1 ⊆ C+
2 , then we shall have C+

1 ⊆
(C+

2 )
+ and, by idempotence, C+

1 ⊆ C+

2 .
Then it suffices to show that C1 ⊆ C+

2 , i.e., for any (x′, x) ∈ C1, we
must show that (x′, x) ∈ C+

2 as well. Observe by Def. 3 that both ϕ1 and ϕ2

are bijections, then, invertible functions. If ϕ−1

1 (x) = ϕ−1

2 (x), then we have
(x′, x) ∈ C2 and thus, trivially, (x′, x) ∈ C+

2 . Else, ϕ1 and ϕ2 disagree in
which equations they map onto x. But we show next, in any case, that we
shall have (x′, x) ∈ C+

2 .
Take all equations g ∈ E ′ ⊆ E such that ϕ1(g) 6= ϕ2(g), and let n ≤

|E| be the number of such ‘disagreed’ equations. Now, let f ∈ E ′ be such
that its mapped variable is x = ϕ1(f). Construct a sequence of length 2n
such that, s0 = ϕ1(f) = x and, for 1 ≤ i ≤ 2n, element si is defined
si = ϕ2(ϕ

−1

1 (si−1)). That is, we are defining the sequence such that, for each
equation g ∈ E ′, its disagreed mappings ϕ1(g) = xa and ϕ2(g) = xb are such
that ϕ1(g) is immediately followed by ϕ2(g). As xa, xb ∈ V ars(g), we have
(xa, xb) ∈ C2 and, symmetrically, (xb, xa) ∈ C1. The sequence is of form
s = 〈x, xf

︸ ︷︷ ︸

f

, . . . , xa, xb
︸ ︷︷ ︸

g

, . . . , x2n−1, x2n
︸ ︷︷ ︸

h

〉.

Since x must be in the codomain of ϕ2, we must have a repetition of x
at some point 2 ≤ k ≤ 2n in the sequence index, with sk = x and sk−1 = x′′

such that (x′′, x) ∈ C2. If x′′ = x′, then (x′, x) ∈ C2 and obviously (x′, x) ∈
C+

2 . Else, note that xf must also be in the codomain of ϕ1, while x′′ in the
codomain of ϕ2. Let ℓ be the point in the sequence, 3 ≤ ℓ ≤ 2n−1, at
which sℓ = xf = xa and sℓ+1 = xb for some xb such that (xf , xb) ∈ C2. It
is easy to see that, either we have xb = x′′ or xb 6= x′′ but (xb, x

′′) ∈ C+

2 .
Thus, by transitivity on such a causal chain, we must have (xf , x

′′) ∈ C+

2

and eventually (xf , x) ∈ C+

2 . Finally, since x′ ∈ V ars(f) and ϕ2(f) = xf ,
we have (x′, xf ) ∈ C2 and, by transitivity, (x′, x) ∈ C+

2 . 2
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