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Abstract

An argument is presented that if a theory of quantum gravity is physically

discrete at the Planck scale and the theory recovers General Relativity as an

approximation, then, at the current stage of our knowledge, causal sets must

arise within the theory, even if they are not its basis.

We show in particular that an apparent alternative to causal sets, viz. a cer-

tain sort of discrete Lorentzian simplicial complex, cannot recover General

Relativistic spacetimes in the appropriately unique way. For it cannot dis-

criminate between Minkowski spacetime and a spacetime with a certain sort

of gravitational wave burst.
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1 Introduction

Many workers tackling the problem of quantum gravity believe that the differentiable

manifold structure of spacetime in General Relativity (GR) breaks down at the Planck

scale and will be replaced by something else in the eventually successful, deeper theory.

Some go further and believe that this ‘something else’ has a discrete character. The

purpose of this paper is not to present directly the case for discreteness at the Planck

scale. Instead, we will argue that, whatever might be the ultimate underlying degrees of

freedom in a theory of quantum gravity: if that theory recovers General Relativity as an

approximation in certain physical circumstances, and if it is discrete at the Planck scale,

then at the current stage of our knowledge, the approach must produce a causal set, i.e.

a locally finite partial order [1]. For, we will argue, whatever might be the nature of the

ultimate underlying degrees of freedom, a causal set is, so far as we currently know, the

only entity that can do the job of being approximate-able by a Lorentzian geometry, while

also being discrete at the Planck scale.

In Section 2, we state our main argument, in terms of two claims, labelled ‘Claim 1’

and ‘Claim 2’. Then in Section 3, we develop details about causal sets, so as to justify

Claim 1. In Section 4, we support Claim 2, by showing how a certain sort of simplicial

complex (fundamentally discrete and Lorentzian) cannot recover a GR spacetime and

argue that the conclusion is more general than the particular example. In Section 5,

we reply to possible objections. Up until this point, our argument will have been wholly

“kinematical”: that is, setting aside dynamics. So in Section 6, we briefly discuss dynamics

and how it bears on our argument. Then in Section 7, we conclude.

2 The Argument

We begin by stating and discussing two assumptions that our argument will make (Section

2.1). Then we state our argument, in terms of two main claims (Section 2.2). Finally in

Section 2.3, we review the central role of causal order in general relativity. This review

forms a backdrop to our defence of the two claims in the succeeding Sections (Claim 1 in

Section 3, and Claim 2 in Section 4).

2.1 Two assumptions

Let us make two assumptions about a theory of quantum gravity, which we call ‘X’.

Assumption 1: In certain physical situations and at large scales, X recovers General

Relativity (GR) as an approximation.

Assumption 2: X is physically discrete at the Planck scale.

Neither of these assumptions is precise; and at our current stage of knowledge, they

cannot be made precise. But most workers will have an intuitive feeling for what they

mean; and we will now develop them in three extended comments. The first two are about

Assumption 1; Assumption 2 comes in to play in the third comment. Note that these

comments introduce some jargon we will use. Comment 2 introduces grounding state for

a special sort of state within the theory X. Comment 3 introduces Discrete Physical Data

(DPD) for what a grounding state supplies as the material to which a spacetime in GR

is an approximation.
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Comment 1: Recovering GR:—

With Assumption 1, we mean to make a thorough-going commitment to General

Relativity as the theory of continuum spacetime and gravity that theory X recovers. In

particular, Assumption 1 implies Lorentz symmetry in the recovered theory, where by

‘Lorentz symmetry’, we mean the approximate symmetry enjoyed by General Relativity,

sometimes referred to as ‘local Lorentz symmetry’. In concrete terms, this means that

theory X is assumed not to give rise to any of the rival “modified gravity” theories that

are characterised by having more than one spacetime metric, or aether fields or even more

brutal violations of Lorentz symmetry such as background foliations of spacetime. (A

useful recent review of such theories from the perspective of their causal properties is [2].)

Of course, this is not to say that Assumption 1 means that GR is exactly true. GR is

assumed to be an approximation, and theory X will predict deviations from GR which,

we hope, will be observable to us, large, late-time observers, in spite of the tininess of

the Planck scale. But we intend with Assumption 1 to exclude those deviations being

(manifestations of) violations of Lorentz symmetry.

These remarks mean that we intend Assumption 1 to encompass the view of General

Relativity as arising as an effective local field theory. More precisely, it encompasses

such a treatment when that treatment takes all the terms of its effective Lagrangian to

be appropriate powers of derivatives of the metric in order to respect Lorentz symmetry

(with the cosmological constant problem having been solved somehow). (This kind of

effective Lagrangian for General Relativity is common in such treatments: for example,

cf. equations (21) and (46) of [3] and equation (3.1) of [4].)

We also intend Assumption 1 to include matter degrees of freedom, as well as the

spacetime—manifold and Lorentzian metric—degrees of freedom. We call a vacuum or

non-vacuum solution of the Einstein equations in four dimensions a ‘solution of GR’ or

‘GR solution’ for short. We will say ‘spacetime of GR’ or ‘GR spacetime’ when we want

to talk solely about the component of a GR solution that is the 4-dimensional Lorentzian

geometry.

To develop Assumption 1 further, we invoke three familiar examples of the recovery

of a physical theory from a more fundamental one.

General Relativity recovers Newtonian gravity as an approximation in certain, contin-

gent circumstances. There is much to say—and much has been said—about the details,

both technical and philosophical, of GR’s recovery of Newtonian gravity, see [5–8] as a

sample from this rich literature. An important part of what this “recovery” entails is that

all the data needed to recover, approximately, a non-relativistic spacetime picture with

a particular Newtonian gravitational potential satisfying Poisson’s equation are present

within a particular spacetime in GR. It is this sufficiency of the physical data in the

underlying theory for the recovery of the approximating theory that we will appeal to in

applying Assumption 1 to our argument.

Another example we wish to invoke in developing Assumption 1 is fluid mechanics as

an approximation to molecular dynamics in certain situations and at large i.e. macro-

scopic scales. This is an example pertinent to the combination of Assumption 1 and

Assumption 2 in that it involves a continuum approximation. Again, there is much to

say—and much has been said—about the details, both technical and philosophical, of

continuum approximations to more fundamental, atomic theories of matter, see [9, 10] as
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a sample from this enormous literature. Here, we want to emphasise just one point: con-

tinuum approximations where the number N of fundamental constituents is large but not

infinite—as opposed to strict continuum limits—exist and make sense as emergent from

the more basic, more fundamental theories. (Here we understand ‘emergent’ as in [11,12].)

Since X is a quantum theory, the understanding of Assumption 1 gleaned from the two

examples above must be augmented by considering how ordinary quantum mechanics can

in certain circumstances be approximated by classical mechanics. Once again, there is

much to say—and much has been said—about the details, both technical and philosophi-

cal, of quantum mechanics’ recovery of classical mechanics; see [13–15] for a sample from

this enormous literature. The ongoing disagreements about the foundations of quantum

mechanics mean that there is here rather more to say than on the two previous examples.

Indeed, there is currently no consensus on whether or in what way we can understand

classical mechanics as having, in fact, been recovered from quantum mechanics. We will

cut through this ongoing scientific debate by taking Assumption 1 to cover both the possi-

bility that the recovery of GR by theory X is based on a better understanding of quantum

theory than the one we have now, and the possibility that the recovery of GR by theory

X relies upon similar interpretational rules of thumb—such as Copenhagen-esque splits,

and/or anthropocentric reasoning—to those in use today.

These three examples of recovery lead one to expect that each of the ‘physical situa-

tions’ referred to in Assumption 1, in which a solution of GR is obtained as an approxi-

mation, may involve not only: (i) a certain state in the physical state-space of the theory

X,1 but also: (ii) a choice of a range of values of certain parameters (or ratios of parame-

ters) defining an approximation scheme—an obvious example being a choice of a relevant

physical “observation” scale and some concomitant coarse-graining scheme. Besides, we

expect that some physical states in X will correspond to GR spacetimes with singularities,

and that such a state—if theory X is to fulfil our expectations of quantum gravity—treats

the singularity physically and predictively although the continuum, Lorentzian geometric

description breaks down close to the singularity. So a single state in theory X may include

both a ‘physical situation’ away from the singularity that has a continuum approxima-

tion and a ‘physical situation’—close to and at the singularity—that does not. Thus we

expect a variety of components in the definition of the ‘physical situations’ referred to in

Assumption 1. All of that being said, for ease of writing, we will sometimes refer to these

‘physical situations’ as ‘states’.

Comment 2: Some, but not all, GR solutions:—

Assumption 1 does not require that all the solutions allowed by the postulates of (some

precise formulation of) General Relativity be recoverable from X as approximations. For

example, spacetimes with closed causal curves might not be recovered by X.

But crucially, Assumption 2 implies that a GR spacetime can only be recovered from

X if the characteristic distance over which the GR spacetime varies appreciably is ev-

erywhere much greater than the Planck length. This condition for spacetimes to be

recoverable from X will be part of important conditions which we will introduce later;

namely, the discrete-continuum correspondences, for causal sets in Section 3 and for sim-

1This state, for all we now know, may well not be a conventional quantum state such as a vector in—or

density operator on—a physical Hilbert space. It may, for example, be one co-event from a collection of

physically allowed co-events in a path integral-based framework ( [16]), or some other concept.
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plicial complexes in Section 4.1. So we need to be more precise about its meaning. We

say that the characteristic distance over which a GR spacetime, (M, g), varies appreciably

is everywhere much greater than the Planck length iff, for every point p in (M, g) there

exists a normal neighbourhood, Up of p that:

(i) is covered by local inertial coordinates centred at p,

(ii) contains an Alexandrov interval—a causal diamond—that contains p and has

large volume in Planck units; and

(iii) is such that everywhere in Up, all the components of the Riemann tensor in

the local inertial coordinates are small in Planck units.

In order to claim that GR is recovered from X, however, a very substantial collection

of GR solutions must be recovered from X. This collection certainly includes all solutions

that are currently known to be phenomenologically important such as large portions

of Minkowski spacetime, solutions containing black holes, expanding cosmologies and

solutions containing gravitational waves. Here is a very concrete example: there must be

a state in X from which it is possible to glean data to reconstruct, approximately, a GR

solution including gravitational waves propagating from a binary black hole merger event

to an observation event that coordinates with the LIGO data for GW150914 [17]. To

put the point contrapositively: if there is no state in theory X that gives data to which

a GR solution with gravitational waves is a continuum approximation, then GR is not

recoverable from X.

Let us refer to the states in X that give rise to data from which solutions of GR can be

recovered as grounding states: since they are the ground or basis of recovering GR solu-

tions. (We avoid: (i) “semiclassical states”, as having perhaps, too specific connotations;

and (ii) “basic states”, as connoting that the states are fundamental within X—whereas

we want to allow that the grounding states might well be specified using criteria that are

not fundamental in X.) One can conceive of the whole collection of grounding states in X

as the continuum regime or continuum sector of X. Comment 3 will fill out the idea of a

grounding state, by developing Assumption 2.

To conclude Comments 1 and 2: we of course admit that Assumption 1 is not com-

pulsory. There is however, to date, no convincing observational evidence for any theory

of gravity apart from GR. And so we expect widespread, though not unanimous, assent

to Assumption 1.

Comment 3: From discrete data to one spacetime:—

For our argument, we take Assumptions 1 and 2 as implying that:

a grounding state of X contains, or gives rise to some Discrete Physical Data

(DPD),2 to which a GR spacetime is an—essentially unique—approximation.

This Comment spells out the meaning of this italicized statement, in three Remarks.

2An alternative phrase that we might have adopted instead of ‘DPD’ is Riemann’s phrase Discrete

Manifold in his Habilitationschrift ( [18], see [19] for an English translation) where ‘manifold’ means

simply ‘multitude’. But owing to the development of Riemannian geometry (which of course Riemann’s

lecture began), the term ‘manifold’ has come to so strongly connote the continuum that ‘discrete manifold’

can sound to modern ears like an oxymoron.
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The first is about DPD, the second about essential uniqueness; and the third is about

discreteness and about the Planck scale.

A: The grounding state and the DPD: In what follows, we will be mostly interested in the

data to which the GR spacetime is an approximation, and will refer to it as the DPD in the

grounding state. Agreed: if the grounding state recovers a non-vacuum GR solution then

that grounding state will produce, in addition to the DPD to which the GR spacetime

is an approximation, other discrete data that encode the matter distribution of the GR

solution. So if we need to refer to the additional matter data, we will do so explicitly, in

addition to the DPD.

We do not specify how the grounding state contains, or produces, or gives rise to

the DPD: for example, this data could be eigenvalues of or expectation values of certain

operators on a Hilbert space—or not. Whatever theory X is, if it recovers GR as an

approximation, there must come a stage at which we have in our hands a set of DPD

and there is a procedure, in principle, for obtaining a GR spacetime, approximately and

essentially uniquely from that set of DPD. This stage is after the quantal nature of the

grounding state—small scale quantum fluctuations, interference between histories, multi-

tudes of branches or what have you—has been “dealt with” by coarse-graining, collapse

of the wave-function, anthropocentric reasoning or what have you. In the end, if the

theory is to work for this purpose—recovering a GR spacetime as an approximation in

some state—then the data it produces must be data one can store as bits in a classical

computer memory.

B: Essential uniqueness: By “essentially uniquely” we mean that if two continuum space-

times (M, g) and (M ′, g′) are both recoverable from the DPD provided by a grounding

state in X, then they must be approximately isometric on scales large compared to the

Planck scale.

There are two concerns that one might have about this requirement. Broadly speaking,

(i) is mathematical, while (ii) is physical.

(i): One might worry about the formal existence of a scale-dependent metric on the

space of Lorentzian geometries that would allow us to say when two geometries are in-

distinguishable above a certain scale. We will mention one proposed scale-dependent

distance function on Lorentzian geometries in our discussion of causal sets. However, the

concept of spacetimes being ‘approximately isometric above some scale’ will make intu-

itive sense to most workers on quantum gravity—cf. Kaluza-Klein theory—and we rely

on this heuristic understanding being sufficient for our argument.

(ii): One might worry that orthodox quantum theory (on at least some views of it)

licences superpositions of macroscopically very different mass distributions: which in the

context of GR, would seem to lead to superpositions of spacetimes that are not approxi-

mately isometric. Indeed, maybe the grounding states in theory X are superpositions of

this kind. Our answer to this has already been given in Remark A. Namely, our assump-

tion that theory X recovers GR includes the assumption that such superpositions, if they

are in fact present, can be dealt with, and have been dealt with by the stage at which we

consider the DPD to which a spacetime in GR is a good approximation.

One might also ask: ‘what about dualities?’ In recent decades, fundamental physics

has formulated—and in some cases proven—various dualities between quantum theories
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formulated on spacetimes. A duality is in effect a surprising isomorphism between the

state-spaces and algebras of quantities of the two theories, like a giant symmetry between

the theories [20, 21]. Indeed, in the most celebrated case, viz. gauge-gravity duality in

string theory, the two spacetimes concerned even differ in their dimension, one being

the boundary of the other: which certainly counts as surprising! So if we countenance

dualities such as these, what becomes of our ‘essential uniqueness’ requirement?

We answer this concern in the same way as the concern about quantum superpositions:

they are important concerns, but they are not our concerns, here. In GR, the physical

world is just one spacetime (and matter distribution). If theory X enjoys a duality or

dualities, and if it recovers GR, then this singleness of spacetime must be recovered,

somehow, in X. We step in and take the DPD in our hands after this singleness has

been established, however it has been established: i.e. established by whatever argument

disposes satisfactorily of all but one of the dual descriptions. (It could for example be a

more-or-less anthropocentric argument.)

C: Planck scale discreteness For definiteness let us define3 the Planck time, Planck length

and Planck 4-volume, respectively:

tp :=

√
8πG~
c5

, lp :=

√
8πG~
c3

and Vp := tpl
3
p = (8πG~)2c−7 , (1)

where G is Newton’s gravitational constant, c is the speed of light and ~ is the (reduced)

Planck constant. In GR, Vp, tp and lp are not independent: knowing one of the three

quantities above is sufficient to fix the other two.

At our current stage of knowledge of quantum gravity based on work in any existing

approach, we cannot say more than that in our putative successful theory X the dis-

creteness time scale, say, will be of order tp. However, Assumptions 1 and 2 imply that

in our theory X that successfully recovers GR, the actual value of the discreteness scale

should be calculable. In other words, theory X should tell us, via the discrete-continuum

correspondence, the ratio of the fundamental discreteness time scale tf , say, and tp:

tf = ztp, lf = zlp, Vf = z4Vp , (2)

where z is a number of order 1 that theory X should determine. One way z might be

determined is by calculating the entropy of a black hole in theory X in terms of the

fundamental discreteness length: SBH = αABH

l2f
. Equating this to the known value—

SBH = 2πABH

l2p
—would then give the value of z =

√
α
2π .

The condition that theory X is physically discrete at the Planck scale has meaning only

for the grounding states. For it is only these states (by definition) that provide DPD that

can be approximated by Lorentzian geometries. So, for a grounding state—and only for

a grounding state—the DPD are approximated by a GR spacetime so that the discrete-

continuum correspondence between the set of DPD and the spacetime does justice to the

concept of Planck scale discreteness.

We do not specify exactly how the DPD are discrete. One might want to demand

of theory X that the geometry of a GR spacetime in a region of finite spacetime volume

be recovered from a finite amount of combinatorial data—as in a causal set—but our

3We use 8πG—the cosmologist’s convention—rather than just G in the definitions
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argument will not hinge on it. The physical data provided by theory X in a grounding

state may be completely digital and combinatorial, or they may include real numbers such

as edge lengths on a graph.

But we do take Assumption 2 to demand that the DPD and its approximating space-

time together embody the two heuristics: “to fully describe continuum physics in and of

a finite region in a GR spacetime requires only a finite amount of information” and “the

DPD do not give information about geometry on scales smaller than the Planck scale.”

For example, a lattice whose spacing is many orders of magnitude smaller than the

Planck length cannot arise as DPD in a grounding state of X. Nor can the geometrical

form of a simplicial complex as a piecewise flat continuum manifold—a union of pieces of

flat Minkowski space—arise as DPD in X. The flat “filling” of the interiors of the simplices

is continuum information. A simplicial complex is only discrete if it is a combinatorial

complex, perhaps decorated with edge lengths, triangle areas, spins etc. This exclusion

will be important in Section 4’s defence of Claim 2.

The scale of the discreteness of theory X is presented in this paper as discreteness in

spacetime. We briefly consider what it would mean for this discreteness to be expressed in

terms of energy, because some workers conceive of the ‘Planck scale’ in the first instance

as very large (in energy) and not, primarily, as very small (in spacetime). Discreteness at

the Planck scale means that there is a physical cutoff in spacetime which one might want

to translate directly into a high frequency cutoff at the Planck frequency, νp := t−1p , and,

since frequency is a frame-dependent concept, one might think that a high frequency cutoff

must imply a preferred frame in which to express that cutoff and thereby violate Lorentz

symmetry. The relationship between spacetime discreteness, a high frequency/energy

cutoff and Lorentz symmetry is more subtle than this suggests, however, and in particular

the phrase ‘frequency is a frame-dependent concept’ is a little too glib in this context.

Frequency is a frame dependent concept in the sense that a free wave packet in Minkowski

spacetime whose frequency is peaked around ν < νp in one frame is peaked at a different

frequency, ν′, in another frame. Depending on the boost factor, ν′ can be greater than

νp. The point is that such a packet really has no associated covariant energy, except the

rest mass if it is a massive particle/field. Thinking about this in covariant, spacetime

terms, one sees that the crucial question for compatibility with discreteness is whether

the spacetime support of the packet corresponds to a large enough subset of the DPD to

recover all the contours of the packet. This will be the case if there exists a frame in

which the typical frequency of the packet is small compared to νp and if the discreteness

of the DPD is Planck scale, and Lorentz invariant. Since, then, in every frame including

the one in which the packet happens to have low frequency there will be enough DPD

corresponding to the spacetime support to carry the information about the contours of

the packet (Section 1 of [22]).

Lorentz invariant discreteness, then, is compatible with free wave packets of any fre-

quency in any frame in infinite Minkowski spacetime; and consideration of these packets

does not really probe the concept of a high energy cutoff (except in the trivial sense that

the rest mass of an elementary particle should be less than the Planck mass—for, other-

wise, the frequency, (2π)−1
√
m2 + |~p|2, is Planckian or higher in every frame). It is in

considering interactions that the concept of ‘high frequency cutoff’ becomes meaningful

because there are covariant, frame-independent measures of the energy of an interaction.
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For example, the centre of mass energy of a collision of two particles is Lorentz invariant.

Again, translating this into a covariant spacetime picture, the question becomes: are there

enough DPD corresponding to the interaction region—the intersection of the spacetime

supports of the two wave packets, say—to support the physical details of the interaction?

Now, if the centre of mass energy of a two particle collision is higher than the Planck

energy and the spacetime volume of the interaction region is smaller than the Planck

volume, there will be very few or even no corresponding DPD to support the interaction,

effectively cutting off such high energy interactions.4 In this way, a Lorentz invariant high

energy cutoff arises from Lorentz invariant spacetime discreteness.

2.2 Two claims

As announced in Section 1, we now state our main argument, in terms of two claims,

‘Claim 1’ and ‘Claim 2’. Then we will make explicit two limitations of our argument,

before turning to support the Claims: Claim 1 in Section 3, and Claim 2 in Section 4.

Claim 1: A causal set—a locally finite partial order—is a set of DPD that, taken as

being discrete on the Planck scale, can recover a GR spacetime as a continuum approxi-

mation.

Claim 2: There is in the current literature no other proposal for a set of Planck scale

DPD that can recover a GR spacetime as a continuum approximation.

Thus Claims 1 and 2, as clarified by Assumptions 1 and 2 in Section 2.1, express the

argument we announced in Section 1. Namely: whatever the ultimate underlying degrees

of freedom in a theory X of quantum gravity, if X is discrete at the Planck scale, and

recovers General Relativity as an approximation in certain circumstances, then according

to our current state of knowledge, X needs to produce a causal set.

But before we support the Claims in Sections 3 and 4, we should clarify that our

argument has two important limitations of scope.

A: We only consider kinematics: We stress that Claim 1 does not say that every

causal set recovers a GR spacetime. Only some do; and which ones do will be spelled

out in Section 3. For the Claim is made at what one might call a “kinematical level”.

At the current stage of our knowledge, no theory of quantum gravity, neither causal set

theory nor any other theory explains dynamically why grounding states with DPD that

can recover GR spacetimes occur. In the case of causal set theory, finding a quantum

dynamics that will do this job is a major outstanding task. We will say a little more

about this at the start of Section 3, and in Sections 3.1.2 and 6.

B: We target only theories that produce discrete physical data: There are theories, and

frameworks for theories, of quantum gravity that use discreteness, but that use in itself

does not bring them into the scope of our argument, for one or both of two reasons. (i):

4In the context of causal set theory, Sorkin has pointed out that this is a potential signature of

discreteness: such packets propagating on a causal set background could pass through each other without

interaction [22].
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The first reason is that the theory uses discreteness either as a regulator to be taken away

in a strict continuum limit, or more generally to define an approximation to a continuum

theory. (ii): The second reason is that, even away from the so-called continuum limit,

at a stage at which the regulator is still finite (non-zero), the spacetimes considered

are actually continuous because they are geometric simplicial complexes—piecewise flat

Lorentzian manifolds—of the kind discussed in Remark C of Comment 3 in Section 2.1.

Both these points (i) and (ii) are well illustrated by the construction of the path inte-

gral in elementary non-relativistic quantum mechanics. Thus recall that in the process of

defining the path integral, we consider zigzag (i.e. piecewise straight) paths in spacetime

with successively shorter time divisions, so that at each finite stage of the construction

all the paths considered (‘skeletonisations’) are everywhere continuous but not differen-

tiable at their corners. Taking an appropriate limit of infinitely many time divisions, we

get the path integral, with all its new mathematical structures and physical ideas. (So

this construction exemplifies the idea of a singular limit, in the—non-technical—sense

of a limit in which some facts or structures, mathematical and/or physical, exist at the

limit, but not before: as mentioned in [11, 12].) Though one might casually say that the

skeletonisations, being zigzags, “look discrete”, that is obviously loose talk, since they are

continuous paths. Moreover, these zigzag paths are just stages in the construction, and

none of them (no matter how fine, i.e. how minuscule the time duration of their straight

segments) give the physical interpretation of the path integral eventually constructed.

Thus our point here is that, for all its novelty and richness—its glories!—the use of a

form of discreteness in defining the path integral in quantum mechanics does not in itself

produce discrete physics. It is wrong to say that the path integral in quantum mechanics

is discrete.

Similarly here: theories such as Causal Dynamical Triangulations (CDT) [23–26] and

Lorentzian Quantum Regge Calculus [27] are examples of quantum gravity approaches

that use piecewise flat Lorentzian manifolds. CDT uses a path integral approach in which

the piecewise flat Lorentzian manifolds play the role of the skeletonised trajectories in the

quantum mechanics example, and the full CDT theory is defined in the limit in which

the lengths of the edges of the simplices in the (Euclideanised) piecewise flat manifold

are taken strictly to zero. Such use of piecewise flat Lorentzian manifolds in quantum

gravity theories and frameworks is not targeted by our argument, in particular by Claim

2. Nor does our argument directly target the use of combinatorial Lorentzian simplicial

complexes if the discreteness scale is not physical but is a regulator that is taken strictly

to zero in the definition of the quantum gravity theory.

Now, there are several quantum gravity approaches—in addition to CDT and Quan-

tum Regge Calculus which we have mentioned—that have a discrete flavour, including:

Energetic Causal Sets [28], Entropic Gravity [29], Group Field Theory [30], Hologra-

phy [31], Loop Quantum Gravity [32], Spin Foams [33], Quantum Graphity [34], Space-

time Code [35], Thermodynamic Gravity [36], and the Wolfram model [37], among others.

It would be a good project to assess these discretely flavoured quantum gravity approaches

as to whether they only employ discreteness à la (i) and-or (ii) above, or whether they

aim to recover a GR spacetime in Section 2.1’s sense by means of Planck scale discrete

physical data and thereby fall within the scope of our argument. Any quantum gravity

10



approach within our scope is then in danger of stumbling in the way that Section 4 will

show combinatorial Lorentzian simplicial complexes do.

2.3 General relativity and Lorentzian geometry

Our arguments in this paper depend on the all-important discrete-continuum correspon-

dence, i.e. the correspondence between a set of DPD and the continuum spacetime that

approximates it. To analyse and assess this correspondence, we obviously need to under-

stand well what it is that the DPD in a grounding state of theory X must recover: in

short, a GR spacetime. So in this Subsection, we will briefly review GR spacetimes, in the

sense we adopted in Comment 1 of Section 2.1: that is, as Lorentzian manifolds (M, g).

A Lorentzian manifold—in stark contrast to a Riemannian manifold—is not isotropic

on small scales because Minkowski space itself, though flat, is not isotropic: it has pre-

ferred directions, the null directions. Moreover, the points along a null geodesic are totally

ordered in the spacetime causal order5: it is meaningful to say that point a is to the past

of point b on a null geodesic in Minkowski spacetime even though the distance between

them is zero. This remarkable structure—so very different from Riemannian geometry—

means that Lorentzian geometry, if it is not actually nonlocal, teeters on the very edge

of being nonlocal. This verging-on-nonlocal character can be illustrated in the following

way. Consider a point p in 4-dimensional Minkowski spacetime. All the points along the

future and past light cones from p are zero distance from p. And the locus of points

that are one Planck unit of geodesic proper time, say, to the past or to the future of p

is a double-sheeted 3-dimensional spacelike hyperboloid of infinite volume that asymp-

totes to the past and future light cones from p. So the set of points that are physically,

geometrically close to p is very nonlocal. Besides, one can also consider mathematically

the locus of points that are one Planck unit of spacelike geodesic distance from p: a 3-

dimensional single-sheeted hyperboloid that asymptotes to both the past and future light

cones. Putting these remarks together means that the closest analogue of a Euclidean

geodesic ball around a point p is an unbounded 4-dimensional region of infinite spacetime

volume between these hyperboloids, a neighbourhood of the past and future light cones

from p as shown in Figure 1.

The nonlocal character of these Lorentzian “geodesic balls” immediately calls into

question the relationship between the metric and the topology of Lorentzian geometries.

In Euclidean space, the geometry and the topology are compatible in the sense that the

set of open geodesic balls is a base for the manifold topology, and this is also the case for

Riemannian geometries generally. In Minkowski spacetime, the nonlocality of the geodesic

“balls” means they cannot form a base for the topology. Remarkably, the compatibility be-

tween geometry and topology nevertheless holds for Minkowski spacetime, not via geodesic

balls at points but, instead, via Alexandrov intervals—“causal diamonds”—between pairs

of points. The Alexandrov interval between points x and y, where x ∈ I−(y) (i.e. there is

a past directed timelike curve from y to x), is the intersection of the chronological future

I+(x) of x (i.e. the set of points to which there is a future directed timelike curve from x)

and the chronological past I−(y) of y. The Alexandrov topology is the smallest topology

5This use of the word ‘causal’ in GR does not imply ‘causation’ (whatever that might mean!): to say

x is to the causal past of y is merely to say that x is before y and y is after x.
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Figure 1: The figure shows the t − z plane of 4- dimensional Minkowski spacetime. The

figure should be imagined as rotated about the t-axis into the suppressed x and y dimen-

sions. The point p is at the origin and the light cones of p are shown. The striped shaded

region is the locus of points in the causal past or causal future of p that are within one

unit of geodesic proper time of p. The solid shaded region is the locus of points spacelike

to p that are within one unit of geodesic proper spatial distance of p. Both shaded regions

are unbounded and of infinite spacetime volume and their union is the (analogue of the)

geodesic ball around p. The boundaries of this ball are hyperboloids.

containing these Alexandrov intervals and the set of Alexandrov intervals is a base for

the Alexandrov topology. For Minkowski spacetime, the Alexandrov topology is equal

to the manifold topology. This result continues to hold for other Lorentzian geometries,

but—in contrast to the Riemannian case—not for all of them: the Alexandrov topology

equals the manifold topology if and only if the Lorentzian geometry is strongly causal

(page 487 of [38]).6 Note the difference between the Riemannian and Lorentzian cases.

In the Riemannian case, the metric determines the topology locally and via the concept

of geodesic distance. In the Lorentzian case the metric determines the topology bi-locally

and via the concept of causal order.7

Remarkably, the causal order of a strongly causal Lorentzian manifold determines

6Strong causality is a weaker causality condition than global hyperbolicity but a stronger condition

than being merely causal: see [39] for a review of the rungs of the “causal ladder”.
7Recall that the causal order is the totality of relations x ∈ J−(y) (which means there is a future

directed causal curve from x to y). For any Lorentzian spacetime, the causal order determines the

chronological order and thence the Alexandrov topology (page 485-487 of [38]).
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much more than just its topology. It also determines the differentiable structure in di-

mensions greater than 2, thanks to a 1966 theorem of Hawking [40,41]. With the tangent

space in hand, the metric can then be determined in terms of one unknown fiducial compo-

nent, which component can be traded in for an overall conformal factor (cf. pages 60 and

61 in [42]). Thus, for a strongly causal spacetime of dimension greater than 2, the causal

order determines the metric up to an overall conformal factor. This result was later ex-

tended by Malament to cover Lorentzian manifolds satisfying a strictly weaker causality

condition [43]. This final result, the Kronheimer-Penrose-Hawking-Malament (KPHM)

theorem, states that the causal order of a distinguishing8 spacetime of dimension greater

than 2 determines its topology, differentiable structure and metric up to a conformal fac-

tor. It is the strongest statement of how much of the structure of a Lorentzian manifold

is determined by the causal order.9 In short: the causal order captures almost the full

geometry and all that is missing is a local scale. The KPHM theorem can be encapsu-

lated in the slogan: “Order + Volume = Lorentzian Geometry.” There is no Riemannian

analogue.

Causal order is not just at the heart of the mathematics of Lorentzian geometry in GR,

it is also at the heart of the physics of GR. Carter-Penrose diagrams and other spacetime

diagrams representing the causal structure of spacetimes abound in GR textbooks. The

epitome of GR is a black hole and the event horizon of a black hole is defined in causal

terms: the boundary of the closure of the causal past of future null infinity. From this

concept of event horizon flows much of the physics of black holes. For example: the

Second Law of black hole mechanics, Hawking’s Area Theorem, is a result about the

event horizon [44]; and assuming an event horizon forms, it can be proved that the Kerr

family of solutions is very likely to be the physical description of the final state of any

black hole in GR (either with the assumption the final state is axisymmetric [45, 46] or

dropping the assumption of axisymmetry but assuming that the metric is analytic (Section

9.3 of [42], Theorem 33 of [47])).

“Gravity is geometry” is a common slogan to sum up the lesson of GR. But a Rieman-

nian curved spacetime would not give us the physics of GR. Perhaps we should always

say “Gravity is Lorentzian geometry” to remind ourselves of what GR is really teaching

us.

3 Causal Sets

In this Section, we will support Claim 1 by referring to existing results in the literature

on causal sets. Indeed the central points we make are present already in the founding

papers of causal set theory [1, 48, 49], though more evidence for them has accrued since

then.

So the Claim we wish to defend is:— Given any distinguishing GR spacetime, (M, g),

whose geometry varies appreciably only on scales much larger than the Planck scale, there

is a causal set C that is:

(i) well approximated by (M, g), and

8A past/future distinguishing spacetime is one in which two distinct points have distinct chronological

pasts/futures. A distinguishing spacetime is both past and future distinguishing.
9Here, ‘the strongest statement’ means that any weaker causality condition renders the theorem false.
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(ii) such that the correspondence between C and (M, g) is discrete at the Planck-scale.

More precisely: there are many causal sets that are very likely to satisfy (i) and (ii). Here,

of course, ‘very likely’ signals, not a probability, but our having good theoretical reasons

to believe this. This use of ‘very likely’ echoes the distinction we made in Remark A at the

end of Section 2.2, between kinematical and dynamical aspects of causal set theory. That

is: we take Claim 1 as a kinematical claim, about the approximation relation between

a GR spacetime and a causal set. So our argument does not depend on assumptions

or results about the dynamics of causal sets: which, admittedly, is a topic that raises

important questions that we will briefly discuss in Sections 3.1.2 and 6.

As we will explain, there are issues to address in causal sets’ satisfying (i) and (ii):

issues that have been recognised since the inception of the causal set approach to quan-

tum gravity. Describing these issues, and the progress made so far in addressing them,

will be the main theme of this Section. We begin with a warning that the discrete-

continuum correspondence—the approximation relation—is not as straightforward as one

might think (Section 3.1). In Section 3.2, we give the all-important formulation of the

discrete-continuum correspondence for causal sets. Then the role of Poisson sprinkling is

explained in Section 3.3. Then in Section 3.4, we describe some of the evidence produced

so far for our Claim about causal sets’ ability to recover GR spacetimes.

3.1 Approximating the discrete by the continuous

3.1.1 A variety of analogies

In Comment 1 in Section 2.1, we gave fluid mechanics as an example of an emergent

continuum from a discrete substructure. Bulk matter provides other examples, including

metals and other crystals that are formed from regular arrays of discrete atoms. Everyday

life provides yet more examples. We are all familiar with how a digital photograph, with

its finitely many pixels, can be indistinguishable to us humans from the photographed

scene, which is—so one presumes, in a classical world!—an analogue scene: i.e. a scene

whose exact description requires continuously many real numbers.10 A film reel of a

sequence of finitely many still images is experienced by the watcher as continuous motion.

A geodesic dome formed of many flat triangles appears, when viewed from far enough

away, as a smooth surface.

These examples and experiences give rise to intuitions about emergent continua that

may tempt us into thinking that it is bound to be straightforward to recover a GR

spacetime from a set of DPD that is discrete at the Planck scale. ‘Straightforward’

because such examples abound and because the Planck scale is so very very small—not

only compared to us humans but also compared to the scale of physics we have so far

probed in any particle accelerator—so that of course a discrete manifold can appear as a

continuous spacetime to us.

We want to endorse the idea that a continuum spacetime can indeed emerge from

a discrete underpinning. But at the same time, we caution against the thoughts that

it is bound to be straightforward, and that we can take any of the concrete examples

10Even for black-and-white photography, the intensity, i.e. brightness, would be, according to a classical

electromagnetic description, a continuous field, i.e. a map from physical space R3 to R.
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of emergent continua mentioned above as a guide to the relation between the DPD and

the GR spacetime. For we will argue, in this Section on causal sets and the next on

simplicial complexes, that the approximate Lorentz symmetry of GR and our assumption

that the DPD are discrete at the Planck scale mean that only some of these examples are

good guides to the discrete-continuum correspondence by which theory X recovers GR.

In particular, it will become clear in Sections 3.2, 3.3 and 3.4 that the molecule/fluid

analogy is a fruitful one, whereas an atom/crystal analogy is not. And in Section 4, we

will see that a natural discrete-continuum correspondence for simplicial complexes fails.

3.1.2 Agnosticism about the existence of structure “below” the Planck scale

Recall how, early in our mathematical education, points are introduced as being the limit

of ever smaller regions of space or spacetime. The teacher or textbook urges on us that

there is (“surely”) no lower bound to the diameter or volume of these regions; and we

come to accept points as extensionless in the above sense. (Hence the label, in pedagogy

about spacetime, ‘point-events’.) Assumption 2, of Planck scale physical discreteness, is

that what the teacher or textbook urged is wrong in quantum gravity. The assumption

denies the physical meaningfulness of any continuum topological or geometrical concepts

such as dimension, length and volume below the Planck scale in a GR spacetime.

But this is not to say that there cannot be any physical discrete structure in addition

to the DPD and to data that recover any matter degrees of freedom in the GR solution.

One might be tempted to call such extra structure sub-Planckian but that could be

misleading as such structure really has no scale as such because it does not contribute

to the recovery of the approximating Lorentzian geometry (M, g). To illustrate this idea

of extra structure, consider the case of causal sets. We are about to argue (in Section

3.2) that, using this paper’s jargon of grounding states and DPD, a causal set can be the

Planck scale DPD in a grounding state that recovers a GR spacetime. The elements of

such a causal-set-as-DPD, C, are to be considered as atoms of spacetime in the sense of

the original Greek word atomos, i.e. indivisible. That is: an element of C has no internal

structure and cannot be analysed (‘divided’) into parts. But that is not to say that there

can be no physical data at all in addition to C: it is just that that extra data will not be

data about the approximating Lorentzian geometry.

Now, if there are further data as well as the DPD in the grounding state, then who

knows what they are and who knows how the grounding state contains, or implies, or gives

rise to11 the DPD themselves. A certain amount of some sort of coarse-graining will have

had to have been done to the full discrete data provided by the grounding state in order to

arrive at the DPD alone. In the specific case of the causal-set-as-DPD, C, from which the

GR (M, g) spacetime is recovered, one possibility is that the grounding state might provide

a causal set C ′ that is not itself faithfully embeddable in a GR spacetime but which, on

decimation of C ′ by a random deletion of elements chosen with fixed probability, produces

the DPD-set C that does faithfully embed in (M, g) at Planckian density.

11Here, the phrase ‘contains, or implies, or gives rise to’ deliberately echoes the italicized statement at

the start of Comment 3, Section 2.1.
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3.2 The discrete-continuum correspondence for causal sets

In Section 2.3 we reviewed key aspects of Lorentzian manifolds, the GR spacetimes

that must be recovered by grounding states in theory X. Consider, now, a particular

4-dimensional, distinguishing GR spacetime (M, g) that must be recovered in quantum

gravity theory X. In this Section we will state the discrete-continuum correspondence—or

approximation relation— between a causal set as Planck scale DPD12 and (M, g) [1]. But

first, for completeness’ sake, we give the formal definition of a causal set.

Definition: A causal set is a set C with a relation ≺, called “precedes”, on C that

satisfies the following conditions:

(1) if x ≺ y and y ≺ z then x ≺ z ∀x, y, z ∈ C (transitivity);

(2) x ⊀ x ∀x ∈ C (acyclicity);

(3) for any pair of elements x and z of C such that x ≺ z, the set {y|x ≺ y ≺ z} is finite

(local finiteness).

Of these axioms, (1) and (2) together say that (C,≺) is a partially ordered set, or poset for

short. A poset is sometimes called simply an ‘order’. The third axiom of local finiteness

expresses the discreteness of the causal set . Note that the continuum spacetime causal

order is reflexive: p ∈ J−(p), ∀p ∈M so it is the relation ‘precedes or equals’ in the causal

set, with notation �, that coordinates with the continuum spacetime causal order in

the discrete-continuum correspondence below. An alternative convention—‘the reflexive

convention’—in the literature on partial orders is to give the definition in terms of �.

Phrases that can be taken as synonymous with causal set are “discrete order”, “locally

finite partial order” and “transitive directed acyclic graph.”

Now let the discrete-continuum correspondence for causal sets, which we will call

DCC-C, be as follows:

A causal set, (C,≺), recovers the GR Spacetime (M, g) if there exists a Planck scale

faithful embedding [1]: that is, an injective map φ : C ↪→ M satisfying the following

conditions.

(i) (Planck-scale uniform): The number of causal set elements embedded in any

sufficiently large, physically nice region of M is approximately equal to the

the spacetime volume of the region in fundamental volume units Vf = z4Vp

(see Remark C of Comment 3 in Section 2.1). ‘Physically nice’ means that the

region contains large, approximately flat Alexandrov intervals and it has no

Planck scale features such as very wiggly boundaries.

(ii) (Order-preserving): Elements x and y of C are ordered, x � y, if and only

φ(x) ∈ J−(φ(y)).

12When we say ‘the set of DPD is a causal set’, we mean, strictly speaking, an order-isomorphism

equivalence class of causal sets. However, we adopt the standard practice whereby we think of and talk

about the set of DPD as a single representative causal set rather an equivalence class of causal sets; and

we then compensate for this by making sure that the mathematical identity of, and any labels on, the

elements of the causal set are ignored in the causal set’s role as DPD, so that only the order relation, ≺,

between the elements and the number of the elements have meaning as physical data.
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(iii) The characteristic distance over which the continuous geometry (M, g) varies

appreciably is everywhere much greater than the Planck length/time. (As

mentioned in Comment 2 in Section 2.1, this is a condition on any (M, g)

recovered by a Planck scale discrete theory X. We state it here as a reminder,

and because it is in the original definition of faithful embedding for causal

sets [1].)

The DCC-C is the statement of the claim that when a faithful embedding of (C,≺
) into (M, g) exists, all the geometric information of (M, g) on scales large compared

to the Planck scale is encoded in (C,≺). Clearly, the concept of faithful embedding

derives directly from Section 2.3’s Kronheimer-Penrose-Hawking-Malament theorem. If

the macroscopic causal order of (M, g) is recovered from the microscopic order of (C,≺)

and the volume measure of the continuum, i.e. (M, g)’s one remaining ‘degree of freedom’,

is recovered from the counting measure on C, then, the theorem suggests, that is sufficient

to recover the geometry of (M, g).

The faithful embedding is the all-important concept of the discrete-continuum cor-

respondence for causal sets (DCC-C): without it, the claim that causal sets ‘do the job’

cannot be assessed. We emphasise that this correspondence via faithful embedding means

that the causal set is not merely discrete but clearly, meaningfully, discrete at the Planck

scale. This condition on DPD—that the discreteness has a physical scale, which scale is

the Planck scale—is meaningless at the level of the DPD in itself. It only acquires mean-

ing in the context of the discrete-continuum correspondence, as emphasised in Remark C

of Comment 3 in Section 2.1.

Note also that this DCC-C implies there is a whole class of causal sets each of which

recovers (M, g)—just as there are many microscopically distinct molecular states of a gas

each of which recovers the same continuum fluid state.

In Comment 3 in Section 2.1 (Remark B), we noted that, in order for theory X to

recover GR, the set of DPD must recover an essentially unique large-scale continuum

spacetime. In the context of causal sets, we require that if (C,≺) faithfully embeds in two

GR spacetimes (M1, g1) and (M2, g2) then (M1, g1) and (M2, g2) must be approximately

isometric in the following way. Let φ1 : C ↪→ M1 and φ2 : C ↪→ M2 be the two faithful

embeddings. Then there exists a C-preserving diffeomorphism f : M1 7→ M2 that is an

approximate isometry, where C-preserving means that f ◦φ1 = φ2 [1]. This is the so-called

Hauptvermutung (“main conjecture”) of causal set theory. It says, essentially, that the

DCC-C as stated above works: all the topological, differentiable and metrical structure of

(M, g) at scales large compared to the Planck scale is indeed encoded in any (C,≺) that

is faithfully embeddable in (M, g). To state it another way, if the Hauptvermuting fails

then so does the DCC-C.

The Hauptvermutung has been explored since the inception of causal set theory, often

using the idea of Poisson sprinkling. Accordingly, we will now (i) introduce Poisson sprin-

kling (Section 3.3), and then (ii) describe some of the evidence for the Hauptvermutung

(Section 3.4).
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3.3 The Hauptvermutung and Poisson sprinkling

Much of the evidence for the Hauptvermutung—some of which is listed in Section 3.4.2

below—uses the concept of Poisson sprinkling [1,50–54]. A Poisson sprinkling is a process

of selecting points of a given GR spacetime (Lorentzian manifold) (M, g) that satisfies

(iii) of DCC-C (Section 3.2), at some density, and endowing the selected points with

the order induced by the spacetime causal order, so as to produce a random causal set.

If the density is unity in fundamental units, then typical Poisson-sprinkled causal sets

faithfully embed in (M, g) up to fluctuations in the number-volume relation that can

be analysed. For example, in a Poisson sprinkling at Planckian density into a region of

Minkowski spacetime the size of the observable universe, the probability that there is

an Alexandrov interval of radius equal to the size of an atomic nucleus that is empty

of sprinkled points (in which case it would violate (i) of the DCC-C) is approximately

10252× e−1072 [55]. So, according to the DCC-C, typical random Poisson-sprinkled causal

sets are well approximated by (M, g), at least when (M, g) is of the size of the observable

universe or smaller. One corollary of this is that there is a huge number of causal sets

that all recover the same GR spacetime.

How special is the Poisson process? Can we say that a causal set C faithfully embeds in

GR spacetime (M, g) only if C is a typical outcome of a Poisson sprinkling? Saravani and

Aslanbeigi (SA) studied this question and proved that if the expected number of points

chosen from each Alexandrov interval in a point process in (M, g) equals the volume of

the interval, then it cannot have smaller variance than the Poisson process (Theorem

1 of [56]). So, causal sets that are typical outcomes of Poisson sprinkling are best at

realising the number-volume correspondence for all Alexandrov intervals. SA point out

that this is a stronger condition than needed for faithful embedding because we are only

interested in the number-volume correspondence for regions large compared to the Planck

scale. So SA also provide evidence for the conjecture that in 2+1 and higher dimensions,

Poisson sprinkling still provides the best number-volume correspondence if one demands

only that the process have the correct mean for intervals larger than a certain volume.13 If

this conjecture about Poisson sprinklings holds, it means that one can restate the discrete-

continuum correspondence for causal sets, i.e. our DCC-C, as: “Causal set (C,≺) recovers

GR spacetime (M, g) at large scales if (C,≺) is a typical outcome of Poisson sprinkling

at Planckian density into (M, g)”.

We will not rely on this conjecture about Poisson sprinklings, though we think it is

likely to be true.14 But we will use the fact that typical Poisson sprinkled causal sets are

faithful embeddings into (M, g), and so they provide a huge class of causal sets on which

to test the Hauptvermutung and the validity of the discrete-continuum correspondence,

DCC-C.

Poisson sprinkling has been at the heart of progress on the concept of scale-dependent

approximate isometry between Lorentzian manifolds. Bombelli [57] uses Poisson sprin-

kling to define a scale-dependent distance function on the space of finite-volume, distin-

13More precisely: Saravani and Aslanbeigi explain why a known counterexample in 1+1 dimensions—a

family of lattices in 1+1 dimensional Minkowski spacetime which provide, for large volumes, a better

number-volume correspondence than Poisson sprinkling—should not have analogues in higher dimensions

than 1+1 (Sections 3 and 4 of [56]).
14The DCC-C is often stated in the causal set literature in its Poisson sprinklings form.
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guishing Lorentzian geometries; as follows. He associates to each finite volume, distin-

guishing Lorentzian geometry, (M, g), the probability distribution over finite posets given

by the Poisson sprinkling process into that geometry at unit density. He then proposes

the Bhattacharyya angle, or statistical angle, between these probability distributions as

a candidate, scale-dependent distance between geometries.15 The Poisson distribution

gives greatest weight to the posets whose cardinality equals N ±
√
N , where N equals the

volume of the Lorentzian geometry, and very small weight to posets that are much larger

than this. The Bombelli distance function is therefore insensitive to structure on scales

below that set by the density. Choosing the sprinkling density in the definition to be 10

rather than unity, say, increases the scale below which the distance function is insensitive

to structure.

As well as its obvious potential usefulness for formulating a precise version of the

Hauptvermutung for causal sets, the Bombelli distance function may be useful in any

context where one wants to say that Lorentzian geometries are close above some scale. It

could provide a covariant concept of a coarse-graining of a Lorentzian geometry, allowing

spacetimes with different topologies and dimensions to be understood as close, above some

scale: which is necessary to understand, for example, Kaluza-Klein theory more precisely.

3.4 Evidence for the Hauptvermutung

We now present a representative sample of the evidence for the Hauptvermutung, from the

literature on causal sets. There are two broad kinds of evidence: (i) evidence from general

theorems (Section 3.4.1); and (ii) evidence based on extracting geometrical information

from a given causal set (Section 3.4.2).

3.4.1 General Evidence

First we have, of course, the Kronheimer-Penrose-Hawking-Malament (KPHM) theorem,

the “Ur Theorem” of causal set theory. One can think of causal sets as the logical

outcome of the heuristic that causal order is a more primitive organising principle even

than space and time. Since, the KPHM theorem tells us that in the continuum, causal

order is not—quite—sufficient for physics. But, if the order is discrete, the missing scale

information is included for free and measured by counting. Thus Sorkin, the foremost

champion of the causal set approach to quantum gravity, acknowledges the influence of

Malament in coming to the understanding of just how much geometric information is

encoded in the causal order of Lorentzian geometry [58] and the influence of Riemann for

mooting that a discrete manifold can contain its own metrical information (the relevant

passages of Riemann’s inaugural lecture [18] are translated by Sorkin on pages 3 and 4

of [54]). Sorkin writes: “[W]hat is especially appealing about causal sets is that their

discreteness is essential to their ability to reproduce macroscopic geometry. If an infinite

number of elements were present locally then the correspondence V = N would lose its

meaning and without it we could at best hope to recover the conformal metric, but not

the volume-element needed to get from the latter to the full metric gab” [53].

15It remains a conjecture that the Bombelli function is a true distance in the sense that if the distance

between two Lorentzian manifolds is zero then the manifolds are isometric, however this is highly plausible

especially in the case of compact manifolds.
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Second, there are two theorems to the effect that Poisson-sprinkled causal sets are

Lorentz invariant [59,60], thus supporting the intuition we have gained from fluid mechan-

ics in which the microscopic molecular data do not break Euclidean invariance because

this data is random—in direct contrast to a crystal whose regular arrangement of atoms

does break Euclidean symmetries.16 Taken together, the two theorems—more accurately,

two theorem-types—constitute an almost complete formal proof that a typical causal set

Poisson-sprinkled into Minkowski spacetime respects all of its Poincaré symmetry. The

first theorem-type shows that, with probability one, a sprinkled causal set does not pick

out a distinguished timelike vector in the approximating continuum, so it cannot prefer

any inertial frame [59]. The second theorem-type shows that with probability one a sprin-

kled causal set does not pick out a distinguished lattice nor any other geometric structure

in the approximating continuum whose symmetry group contains a translation [60].17

Third, although the Hauptvermutung is—crucially—about a continuum approximation

and not a continuum limit : if a continuum limit exists, it is evidence there is a continuum

approximation nearby. We therefore count as evidence for the Hauptvermutung the result

that a causal set that is Poisson-sprinkled into a distinguishing Lorentzian manifold of

dimension d > 2 recovers, in the limit of infinite density, the full continuum geometry

with probability one [51,53].

Finally we cite as general evidence the robustness of causal sets, the kinship between

a causal set and its approximating Lorentzian geometry and the explanatory power of the

DCC-C. By ‘robustness’, we mean that there are no arbitrary elements in the definition

of a causal set. That is: the definition cannot be adjusted without utterly changing the

character of a causal set. By ‘kinship’, we mean that the causal set and approximating

GR spacetime speak the same language. The DPD of the causal set are physical data in

a rather straightforward way: they translate more or less directly to information in the

continuum approximation—causal order and physical scale—that is physically meaningful

in GR. Another way in which a causal set and its approximating manifold are like each

other is their nonlocality: in a faithfully embedded causal set the nearest neighbours

of any element x18 are distributed in a neighbourhood of—and inside—the past and

future lightcone of x in the approximating continuum [61]. Cf. Figure 1 in Section 2.3:

the nearest neighbours to a causal set element embedded at the origin p lie throughout

the striped region. Indeed, in Minkowski spacetime, there are infinitely many nearest

neighbours of any given element of a typical Poisson sprinkled causal set. Thus, as

was stated in [62]: ‘Points in a Lorentzian manifold have metric neighborhoods which

converge to the light cone rather than to the point itself. Causal sets simply reflect this

characteristic of Lorentzian geometry.’ By ‘explanatory power’, we mean that the DPD

being a causal set would be an explanation of the Lorentzian nature of spacetime in GR,

16Note that the concept of Lorentz invariance does not make sense for a set of DPD such as a causal

set in itself, not least because the DPD are discrete and Lorentz symmetry is a continuous symmetry.

The claim that a faithfully embeddable causal set is Lorentz invariant can only be assessed in the context

of the discrete-continuum correspondence DCC-C.
17Full Poincaré symmetry is respected by a sprinkled causal set if the following conjecture is true: If

G is the Poincaré group and H is a subgroup of G and H does not contain a translation, then the coset

space G/H has infinite volume (Section 4.3 of [60]).
18A nearest neighbour to an element, x, in a causal set is an element y that is related to x and such

that there is no element in the order between x and y. In the causal set literature such a pair (x, y) is

called a link.
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since only a Lorentzian metric signature—of all the possible metric signatures—provides

distinct past and future directions and hence a partial order.19

3.4.2 Extracting geometry from a causal set

We come now to evidence of a more specific kind: a representative set of examples of

the explicit recovery of continuum spacetime geometric information from faithfully em-

beddable causal sets. The idea is that, starting with a Lorentzian manifold (M, g), a

faithfully embedded causal set (C,≺) is produced by Poisson sprinkling; and then in-

formation about the topology and geometry of (M, g) can be extracted from (C,≺)

alone.

This accumulating body of evidence is a work in progress. In a typical example, a

particular function, G, of a causal set—and maybe e.g. one or more elements of the causal

set or a partition of the causal set—is proposed as the underlying causal set quantity that

recovers a particular continuum geometric quantity, G, in the approximating Lorentzian

manifold (M, g). That causal set function is then evaluated on random faithfully embed-

ded causal sets Poisson-sprinkled into a Lorentzian manifold (M, g) at density ρ. This

turns the causal set function G into a random variable G. As a first step, (i), the expected

value, < G > of the random variable and its limit as ρ → ∞ are calculated and shown

to equal the continuum value of G in (M, g). Then, (ii) the value of < G > at finite ρ

is shown to be close to its limiting value when the discreteness scale set by ρ is small

compared to any curvature scale and (iii) the fluctuations around the expected value are

shown to be small so that the continuum value of G can be read off from G evaluated

on a single faithfully embedded Poisson-sprinkled causal set C. In some examples the

fluctuation analysis remains to be done and what we have are promising first steps (i)

and (ii).

More examples and details are found in the reviews of causal set theory [52–54,63].

Causal past/future of points, Alexandrov intervals, spacetime volume of regions:—

These continuum geometrical structures and volume information are more-or-less

immediate from the discrete-continuum correspondence. For example, an Alexan-

drov interval in the continuum corresponds to a—large enough—order interval of

C, where an order interval in C between x, y ∈ C with x ≺ y is defined by

[x, y] := {z ∈ C |x ≺ z ≺ y}. The spacetime volume of a region is given, up to

Poisson fluctuations, by the number of causal set elements comprising that region.

Spacetime dimension There are a number of dimension discriminators/estimators.

One is flat conformal dimension which is based on a collection of causal sets, Cd,

one for each dimension d such that Cd embeds in Minkowski spacetime of dimension

d but not d − 1 (pp 8-9 of [52], [50, 64]). Another is midpoint scaling dimension

(page 85 of [65], [66]). The Myrheim-Meyer (MM) dimension (page 12 of [48] and p.

19With a Lorentzian (− + + · · ·+) signature the null vectors in the tangent space form two distinct

cones—past and future pointing—and all timelike vectors are also either past or future pointing respec-

tively depending on which cone they lie inside. With all plusses, (+ + · · ·+ +), all vectors in the tangent

space are spacelike and there are no null vectors, no lightcones, at all. In the remaining cases, the set of

timelike (i.e. negative norm squared) vectors form a connected set, and so do not divide into two distinct

classes and there is no way to define past and future pointing.
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52-53 of [50]) is a family of fractal, statistical dimensions. ‘Fractal’ here means that

the dimension is not an integer in general, but will be close to an integer when the

sprinkled causal set is large enough. The simplest MM dimension is the ordering

fraction of the causal set which is the fraction of pairs of elements that are related

and for a causal set sprinkled into an Alexandrov interval of Minkowski spacetime

the expected ordering fraction is a known monotonically decreasing function of di-

mension. A calculation of the variance shows that the ordering fraction accurately

determines the dimension d when the cardinality of the causal set is larger than

(27/16)d, making this dimension estimator very efficient [67,68].

Timelike geodesics A longest chain (i.e. a linearly ordered set of maximum car-

dinality) between two elements in a sprinkled causal set is a natural analog of a

timelike geodesic in the continuum, as suggested by Myrheim (p. 6 of [48]). For

flat sprinklings, the cardinality of a longest chain multiplied by the fundamental

length, L—given by ρ = L−d where ρ is the sprinkling density in dimension d—

and by a dimension-dependent constant, md, of order 2 is close to the associated

timelike geodesic’s continuum-length (i.e. the proper time along it) for long enough

geodesics (see pp. 6-7 in [69], [70, 71]). Bachmat has shown that this result about

longest chains extends in the continuum limit, ρ → ∞, for sprinklings into curved

spacetime (Theorem 1.1 in [72], Chapter 3.6.2 in [73]). It remains to be determined

under what circumstances the longest chain is an accurate geodesic length estimator

at finite sprinkling density in curved spacetime.

Approximately flat Alexandrov intervals

The MM dimension is an efficient dimension estimator for sprinklings into flat

Alexandrov intervals and it should also be applicable to sprinklings into curved

spacetime because every Lorentzian manifold ‘is approximately flat, locally’. This

heuristic suggests a strategy, sketched by Bombelli on p. 83 of [65], for determining

the dimension: namely, taking a sample of ‘mesoscale’ order intervals in the causal

set which would correspond to approximately flat Alexandrov intervals with volumes

large compared to the Planck volume and small compared to any curvature scale,

and calculating the MM dimension of such intervals. A stable value for the MM

dimension from such mesoscale intervals uniformly covering the causal set would

then be a good measure of the dimension of (M, g).

There is a subtlety here, however: even in a GR spacetime that satisfies the condition

that the curvature scale is large compared to the Planck scale, not all Alexandrov

intervals of the same mesoscale need be approximately flat. The reason is that when

the timelike geodesic between the two endpoints of the interval is close to null, the

volume of the interval can remain small in magnitude compared to any curvature

scale, even though the interval itself can stretch across a region of the spacetime

in which the curvature varies significantly (see Figure 1 in [74]). Such a ‘long and

skinny’ Alexandrov interval may not be approximately flat even though it has small

volume due to the presence of nonzero Weyl tensor; and the MM dimension of the

corresponding order interval in a sprinkled causal set would be inaccurate. However,

in the continuum, for every point p in a GR spacetime, there is a large family

of mesoscale Alexandrov intervals each containing p, which are all approximately
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flat and are related to each other by approximate Lorentz boost symmetries. In

order for a causal set C to be manifold-like, therefore, for each element x there

must be a corresponding set of mesoscale order intervals in C that contain x and

are approximately flat. In principle, one could search through all mesoscale order

intervals containing x and check that some large subset of them give a stable result

for the MM dimension. If one can cover the whole causal set with such mesoscale

order intervals with stable MM dimension, that is evidence of manifold-like-ness.

In the sprinkled causal set identifying the order intervals that correspond to ap-

proximately flat Alexandrov intervals, is clearly important. One way to do this is

by comparing the abundances of small sub-order intervals within each candidate

mesoscale order interval and comparing it to what they would be in sprinklings into

flat intervals of dimension d [74]. As the abundances depend on dimension, this

would in itself be, effectively, a dimension estimator.

Spatial topology and geometry The Lorentz invariance and consequent non-locality

of causal sets mean that they struggle to reproduce spacelike geodesics and spacelike

geodesic distance, as explained in [70]. Some progress has been made, however, with

promising evidence for one proposal for flat sprinklings [75].

Where spatial information pertains to a Cauchy surface, however, this anchors the

problem and tames the nonlocality somewhat, so that more can be done. For ex-

ample, a Cauchy surface can be associated to a thickened maximal antichain, where

an antichain is a set of mutually unordered elements and the thickening includes all

elements, y to the future, say, of the antichain which have no more than k, say, ele-

ments between y and the antichain. Information about the spatial topology [76,77]

and geometry [78] of the associated Cauchy surface can be deduced from the order

restricted to the thickened antichain.

Ricci scalar curvature and Ricci tensor components The discovery of a linear op-

erator on scalar fields on causal sets that recovers the scalar D’Alembertian on

Minkowski spacetime was a major breakthrough [79]. In fact, a one parameter fam-

ily of such operators exists (eq. 7 of [79]) with the parameter being a non-locality

or smearing scale that acts to tame the fluctuations around the expected value. It

was then found that the mean of this linear operator acting on a constant field

equal to −2 on a causal set sprinkled into an approximately flat interval of curved

spacetime is close to the Ricci scalar curvature [80–82]. A systematic analysis of the

fluctuations of this scalar curvature estimator remains to be done.

There are a number of ideas for the recovery of more components of the curvature

tensor. For example, Myrheim showed that the deviation of the continuum volume

of an approximately flat Alexandrov interval from the Minkowski spacetime value

depends on both the Ricci scalar and the component of the Ricci tensor in the

direction of the timelike geodesic between the ends of the interval [48]. Once one has

recovered the Ricci scalar, therefore, this will allow the recovery of the component

Rtt along a particular timelike geodesic.

Spacelike hypersurface volume and extrinsic curvature Another causal set concept

that can correspond to a hypersurface in the continuum is a partition of the causal
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set into two parts (i.e. two jointly exhaustive and mutually exclusive subsets). For

a spacelike hypersurface, information about the geometry of that hypersurface—the

3-volume and the integral of the extrinsic curvature—can be recovered from certain

causal set functions (eqs (9) and (12) of [83]): at least in four dimensions, where

there is evidence that the fluctuations are small (Section 3.4 of [83]).

Area of causal horizon In the continuum, a causal horizon—a generalisation of the

concept of black hole event horizon that includes cosmological horizons and accel-

eration horizons—is the boundary of the causal past of a future infinite timelike

worldline. A timelike worldline corresponds to a maximal chain. So in the causal

set, the causal horizon corresponds to the partition of the causal set into the past

of the chain and the complement of the past of the chain. Where there is a causal

horizon intersected by a spacelike hypersurface in the continuum, this corresponds

to two partitions of the causal set: intersecting these partitions gives a partition

of the causal set into four parts. The continuum area of the intersection of the

causal horizon with the spacelike hypersurface can be shown to be equal to the

continuum limit of the expected value of a causal set function depending on this

partition of the causal set into four parts (Eq (2.1) of [84]). An analysis of the

fluctuations for individual causal sets remains to be done. We can hope that, since

the geometric quantity recovered is an area and therefore itself an integral of a local

quantity, like the 3-volume above, the fluctuations will be well behaved, at least in

four dimensions.

4 Alternatives to causal sets?

In this Section, we turn to supporting Claim 2 from Section 2.2: that causal sets are the

only proposal, known so far, for sets of fundamentally discrete Planck scale DPD that

recover GR spacetimes.

We make the claim—despite our of course not knowing all the relevant papers—on

the basis of an argument that the most familiar discrete manifolds, namely lattices and

simplicial complexes, which might seem to be counterexamples to our Claim, do not do

the job.

We present this argument in Sections 4.1 and 4.2. In short, we will argue that (a natu-

ral formulation of) the Hauptvermutung—i.e. a natural discrete-continuum correspondence—

for a Lorentzian simplicial complex fails. Since it is the Lorentzian character of the desired

recovered continuum that is their downfall, we also briefly discuss (in Section 4.3) why this

objection to lattices and simplicial complexes as DPD does not apply to the Riemannian

case.

Before giving the argument, we first clarify what we mean by simplicial complex. As

already mentioned in Remark C of Comment 3 in Section 2.1 and Remark B in Section 2.2:

there are two conceptions of a simplicial complex, which we call the geometric simplicial

complex and the combinatorial simplicial complex. The former is (in dimension d) a union

of k-simplices, for k = 0, 1, 2, . . . d, which are pieces of k-dimensional flat space (either

Euclidean space if this is a Riemannian geometric simplicial complex, or Minkowski space-

time if this is a Lorentzian geometric simplicial complex) satisfying certain conditions. If
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this geometric simplicial complex satisfies certain further conditions it will be a piecewise

flat (PF) d-dimensional manifold. On the other hand, a combinatorial simplicial complex

is discrete: it is a collection of vertices, pairs-of-vertices, triples-of-vertices etc. satisfying

a set of conditions. Geometrical simplicial complexes do not satisfy our requirement of

being discrete data sets.

Since this is an important point, we give a further argument. Suppose, for the sake of a

reductio, we allow geometrical simplicial complexes as DPD. Consider the particular case

in which the Lorentzian geometry to be recovered is 4-dimensional Minkowski spacetime

itself, and the DPD is a geometric simplicial complex that is some particular triangulation

of Minkowski spacetime. The DPD in this case, then, simply is Minkowski spacetime.

But Minkowski spacetime is not discrete, let alone discrete at the Planck scale. More

generally: a piece of a continuum flat spacetime is not the absence of data: it is substantial,

it is a continuum with all its topological, differentiable, metrical and causal structure.

It contains physical data of the sort we are excluding with our Assumption 2 (Section

2.1). However, a combinatorial simplicial complex—with or without edge lengths, triangle

areas, or other decorations—is discrete. So when we refer to a simplicial complex, we will

mean a combinatorial simplicial complex (unless specified otherwise).

Thus we emphasise again (cf. Remark B in Section 2.2) that our argument is no

obstacle to a geometric Lorentzian simplicial complex being considered, and used to ap-

proximate a continuum Lorentzian geometry.20 Indeed the triangulation of Minkowski

spacetime just considered is simply a case in which the approximation of the continuum

spacetime is perfect.

4.1 The combinatorial Lorentzian simplicial complex does not do

the job

Consider a 4-dimensional Euclidean geometric simplicial complex, S̄ that is also a piece-

wise flat Riemannian manifold. Let S be the combinatorial simplicial complex corre-

sponding to S̄. Let each edge (1-simplex) of S be decorated by a Lorentzian edge-length,

where a Lorentzian edge-length is a timelike, null (zero) or spacelike length and also a

future pointing direction in the case of timelike or null edges. Denote these decorations

collectively by dec. We call (S, dec) a Combinatorial Lorentzian Regge Complex (CLRC).21

Now let the discrete-continuum correspondence—which we will call: DCC-CLRC—

be as follows. (Note the contrast with Section 3.2’s discrete-continuum correspondence

for causal sets, DCC-C.)

A CLRC, (S, dec), recovers the GR Spacetime (M, g) if the following conditions hold.

20Note the direction of the approximation relation here.
21We call this a Regge Complex because in Regge calculus, the edges of a geometric simplicial complex

are decorated by edge-lengths and those edge-lengths determine the geometry of each simplex of the

complex if the interior metric is flat, as is assumed in Regge calculus [85,86]. In Regge calculus there are

consistency conditions on the Lorentzian edge-lengths of a simplex if the interior flat metric is to have a

Lorentzian signature ( [86]). We do not impose signature conditions on the Lorentzian edge-lengths, dec,

at this stage of defining a CLRC. Signature conditions will be (implicitly) imposed within the upcoming

proposal for a discrete-continuum correspondence between a CLRC and a GR spacetime.
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(i) There is a piecewise flat manifold S̄ that is a triangulation of M such that S

is the combinatorial simplicial complex corresponding to S̄.

(ii) There is a homeomorphism f : S̄ →M such that the f -image of each edge of S̄

is a—spacelike, timelike or null—geodesic in (M, g). f induces an embedding

of the vertices of S in (M, g).

(iii) The spacetime length and future pointing direction (if appropriate) of the f -

image of each edge of S̄ in (M, g) equals the Lorentzian edge-length of the

corresponding edge of (S, dec) up to some tolerance.

(iv) The edge-lengths are no greater that a few Planck units.

(v) The characteristic distance over which the continuous geometry (M, g) varies

appreciably is everywhere much greater than the Planck length/time.

We admit that this definition, DCC-CLRC, is not the only possible definition of a

Planck scale discrete-continuum correspondence for CLRCs. But it is reasonable and it

builds on one’s intuitions about geodesic domes and similar examples, as discussed in

Section 3.1.1. It is also intuitive in the sense that the metric in GR is, more often than

not, given by a line element, ds2 = gµν(x)dxµdxν and the geodesic edge-length data

corresponds directly to continuum metric information on short line segments.

We now show that the Hauptvermutung for DCC-CLRC fails by providing a coun-

terexample. More specifically, we will exhibit a CLRC that, according to DCC-CLRC,

“recovers” both Minkowski spacetime and a spacetime with a gravitational wave burst

(and, in fact, many spacetimes with different gravitational wave bursts). In view of our

requirement of essential uniqueness (Remark B in Comment 3 of Section 2.1), this “double

win” is a failure.

Let S̄ be the triangulation of 4-d Euclidean space, R4, used in [87].22 The vertices

of the triangulation are the vertices of the integer lattice. The unit 4-d hypercube at

the origin with the 16 vertices {(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1), . . . (1, 1, 1, 1)}
is triangulated into 24 4-simplices. Each of these 24 4-simplices is the convex hull of

a monotonic path on the lattice from (0, 0, 0, 0) to (1, 1, 1, 1). There are 15 edges or

“lattice vectors” that point from (0, 0, 0, 0) to each of the other vertices of the hypercube

and these lattice vectors are labelled 1-15 by reading their vector components as binary

numbers, so that the lattice vector (1, 0, 0, 0) is labelled 8, for example. This fundamental

triangulated unit hypercube is translated all over the integer lattice—one such hypercube

at each lattice vertex—to give S̄. We take the combinatorial complex, S, corresponding

to S̄ and label its edges with Lorentzian length labels given in the following table in units

of the Planck length, lp, and Planck time, tp:

22Note that Rocek and Williams use the word ‘edge’ to mean edges of the underlying lattice only and

use “face diagonals”, “body diagonals” and “hyperbody diagonal” to refer to the other 1-simplices. But

we use ‘edge’ to refer to any 1-simplex. Note also that Rocek and Williams are working in Riemannian

signature, so that the edge-lengths they quote are Euclidean edge-lengths.
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Timelike (1) Null (0) Spacelike (1) Spacelike(
√

2) Spacelike(
√

3)

8: (1,0,0,0) 9: (1,0,0,1) 1: (0,0,0,1) 3: (0,0,1,1) 7: (0,1,1,1)

10: (1,0,1,0) 2: (0,0,1,0) 5: (0,1,0,1)

12: (1,1,0,0) 4: (0,1,0,0) 6: (0,1,1,0)

11: (1,1,0,1) 15: (1,1,1,1)

13: (1,1,0,1)

14: (1,1,1,0)

Also, the timelike and null edges are future-directed in the direction of increasing first

coordinate. This, then, is our CLRC, (S, dec). It corresponds to the geometric Lorentzian

simplicial complex in [27] which is the triangulation of Minkowski spacetime corresponding

to S̄ and the Lorentzian edge-lengths dec are the Minkowski spacetime proper lengths of

the geodesics which are straight lines in the canonical inertial coordinate system defined

by the fact that M = R4

According to the DCC-CLRC, (S, dec) recovers Minkowski spacetime, (Mmink, gmink).

This is straightforward but for completeness, let us explicitly check that the conditions (i)

to (v) of DCC-CLRC are satisfied. (i): By definition of S, the required S̄ is the triangu-

lation of R4 described above. (ii): The manifold for Minkowski spacetime is Mmink = R4

and its canonical coordinate system is inertial. The triangulating map f : S̄ → Mmink

is the identity from R4 to R4 and the edges of S are embedded, via this map, as straight

coordinate lines between vertices. (iii): These straight coordinate lines are geodesics in

Minkowski spacetime and have the spacetime proper lengths matching the Lorentzian

edge-lengths dec given in the table. Finally, (iv) and (v) are satisfied.

Now, this simplicial complex (S, dec) violates Lorentz invariance—just as its Rieman-

nian version violates Euclidean symmetry and this may be enough reason for some to

reject it as possible DPD in a quantum gravity theory. But we have a much more serious

charge: (S, dec) does not recover Minkowski spacetime at all because there are many other

GR spacetimes that, according to the discrete-continuum correspondence, DCC-CLRC,

are “recovered” by (S, dec).

To construct an example of such a spacetime, we will use the widely known fact that

the distribution of the embedded vertices of S induced by f is not actually uniform in

Minkowski space. The distribution only seems uniform in the frame preferred by the

complex in which the images of the vertices under f form the integer lattice. When

boosted, in the z-direction say, this distribution is revealed to be very far from uniform:

see for example Figure 1(a) of [56]. Indeed the boosted distribution of f -image-vertices

has large voids: large, physically nice, regions of spacetime in which there are no f -image-

vertices. By ‘large, physically nice regions’ we mean regions of spacetime that contain

approximately flat Alexandrov intervals of spacetime volume large on the Planck scale.

Thus arises the possibility that there is curvature or physics—e.g. a gravitational wave

burst—in the voids, that does not register (get encoded) at all in the edge-lengths that

decorate the CLRC. This will be the basis of our counterexample.

In Figure 2 is shown the x = y = 0 plane of the integer lattice in Minkowski space—

with inertial coordinates {t, x, y, z}—with the x and y dimensions suppressed. Let u :=
1√
2
(t− z) and v := 1√

2
(t+ z) be null coordinates in the z direction. The shaded region in
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Figure 2: The diagram represents both Minkowski spacetime and the spacetime (3) with a

plane gravitational wave burst. The integer lattice of image-vertices in the plane x = y = 0

is shown and most edges are not drawn. The shaded region is 0 < t − z < 1 and is

empty of vertices. In the gravitational wave spacetime the shaded region is the support

of the wave burst. The labels I and II refer to two hypercubes at (0, 0, 0, 0) and at

(1, 0, 0, 0) respectively which intersect the support of the wave burst. All other coordinate-

hypercubes that intersect the support of the wave burst are isometric either to I or to

II.

Figure 2.3 is the open region 0 < u < 1√
2

which is crossed by image-edges of the complex

but is empty of image-vertices: it is a void. If the lattice is boosted in the z-direction,

the distribution in the u direction stretches by some factor b and by factor b−1 in the v

direction. When the γ factor of the boost is very large then b ≈ 2γ. Choosing γ = 1044,

say, the height of the void in the time coordinate becomes of the order of one second and

contains Alexandrov intervals of height one second: the void is physically nice and large.

We now exhibit a GR spacetime which is also ‘recovered’ by (S, dec) according to

DCC-CLRC. Let (M, g) be a perturbation of Minkowski spacetime that is a plane-fronted,

transverse traceless gravitational wave burst in the z-direction:

ds2 =− dt2 + dz2 + (1 + εh(u))dx2 + (1− εh(u))dy2 , (3)

where the support of h(u) is 0 < u < 1√
2
, and u := 1√

2
(t− z) as before. The spacetime is
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flat for u ≤ 0 and u ≥ 1√
2
. The manifold M is R4: the point (t, x, y, z) ∈ R4 is the point

in (M, g) with coordinates (t, x, y, z), in the obvious way.

We now check that the conditions (i) to (v) of DCC-CLRC hold. (i): By definition of S,

the required S̄ is the triangulation of R4, exactly as in the case of Minkowski spacetime.

(ii): Let f : S̄ → M be a homeomorphism that is a perturbation of the identity map

chosen such that:

(a) f is the identity outside the support of h(u) so that f maps the vertices of S̄ to the

points with integer coordinates in (M, g) and the support of h(u) is therefore empty

of image-vertices.

(b) f maps the edges of S̄ to the geodesics between the corresponding embedded vertices

in (M, g).

Such a homeomorphism exists because (3) is a perturbation of Minkowski spacetime and

there is a unique geodesic between two vertices of one coordinate-hypercube. (iii): Most

of the geodesics are between vertices that lie outside the support of h where the metric is

flat and so they are straight lines in the coordinates {t, x, y, z} of (3) and have the same

length as in Minkowski spacetime. For the geodesic edges that cross the support of h, it

can be shown that they have the same length as in Minkowski spacetime to first order in

ε, provided that we choose h to satisfy the constraint:∫ 1√
2

0

duh(u) = 0 . (4)

The details of the calculation are given in the Appendix A. Furthermore, condititon (iv)

holds. The only condition that might give one pause is (v). We deal with the doubt that

(v) holds as a response to Objection 1, below.

There are many choices of wave packet contour h(u) that satisfy the criterion (4);

and for each choice, there is a GR spacetime that is “recovered” by (S, dec) according to

DCC-CLRC. Thus the requirement of essential uniqueness (Remark B of Comment 3 in

Section 2.1) fails. And so we conclude that DCC-CLRC does not work as a statement of

the recovery of a GR spacetime from a CLRC.

We now consider three possible objections to this conclusion. (Some other objections

will be addressed in Section 5.)

Objection 1 :— The spacetime (3) does not satisfy condition (v) of the DCC-CLRC because

it varies on the scale of the discreteness; and so it should be dismissed out of hand.

Reply : Were this a Riemannian geometry, this objection would be valid. However, the

gravitational wave spacetime is Lorentzian: and in a boosted coordinate system, the

support of the wave burst is revealed to be a physically nice, large region of spacetime in

which the contour of the burst varies slowly on the discreteness scale.

For definiteness, consider the coordinate transformation, {t, x, y, z} → {t′, x, y, z′}
which is a boost in the z direction such that {u, v} → {u′, v′} where u′ = bu and v′ = b−1v

where b ≈ 2γ and the γ factor is of order 1044. Then the metric (3) in the new coordinates

is

ds2 =− dt′2 + dz′
2

+ (1 + εH(u′))dx2 + (1− εH(u′))dy2 , (5)
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where H(u′) = h(u) and the support of H(u′) is 0 < u′ < 1√
2
b. This is the same GR

spacetime, expressed in different coordinates. The derivatives of H with respect to t′ and

z′ are small, the curvature components are small on Planckian scales and the support is a

physically nice region containing approximately flat Alexandrov intervals of proper height

of order one second. The concrete definition given in Comment 2 of Section 2.1 is satis-

fied because {t′, x, y, z′} is approximately an inertial coordinate system everywhere in the

support of the burst and in these coordinates the Riemann tensor is given approximately

by second derivatives of εH(u′).

Objection 2 :— The spacetime (3) is unphysical: it is only a vacuum solution at linear

order; the wave has no physical scale being a free wave packet on a Minkowski spacetime

background; and it is infinite in extent. It is not included in the collection of GR space-

times that must be recovered by theory X, mentioned in Comment 2 in section 2.1. A

realistic gravitational wave burst would not be a counterexample to the CLRC Hauptver-

mutung.

Reply : In a more realistic spacetime containing a gravitational wave burst, the finite space-

time support of the packet, the existence of other curvature structure in the universe, and

the discreteness of the—assumed—underlying physical data all place limits on the Lorentz

transformations that are relevant physical symmetries. In a realistic spacetime, the γ fac-

tor of a Lorentz transformation that is relevant here as a physical symmetry is bounded

above by the ratio of the scale on which the curvature starts to be non-negligible to the

scale of the discreteness. In the observable universe, for example, the largest possible γ

factor that needs to be considered is smaller than 1060, the Hubble horizon size in Planck

units.23

But the counterexample we have given does not depend on Lorentz symmetry with

arbitrarily high γ factors. It depends on there being a symmetry with γ factor of 1044—or

lower if one considers wave bursts of, say, milliseconds or shorter duration to be part of

GR. For the conclusion drawn from the counterexample to be valid, it is enough that there

exist two realistic GR spacetimes—to be recovered by the theory X—that differ only by

the presence or not of a plane gravitational wave burst in a region of spacetime that is:

close to flat, large compared to 1044 times the Planck length, and such that a Lorentz

transformation with gamma factor 1044 is an approximate symmetry. For example, the

spacetime between galaxies with and without a millisecond gravitational wave burst would

satisfy these conditions [88].

Objection 3 :— The DPD could be a set of combinatorial simplicial complexes, such that

for each local Lorentz frame there is a member of the set that is uniform in that frame.

Reply : The discrete-continuum correspondence for such a set of data would involve an

embedding of the vertices of all the simplicial complexes into the recovered spacetime.

With one complex for each frame, that would result in a density for the vertices’ embedding

much higher than Planckian, if not infinite. Such data would contradict our assumption

23If one only needs to recover GR spacetimes of the size of the observable universe in which there is a

limit to the γ factors of the Lorentz transformations one need consider, a lattice or CLRC with spacing

equal to 10−60 times the Planck length/time might be able to provide all the geometric information to

recover such a GR spacetime. However, such a lattice/CLRC would violate the assumption of Planck

scale discreteness.
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that the discreteness is Planckian in scale.

4.2 Avoiding voids?

The failure of the Hauptvermutung means that the discrete-continuum correspondence

DCC-CLRC does not hold good: the continuum is not recovered by a CLRC that satisfies

the conditions of DCC-CLRC. The underlying reason for the failure of DCC-CLRC in

the example above is the presence of a large, physically nice void region in the putative

continuum, for which the only discrete data are the lengths of the geodesic edges that cross

the void; but that information is not nearly rich enough to encode the Lorentzian geometry

in the void. (Recall the Reply to Objection 1 in Section 4.1.) Moreover, there are voids

everywhere, not just the one highlighted by the gravitational wave burst example. We

conclude: the CLRC, (S, dec), of our counterexample is not approximated by a Lorentzian

manifold at all.

One might attempt to avoid this conclusion by eliminating voids: that is, by amend-

ing the discrete-continuum correspondence for CLRCs so as to require the number-volume

correspondence for the embedding of the vertices of the CLRC in the manifold, i.e. con-

dition (i) in DCC-C of Section 3.2 (Planck-scale uniformity). But there are two problems

with this suggestion.

Firstly, if the vertices and the timelike and null edges of the simplicial complex form a

directed acyclic graph then its transitive completion will be a causal set. Then, if Planck-

scale uniformity holds for the embedded vertices of the complex, then either this causal

set will be faithfully embedded in the GR spacetime or the order relation of the causal set

defined by the directions on the complex’s edges will not be consistent with the spacetime

causal order of the embedded vertices in the GR spacetime. The latter would be an

inconsistency between the DPD and the continuum and would be hard to work around.

The former case implies that for a CLRC to provide a genuine alternative set of DPD

to a causal set whilst incorporating Planck-scale uniformity of embedding of vertices, the

CLRC would have to have mostly or all spacelike edges. Even in that case, one could

argue that from the information about the spacelike edge-lengths a unique causal order

on the vertices of the CLRC should be deducible and so again with the imposition of

Planck-scale uniformity on the embedded vertices of the complex, the complex would be

effectively providing a faithfully embeddable causal set.

A second, stronger argument against the possibility of eliminating voids by adding a

requirement of Planck-scale uniformity is that a triangulation of a Lorentzian spacetime

cannot be constructed from a properly uniform distribution of embedded vertices, with-

out introducing a frame. We note in particular that the constructions of Voronoi graphs

and Delaunay triangulations from a set of embedded vertices, which are so natural in

Riemannian geometry (e.g. [89]), do not work for Lorentzian manifolds, and a supplemen-

tary frame must be introduced and used—as, for example, in [90]. More generally, the

basic obstruction to a Lorentz-invariant simplicial complex is the contradiction between

(i) the local nature of a simplicial complex with its concept, inherent in its structure, of

nearest-neighbour vertices joined by 1-simplices and (ii) the non-locality of the Lorentzian

geometry. For example, in a uniform, Poisson distribution of embedded vertices, a given

vertex will have a nonlocal set of hugely, if not infinitely, many physically nearest neigh-

31



bours, hugging its past and future lightcones—as discussed in Section 3.4.1—which a

simplicial complex cannot accommodate.

Finally, we note that the counterexample and all the above arguments apply also

to Lorentzian low valence graphs24 including the special cases of Lorentzian “lattices”

(graphs-with-symmetry). For consider: a CLRC contains within itself a Lorentzian low

valence graph which is its 1-skeleton, the set of its vertices and edges. So we can take the

decorated 1-skeleton of the CLRC (C, dec) of our counterexample constructed from the

integer lattice, and use it as a counterexample to any proposed DCC for Lorentzian low

valence graphs.

4.3 The contrast with the Riemannian case

We make no strong claim one way or the other about whether a Riemannian geometry

can well approximate a Riemannian combinatorial simplicial complex or graph. However,

we find plausible the claim that it can; and w will briefly give our reasoning here since it

is illuminating to contrast with the Lorentzian case.

Euclidean transformations of an embedding of vertices in Euclidean space preserve the

uniformity—or non-uniformity—of the embedding in any Cartesian coordinate system.

For example, consider the same combinatorial simplicial complex, S, as above, with its

vertices on the integer lattice, and with its edges decorated with the Euclidean edge

lengths. The distribution of embedded vertices is uniform in every Cartesian coordinate

system: the number-volume correspondence holds for the number of vertices embedded

in any sufficiently large, physically nice region of 4-dimensional Euclidean space. What

about the “void region” identified above in the Minkowski space case: isn’t it still there in

the Euclidean case? That void region causes trouble in the Minkowski case because it is

of large volume and physically nice. (Recall the Reply to Objection 1 in Section 4.1.) In

Euclidean space, that void region has the same large volume but it is not physically nice:

it has physical, geometric structure on scales smaller than the discreteness scale. For its

width, in the z-direction or the t-directions, is unchanged by any Euclidean translation

or rotation.

As regards the recovery of topology and curvature, there are longstanding concepts of

scale-dependent Hausdorff dimension and spectral dimension for combinatorial Rieman-

nian simplicial complexes. There are also more recent proposals for associating curvature

to a graph that give zero curvature for regular lattices uniformly embeddable in flat

space [91,92]; and there is evidence that the Ollivier curvature of a graph embedded in a

Riemannian manifold tends to the continuum curvature when the density of the embedded

vertices of the graph tends to infinity [93].

5 Replies to objections

With our main argument now completed, we will in this Section reply to two objections

that might be made. (The next Section will reply to another, for which our reply will need

24Causal sets are graphs—transitive directed acyclic graphs—and the condition of low valency is to

make sure these graphs are genuine alternative DPD sets to causal sets.
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a brief discussion of the dynamics of causal sets.) But before stating the two objections,

we stress for clarity that of course, one might reject one or more of our argument’s

assumptions. Here are two examples.

Thus someone might say: ‘One does not need to recover General Relativity’. To

which, our reply is in two parts. First: This is a denial of Assumption 1, as discussed in

Comments 1 and 2 of Section 2.1. But fair enough: some kind of alternative theory of

gravity (ATG) in which Lorentz invariance is violated, e.g. in which there is a preferred

frame related to an aether field or a class of “observers”, might replace General Relativity

as a better theory of gravity and of spacetime at macroscopic scales. And in that even-

tuality, our argument as it stands does not apply. But, second: if it were claimed that

such an ATG at macroscopic scales can be recovered from a Planck scale discrete theory

of quantum gravity, then our argument provides a framework for investigating whether

and how a Planck scale discrete theory of quantum gravity might recover an empirically

adequate ATG at macroscopic scales. For example, in the case of an ATG whose kine-

matics includes a Lorentzian spacetime, (M, g) and a preferred timelike vector field, V ,

one might propose the DCC-CLRC of Section 4.1 with condition (v) modified thus: ‘the

characteristic distance/time over which the continuous geometry (M, g) varies apprecia-

bly is everywhere much greater than the Planck length/time in frames in which V has

components (V 0, 0, 0, 0)’. Agreed, this would invalidate the counterexample of the gravi-

tational wave burst (3), assuming that V µ = (V 0, 0, 0, 0) in coordinate system {t, x, y, z}.
However, there must be approximate Lorentz invariance in the recovered ATG in order

to be consistent with our observations to date and it would be necessary to show how the

proposed DCC can be compatible with approximate Lorentz invariance.

Or someone might say: ‘Theory X could be fundamentally discrete, while the Physical

Data that is derived from the theory in a grounding state is not Planck scale discrete’.

To which, our reply is: ‘This is a denial of Assumption 2 as discussed in Comment 3

of Section 2.1. But fair enough: one can reject the rationale for Planck scale spacetime

discreteness—including the finite value of the black hole entropy [94]—and maintain that

the physics of, and in, a finite spacetime region in General Relativity requires theory X

to supply an infinite amount of information; or, at least, information about Lorentzian

geometry at sub-Planckian scales. In short: we admit this is possible.’

Objection 4):—‘Here is a discrete-continuum correspondence for Combinatorial Complexes

that will work: Fill the simplices of the CLRC with patches of flat spacetime so as to

form the corresponding Geometric Regge Complex (GRC). Smooth the corners of this

piecewise flat Lorentzian manifold to form the differentiable manifold (MCLRC , gCLRC).

We then declare a GR spacetime (M, g) to be a good approximation to the CLRC if (M, g)

is approximately isometric to (MCLRC , gCLRC).’

Reply : This natural-seeming proposal for the discrete-continuum correspondence for

CLRCs is based on the assumption that filling in the simplices with patches of flat space-

time is the essentially unique way to produce a spacetime that (i) agrees with the data

of a CLRC and (ii) has curvature that only varies appreciably on scales much larger than

the Planck scale. In other words, it assumes that if one were to fill in the simplices of a

CLRC with non-flat Lorentzian geometry, then the resulting manifold (smoothed if nec-

essary) would necessarily be unphysical because it would have curvature that varies on

sub-Planckian scales.
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Now, this assumption may be valid for combinatorial Riemannian simplicial complexes

(and we believe it is). But it is false for CLRCs: filling in with a non-flat metric does not

necessarily give a spacetime with curvature that varies on sub-Planckian scale. Indeed,

our gravitational wave example shows exactly that: the spacetime (3) is the result of filling

in the simplices of (S, dec) with non-flat geometry and yet, (3) does not have curvature

that varies on smaller than Planckian scales as shown by (5).

Objection 5):— ‘Your arguments are not background-independent. Both the DCC-C and

the DCC-CLRC are given in terms of an embedding of the DPD into a background.’

Reply: The definitions of DCC-C and DCC-CLRC are perfectly background-independent.

For, in neither case is (M, g) any kind of background. Rather, (M, g) is the candidate

recovered spacetime. The DCC-C for example says: a GR spacetime is recovered by a

causal set if there exists an embedding of the causal set in the spacetime satisfying cer-

tain conditions. This is a background-independent and coordinate-independent criterion.

Agreed: we use labels and coordinates to define the embeddings that we analyse above.

But the existence, or not, of a suitable embedding is a background-independent condition.

6 Causal sets as the basis of a theory of quantum grav-

ity

In this Section we motivate and briefly describe the basics of the causal set programme

for quantum gravity (for reviews see [52–54,63]; and for philosophical discussion see [95]).

The rationale for doing so in this paper is that it enables us to address a further possible

objection to our argument in a concrete setting. The objection is as follows.

Objection 6 : A quantum gravity theory X will not produce one exact causal set or one

exact simplicial complex as DPD. There must be some irreducible uncertainty in the

data, notwithstanding Remark A of Comment 3 in Section 2.1, viz. that to recover a GR

spacetime, one must at some point get classical data. This fundamental uncertainty may

(a) disallow causal sets as Planck scale DPD-sets, and-or (b) allow simplicial complexes

to overcome the obstacle you have presented in Section 4.

We will come to our response shortly. For it will be clearest to set the scene by

reviewing the causal set programme. The first thing to do is to develop a little the

kinematics/dynamics contrast that we mentioned before, e.g. in Remark A of Section 2.2.

Thus it is useful to divide work on causal sets into the categories of kinematics, dynamics

and phenomenology: the substance, its laws, and how it reveals itself, respectively. The

recovery of GR is assumed to be part of the phenomenology of causal set theory if it

is to be a successful theory of quantum gravity. And there is also phenomenology that

goes beyond the recovery of our known theories. An example of this is the successful

prediction of the order of magnitude of the cosmological “constant” today [53]; and the

further development of the cosmological model of Everpresent Lambda [96, 97]. In this

paper, Section 3 has dealt with what one might call the kinematical emergence of the

continuum from causal sets; and so we now address the dynamical emergence of the

continuum from causal sets.

Causal set theory makes the hypothesis that quantum gravity is based on a path

34



integral, or Sum Over Histories (SOH), in which the histories summed over are causal

sets. The hypothesis that the histories are causal sets brings together various traditions of

thought, including fundamental atomicity, rejection of infinity in physical quantities, and

causal order as a more primitive organising principle even than space and time [35, 98].

More modern physical motivations for fundamental spacetime discreteness include the

problems of continuum physics that Sorkin [52] has dubbed the ‘three infinities’—Z =∞
(where Z is the partition function, referring to the infinite values of physical quantities in

quantum field theory that renormalisation tries to take care of), Rabcd =∞ (referring to

the infinite curvatures and tidal forces at singularities predicted by GR) and SBH = ∞
(referring to the infinite entropy of a black hole due to the entanglement of quantum field

modes inside and outside the horizon [94]).

Starting from any one of its main ingredients—the path integral, spacetime discrete-

ness and the primitivity of causal order—there are many roads to causal set theory. Here

is one that begins with the path integral:

(i) The path integral framework for quantum theory respects the relativistic world view

in which the world is fundamentally 4-dimensional, whereas the canonical framework does

not [99]. We should use the path integral as the basis for a theory of quantum gravity.

(ii) Fundamental discreteness of the spacetime histories in the path integral for quantum

gravity eliminates the technical problems of the existence/convergence of the SOH and

also has the potential to solve the problems of the ‘three infinities’..

(iii) The KPHM theorem tells us that causal order is the physical information that one

needs to add to a discrete manifold (in Riemann’s sense, cf. footnote 2) of spacetime

atoms, in order to recover Lorentzian geometry: for each distinguishing Lorentzian man-

ifold, there are causal sets to which that Lorentzian manifold is a good approximation.

(iv) Overall, a sum over causal sets does justice to the widely-accepted heuristic of a

gravitational path integral over geometries, whilst embodying fundamental discreteness.

In the causal set literature, it is argued that the SOH is over all causal sets of a fixed

cardinality n [96]: let us adopt that assumption. But the set of all causal sets of a fixed

cardinality is much larger than the set of causal sets that are faithfully embeddable in

4-dimensional GR spacetimes: for two reasons. (i): The sum includes causal sets that

are faithfully embeddable in any distinguishing Lorentzian manifold of any dimension

and any topology (so long as it is consistent with the geometry being slowly varying on

the discreteness scale and the spacetime volume being finite) not just 4-dimensional GR

spacetimes. This accords with the broadest construal of the heuristic of the gravitational

path integral, namely as being over all manifolds as well as metrics. (ii): But furthermore

the SOH also includes causal sets that are not faithfully embeddable in any Lorentzian

geometry at all – the so-called non-manifold-like causal sets. This class of non-manifold-

like causal sets dominates the set of all causal sets, in the following sense: the probability

that a randomly chosen poset in the set of all posets of cardinality n is a Kleitman-

Rothschild (KR) 3-layer poset—i.e. a three-layer poset with roughly n/2 elements in

the middle layer and n/4 elements in the first and third layers—tends to 1, as n tends to

infinity [100]. Moreover the number of KR orders grows like 2n
2/4, i.e. super-exponentially

in n.

This means that the primal struggle between ‘entropy’ and ‘action’ in the SOH for
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causal sets is of crucial importance. The KR orders and other non-manifold-like causal

sets dominate in number. But they had better not dominate in contribution to the SOH,

or there would be no continuum regime: in the terminology of this paper, there would be

no grounding states. This entropic challenge is the manifestation of (one aspect of) the

cosmological constant problem in causal set theory. For if the cosmological constant term,

Λ, takes the value expected from local Effective Field Theory ‘naturalness’ arguments, Λ

would be 10120 times its observed value and would give rise to curvature on Planckian

scales and preclude a smooth continuum regime.

The action, or more generally, the dynamical laws for causal sets, had better have

the wherewithal to overcome the numerical dominance of non-manifold-like causal sets.

Sorkin has argued that only a nonlocal action/dynamics has any hope of doing this; and

this expectation is supported by results in both classical and quantum models for causal

set dynamics. For example, in each model in the physically motivated class of nonlocal,

classical stochastic dynamics known as Classical Sequential Growth, the set of KR orders

has probability zero [101, 102]. Another example is in the context of quantum “state

sum” models: a large class of non-manifold-like causal sets—2-layer orders—is suppressed

when weighted by eiS where S is the nonlocal, causal set analogue of the gravitational

action [103]. These are models of the sort of thing that we need.

On the other hand, our hopes for recovering General Relativity from causal sets depend

on our securing locality in the continuum approximation: since this, together with general

covariance, gives the Einstein Hilbert term in the familar derivative expansion for the

effective field theory in the continuum approximation (as explained on page 523 of [1] and

stressed by Sorkin since then, including on page 6. of [53].

To sum up, there is a Goldilocks scenario in causal set theory: too much locality and

there will be no continuum regime (no solution to the manifestation of the cosmological

constant problem in causal set theory); too little locality and there will be no Einstein

equations. The amount of locality in causal set theory needs to be just right.

With this brief review of causal set dynamics in hand, we now turn to the Objection. We

will now assume that a quantum causal set dynamics—of either the state sum variety, or

the growth model variety—does suppress the non-manifold-like orders in the SOH, and

that there is a continuum regime and grounding states: so that we can address the issue

of fundamental uncertainty raised in the Objection. In the context of the SOH for causal

sets, the Objection is that the DPD in a grounding state cannot be a single history, a

single causal set, since this does not do justice to our expectation of fundamental and

irreducible quantum uncertainty.

Reply: We first of all point out that even if the DPD-set were a single, faithfully embed-

dable causal set, so that there is indeed no uncertainty about the causal set’s structure,

there would nevertheless be “uncertainty” about the structure of the corresponding con-

tinuum approximation on close to Planckian scales. One might say that this is better

described as a fundamental lack of structure on those small scales. But nevertheless,

should the DPD in a grounding state in causal set quantum gravity happen to be one

faithfully embeddable causal set, one could declare that this is how ‘fundamental quantum

uncertainty about spacetime on Planckian scales’ turned out to manifest itself in quantum

gravity.
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The above point notwithstanding, we admit that we do not expect causal set quantum

gravity to produce grounding states in which the set of DPD is a single faithfully embed-

dable causal set. Instead, we expect that a grounding state that recovers a GR spacetime

(M, g) will give rise to a DPD-set that is the (affirmation of) the event, E(M, g), where

E(M, g) is the set of all the causal sets that faithfully embed, at Planckian density, into

(M, g).

To justify this expectation and give our promised Reply to Objection 6, we need to

recall what physical properties are in a path integral quantum theory such as causal set

theory. There are two currently existing—and closely related—foundations for quantum

theory based fundamentally on the path integral: Hartle’s Generalised Quantum Mechan-

ics (GQM) [105] and Sorkin’s Quantum Measure Theory (QMT) [16, 106]. In both these

frameworks, a physical property takes the form of an event : that is, the set of histories

which have that property. Thus an event is a subset, E, of the set Ω, which is the set of

all the histories in the SOH; and the physical statements we infer from E can be inferred

from any arbitrarily chosen one of the histories in E. The inference thus depends on what

is common to the histories in E: it does not involve any property of the chosen history

that is not shared by all the other histories in E.

We note that Hartle uses the term ‘coarse-grained history’ instead of ‘event’ [105].

Both terminologies are useful: ‘coarse-grained history’ emphasises its relationship to the

individual fine-grained histories that are its elements; and ‘event’ signals that path integral

quantum theory is a species of measure theory, since ‘event’ is terminology adopted from

stochastic processes and measure theory [16]. Events are given probabilities or, more

generally, measures by the path integral—more precisely, by a double path integral or

decoherence functional.25

Though the interpretation of path integral quantum theory, in both GQM and QMT,

is work in progress, the identification of physical properties with events is in both pro-

grammes part of the axiomatic foundation. Therefore, in causal set theory, the physical

property ‘spacetime is well-described by the GR spacetime (M, g)’ is identified with an

event, a set of causal sets. And so we arrive at the statement above: ‘a grounding state

that recovers a GR spacetime (M, g) will give rise to a set of DPD that is the (affirmation

of) the event, E(M, g), where E(M, g) is the set of all of the causal sets that faithfully

embed, at Planckian density, into (M, g).’ To which we add—to articulate our expecta-

tion of fundamental quantum uncertainty—that the grounding state gives rise, as DPD,

to no finer event: to no subset of E(M, g).

So, we respond to facet (a) of the “uncertainty” Objection, as follows. For the DPD

to be, not a single causal set, but an event, E(M, g), fulfils the causal set programme’s

expectation of fundamental, quantum uncertainty in quantum gravity. The elements of

E(M, g) have the common properties that (i) they are each approximated by (M, g) and

(ii) they are each discrete at the Planck scale and have no structure at sub-Planckian

scales. That is, both these properties, (i) and (ii), are properties of each causal set in

E(M, g). We can then, for practical purposes of recovery of (M, g) take any one of the

causal sets in E(M, g)—it matters not which one—as the DPD-set that we store as bits

in our classical computer, and that recovers (M, g).

25The main difference between GQM and QMT is that in GQM only events which decohere are con-

sidered, whereas in QMT microevents which do not decohere are also considered.
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Therefore, not only is fundamental quantum uncertainty not a valid objection to our

argument; but also we see explicitly how there need be no contradiction between there

being fundamental quantum uncertainty and a single causal set being the DPD that

recovers (M, g).

Turning to facet (b) of the “uncertainty” Objection: consider a putative path integral

theory of quantum gravity in which the histories are CLRCs, as we defined in Section 4.1.

Consider an event E, i.e. a set of CLRCs. No matter how we choose event E, not one of

the CLRCs in E recovers a GR spacetime. So there can certainly be no common property

of the histories of E that is a continuum approximation. Fundamental uncertainty of

the form considered here, therefore, does not allow CLRCs to recover GR spacetimes.

Indeed it makes matters worse. A single CLRC cannot recover a GR spacetime because

it lacks information about the geometry in the voids. The information in an event is

a coarse-graining of the information in the individual histories in the event; and so the

event contains less information than each of its individual members.26

A final remark a propos this Objection: we emphasise again that this paper is not

claiming that there are grounding states and a continuum regime in quantum gravity

based on a SOH over causal sets. Rather, we claim that, if there are such grounding

states, then causal sets can do the job of recovering GR spacetimes and being Planck

scale DPD in a way that is compatible with fundamental quantum uncertainty.

7 Conclusion

The unity of physics demands that before giving up on so much scientific progress al-

ready made, we should take seriously the aim of recovering General Relativity, with its

Lorentzian geometry and Lorentz invariance, from quantum gravity. We have argued

that at our current state of knowledge, a causal set is the only kind of entity that can

be discrete at the Planck scale and can adequately encode the geometric information in

a Lorentzian spacetime at macroscopic scales.

Further, if one accepts our justification for the two Claims (given in Sections 3 and

4), then it is tempting to conjecture that no challenger to causal sets will arise in the

future. More precisely, it is tempting to conjecture that a causal set is the unique Planck-

scale DPD-set that can recover a GR spacetime as a continuum approximation. If that

is indeed so, the stronger is the motivation for an approach to quantum gravity that is

based fundamentally on causal sets.
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A Appendix

We assume the function h(u) satisfies the condition∫ 1√
2

0

duh(u) = 0 . (6)

No embedded vertices of the complex lie in the support of h(u) (see figure 2.3). There

are two coordinate-hypercubes that intersect the support of h(u) in different ways, see

figure 2.3. Hypercube I is the cube located at the origin (0, 0, 0, 0) and hypercube II is

located at (1, 0, 0, 0). Each of the other coordinate-hypercubes that intersect the support

of h(u) is isometric to one of these two.

To first order in ε, the geodesic equations for (u(λ), v(λ), x(λ), y(λ)), with λ an affine

parameter, are as follows; cf. eq. 3.

ẋ = cx(1− εh(u)) , where cx is a constant ,

ẏ = cy(1 + εh(u)) , where cy is a constant ,

u̇ = cu , where cu is a constant ,

ζ = −2v̇cu + (1− εh(u))c2x + (1 + εh(u))c2y ,

where dot denotes derivative w.r.t. λ and ζ < 0, ζ = 0 or ζ > 0 depending on whether

the geodesic is timelike, null or spacelike, respectively. When cu 6= 0, u is also an affine

parameter.

Hypercube I Consider the 15 edge-geodesics in hypercube I that start at (0, 0, 0, 0).

Since the initial value of u is zero and the derivative of u along a geodesic is constant,

u must either remain equal to 0 or increase steadily along the geodesic reaching its final

value 1√
2

at the other vertex. Only in the latter case does the geodesic enter the support

of h(u). Therefore, all embedded edges except those labelled by lattice vectors 8,10,12 and

14 are outside the support of h(u) and they are therefore straight lines in the coordinates

{t, x, y, z} and have the same lengths as they do in Minkowski space. We consider each

of the remaining edges in turn and give the geodesic to first order in ε. In all cases, the

coordinate u is an affine parameter and increases from 0 to 1√
2

along the geodesic.

8 = (1, 0, 0, 0): The geodesic is timelike and is the straight line at x = y = z = 0 of

proper time duration 1.

10 = (1, 0, 1, 0): The geodesic is null and is given by,

dt

du
=

1√
2

(2 + εh(u))

dx

du
= 0

dy

du
=
√

2(1 + εh(u))

dz

du
=

1√
2
εh(u) .
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12 = (1, 1, 0, 0): This is similar to 10. The geodesic is null and is given by,

dt

du
=

1√
2

(2− εh(u))

dx

du
=
√

2(1− εh(u))

dy

du
= 0

dz

du
= − 1√

2
εh(u) .

14 = (1, 1, 1, 0): The geodesic is spacelike has proper length 1 and is given by,

dt

du
=
√

2

dx

du
=
√

2(1− εh(u))

dy

du
=
√

2(1 + εh(u))

dz

du
= 0 .

Hypercube II There are 15 edge-geodesics in hypercube II that start at (1, 0, 0, 0),

labelled by the lattice vectors 1-15. Of those edges all except 1,3,5 and 7 are outside the

support of h(u) and are straight lines in the coordinates {t, x, y, z} and have the same

lengths as they do in Minkowski space. We list the remaining geodesics to first order in

ε. In all cases, the coordinate u is an affine parameter and decreases from 1√
2

to 0 along

the geodesic.

1 = (0, 0, 0, 1): The geodesic is spacelike and is the coordinate straight line from

(1, 0, 0, 0) to (1, 0, 0, 1). It has proper length 1.

3 = (0, 0, 1, 1): The geodesic is spacelike, is of proper length
√

2 and is given by,

dt

du
=

1√
2
εh(u)

dx

du
= 0

dy

du
= −
√

2(1 + εh(u))

dz

du
= − 1√

2
(2− εh(u)) .

5 = (0, 1, 0, 1): This is similar to 3. The geodesic is spacelike, is of proper length√
2 and is given by,

dt

du
= − 1√

2
εh(u)

dx

du
= −
√

2(1− εh(u))

dy

du
= 0

dz

du
= − 1√

2
(2 + εh(u)) .
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7 = (0, 1, 1, 1): The geodesic is spacelike, is the coordinate straight line from

(1, 0, 0, 0) to (1, 1, 1, 1) and has proper length
√

3.

In summary, all the edge-geodesics between the embedded vertices with integer co-

ordinates have the same lengths as they do in Minkowski spacetime, to first order in

ε.

References

[1] L. Bombelli, J. Lee, D. Meyer and R.D. Sorkin, Space-time as a causal set, Phys.

Rev. Lett. 59 (1987) 521.

[2] R. Carballo-Rubio, F. Di Filippo, S. Liberati and M. Visser, Causal hierarchy in

modified gravity, 2005.08533.

[3] J.F. Donoghue, Introduction to the Effective Field Theory Description of Gravity,

in Proceedings of the Advanced School on Effective Theories ; Almunecar,

Granada, Spain, 26 June-1 July 1995, F. Cornet and M.J. Herrero, eds., World

Scientific, 1997, https://arxiv.org/abs/gr-qc/9512024.

[4] C.P. Burgess, Quantum gravity in everyday life: General relativity as an effective

field theory, Living Reviews in Relativity (2004) .

[5] P. Havas, Four-dimension formulations of Newtonian mechanics and their

Relation to the Special and the General Theory of Relativity, Rev. Mod. Phys. 36

(1964) 938.

[6] A. Trautman, Foundations and current problems of general relativity, in Lectures

on general relativity, S. Deser and K. Ford, eds., Prentice-Hall (1965).

[7] D. Malament, Newtonian gravity, limits, and the geometry of space, in From

Quarks to Quasars, R. Colodny, ed., pp. 181–201, University of Pittsburgh Press,

Pittsburgh (1986).

[8] D.B. Malament, Chapter 4. newtonian gravitation theory, in Topics in the

Foundations of General Relativity and Newtonian Gravitation Theory, University

of Chicago Press, Chicago (2012).

[9] S. Chapman and T. Cowling, The Mathematical Theory of Non-uniform Gases:

An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion

of Gases, Cambridge University Press, third ed. (1991).

[10] C. Cercignani, The Boltzmann Equation and Its Applications, Applied

Mathematical Sciences, Springer New York (1987).

[11] J. Butterfield, Less is Different: Emergence and Reduction Reconciled,

Foundations of Physics 41 (2011) 1065 [1106.0702].

[12] J. Butterfield, Emergence, Reduction and Supervenience: A Varied Landscape,

Foundations of Physics 41 (2011) 920-959 [1106.0704].

41

https://doi.org/10.1103/PhysRevLett.59.521
https://doi.org/10.1103/PhysRevLett.59.521
https://arxiv.org/abs/2005.08533
https://arxiv.org/abs/gr-qc/9512024
https://doi.org/10.12942/lrr-2004-5
https://doi.org/10.1007/s10701-010-9516-1
https://arxiv.org/abs/1106.0702
https://doi.org/10.1007/s10701-011-9549-0
https://arxiv.org/abs/1106.0704


[13] J. Bell, Speakable and unspeakable in quantum mechanics, Cambridge Univeristy

Press, Cambridge, second ed. (2004).

[14] S. Saunders, B. J., K. A. and W. D., eds., Many Worlds? Everett, Quantum

Theory and Reality, Oxford University Press, Oxford (2010).

[15] N. Landsman, Foundations of Quantum Theory, Springer New York (2017).

[16] R.D. Sorkin, Quantum Dynamics without the Wave Function, J. Phys. A40 (2007)

3207 [quant-ph/0610204].

[17] LIGO Scientific Collaboration and Virgo Collaboration collaboration,

Observation of gravitational waves from a binary black hole merger, Phys. Rev.

Lett. 116 (2016) 061102.
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