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Abstract: Psychological studies show that the beliefs of two agents in a hypothesis can
diverge even if both agents receive the same evidence. This phenomenon of belief polar-
isation is often explained by invoking biased assimilation of evidence, where the agents’
prior views about the hypothesis affect the way they process the evidence. We sug-
gest, using a Bayesian model, that even if such influence is excluded, belief polarisation
can still arise by another mechanism. This alternative mechanism involves differen-
tial weighting of the evidence arising when agents have different initial views about
the reliability of their sources of evidence. We provide a systematic exploration of the
conditions for belief polarisation in Bayesian models which incorporate opinions about
source reliability, and we discuss some implications of our findings for the psychological
literature.

1 Introduction
Suppose two people, call them Alice and Bob, are members of a jury that has been appointed in
order to decide on whether the defendant in a murder case is guilty. They must assess the hypothesis
that the defendant is guilty. During the trial Alice and Bob are confronted with a number of pieces
of evidence which tell either in favour or against this hypothesis. For example, they see a police
report that a weapon such as was used in the murder was found in the defendant’s house. This
constitutes positive evidence for the hypothesis that the defendant is guilty. They also see forensic
evidence which shows that the DNA traces left on the body do not match the DNA of the defendant.
This is negative evidence which tells against the defendant’s guilt. Suppose that Alice starts out
more confident than Bob that the defendant is guilty, and after seeing the evidence, Alice becomes
even more confident that the defendant is guilty, and Bob becomes even less sure that he is. This is
a case of ‘belief polarisation’. In belief polarisation, two individuals respond to the same evidence,
but the result is not greater agreement, but more divergence in opinion.

There are experiments in psychology which arguably show that belief polarisation does occur.
In some cases, belief polarisation has been seen on a single piece of evidence (Batson, 1975; Cook
and Lewandowsky, 2016), but in a number of cases the evidence is of a mixed character (Lord et al.,
1979; Plous, 1991). That is, part of the evidence supports the hypothesis in question, whereas part
goes against it. In the most-cited study of this kind, people with differing prior views about the
effectiveness of the death penalty as a crime deterrent were asked to read two fictional studies, one
of which supported the idea that the death penalty is an effective crime deterrent, and the other
which supported the idea that it is not (Lord et al., 1979). The study purported to show belief
polarisation of the participants, though the experimental methodology has been subjected to later
critique (Miller et al., 1993; Kuhn and Lao, 1996).
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In the psychological literature, polarisation has often been taken to arise as a result of some
form of ‘biased assimilation’ of the evidence. This means that the way the evidence is taken up
or processed is biased in some fashion by the prior views of the subject. However, in order to be
precise about the notion of ‘bias’, it needs to be contrasted with some normative understanding of
what would be an unbiased way to assimilate evidence. Clearly it is not wrong for prior opinions to
play some role in belief updating. The question is whether they are, in cases of belief polarisation,
playing too much of a role, or playing the wrong kind of role. In order to gain a notion of what
‘unbiased’ could mean, we can turn to normative models provided by Bayesianism. In Bayesian
updating, prior opinion is combined with evidential information in a manner which is well-motivated
by various normative arguments. Deviation from Bayesian updating may then potentially indicate
that the agent has assimilated the evidence in a manner which has given too much weight to their
prior beliefs.

An interesting question that then arises is whether belief polarisation actually has to be at-
tributed to biased assimilation, or whether it can occur given the normatively correct method of
updating specified by Bayesianism. Jern et al. (2014) have shown that belief polarisation can occur
when two agents with different prior beliefs not just about the hypothesis in question but also about
other factors update on the same evidence according to Bayesian conditionalisation. This suggests
that belief polarisation should not necessarily be attributed to biased assimilation on the part of
one or more of the parties involved. However, it raises the question of whether a more specific kind
of explanation of belief polarisation might be possible, if we restrict attention to particular kinds
of other factors which are involved in belief updating.

A plausible candidate for a more specific kind of explanation emerges when we consider the
‘group polarisation’ we see in society on a number of important topics. Group polarisation occurs
when the beliefs held by members of subgroups in society diverge from those of other subgroups,
despite exposure to the same evidence. For example, on a number of scientific issues, notably
anthropogenic climate change, public opinion is sharply divided in the presence of shared evidence
which is not disputed by experts. Also within the scientific community, different groups may respond
to the same evidence in ways that lead to more extreme positions (Kahan et al., 2011; O’Connor
and Weatherall, 2017). It is often striking that when a group polarises, individuals diverge not only
in their attitudes towards specific propositions, but also on their views regarding the reliability of
sources of information. We see, for example, those who hold certain opinions about climate change
also tending to trust different news sources. It is natural to expect that agents have beliefs not only
about specific hypotheses about which they may disagree, but also about the reliability of their
sources of information. This prompts the question that we will address in this paper: could it be
the case that belief polarisation can result from normal Bayesian updating of both attitudes about
hypotheses and attitudes about reliabilities?

In order to explore this question, we examine simple Bayesian models which represent proper,
non-biased assimilation of evidence and how it impacts our probabilities for hypotheses and for
reliability of sources. We call these ‘source reliability models’. These models are also found in
the work of Bovens and Hartmann (2003),1 where they have been extensively studied in relation
to how they behave when the evidence from multiple sources agrees. We will focus rather on the
cases where the evidence is mixed, as it is in the Lord et al. (1979) study of belief polarisation.
Some of the key results are the following. We show that polarisation can arise in these models,
under certain circumstances. This means that belief polarisation can under these conditions in
principle be produced by normal Bayesian updating on hypotheses and reliabilities, without any

1See also (Merdes et al., 2020).
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biased assimilation of evidence occuring. We find, however, that belief polarisation cannot arise
simply because of a difference in pre-existing attitude about a hypothesis unless it is accompanied
by different expectations regarding the reliability of the sources. On the other hand, a difference in
prior expectations about the reliability of sources is sufficient to produce polarisation, even without
any difference in initial attitude towards the hypothesis in question.

Before getting to the main results, we will first, in sections 2 and 3, explain what belief polar-
isation looks like in a Bayesian context, and then introduce source reliability models. Section 4
contains the main results. In section 5, we discuss the implications of these findings in relation to
the existing literature on belief polarisation.

2 Belief polarisation in a Bayesian context
What does belief polarisation mean in a Bayesian context? In a Bayesian framework, an agent’s
degrees of belief are represented by probability distributions over random variables.2 In the jury
example, suppose the probability distributions for Alice and Bob are pA(·) and pB(·) respectively,
where the probabilities may in each case be defined over a number of random variables. For example
one of the random variables, H, could represent the hypothesis that the accused is guilty. This
variable can then take two values: H meaning the accused is guilty, and ¬H meaning the accused
is not guilty. Throughout this paper we will follow this convention, denoting random variables by
italics, and the values of the variables in non-italic font. We may then consider receiving the value
of an evidence variable E, such as a report of DNA testing. If this evidence variable also has two
possible values, we will denote these as E and ¬E. Given the evidence, each of Alice and Bob update
their prior probability for H to a posterior for H. Alice updates her prior pA(H) to the posterior
pA(H|E), and Bob updates his prior pB(H) to pB(H|E). We denote the difference between Alice’s
posterior probability and her prior probability for H by ∆H

A = pA(H|E)− pA(H) and the difference
between Bob’s posterior probability and his prior probability for H by ∆H

B = pB(H|E)− pB(H).
In some cases, Alice and Bob’s probabilities both move in the same direction—that is, ∆H

A and
∆H
B have the same sign. Following Jern et al. (2014), we call this parallel updating. In this case,

Alice and Bob either both increase their probabilities (see Figure 1(a)), or they both decrease their
probabilities, in the light of the evidence. Another possibility is contrary updating, where Alice
and Bob update their probabilities in different directions. Alice may revise her probability to a
lower value (∆H

A < 0), whilst Bob revises his to a higher value (∆H
B > 0), or vice versa. Contrary

updating may be either convergent, where the beliefs of the two agents about the defendant’s guilt
come closer together as a result of the updating, or divergent, where the beliefs of the two agents
move apart from one another. Convergent updating happens, for example, when Alice starts with
a higher prior and revises her probability down after updating (∆H

A < 0), whilst Bob starts with
a lower prior and revises his probability upwards (∆H

B > 0) (see Figure 1(b)). Divergent updating
can happen when, for example, Alice starts with a higher prior and revises her probability upwards
(∆H

A > 0), whilst Bob starts with a lower prior and revises his probability downwards (∆H
B < 0)

(see Figure 1(c)). Belief polarisation then can be thought of as divergent contrary updating.
A criterion for belief polarisation can be found in terms of likelihood ratios. The posterior

probability for a hypothesis H given evidence E can be written as

p(H|E) =
h

h+ h l

2Or probability densities in the case of hypotheses concerning continuous random variables.
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(a) (b) (c)

Figure 1: Different possibilities for two agents A and B to update their beliefs in a hypothesis H
after collecting evidence: (a) parallel updating, (b) convergent updating, and (c) divergent updating.
While both (b) and (c) are subspecies of contrary updating, only (c) constitutes a case of belief
polarisation.

where l = p(E|¬H)
p(E|H) is the likelihood ratio. For convenience we use the notation h to represent the

prior p(H), and h denotes 1 − h. It can be seen from this expression that the likelihood ratio
tells us the direction of the belief update. If the likelihood ratio is greater than one, the posterior
probability is lower than the prior, so the agent’s probability for H goes down (∆H < 0). On the
other hand, if the likelihood ratio is less than one, the agent’s probability for H goes up (∆H > 0). If
the likelihood ratio is exactly one, the prior probability and the posterior probability are equal and
there is no change (∆H = 0). Thus, the condition for contrary updating is that Alice’s likelihood
ratio for H is greater than one, and Bob’s is less than one (or vice versa). Let the prior for Alice on
H be denoted by hA, and the likelihood ratio for Alice on H be denoted by lA, with similar notation
for Bob. Then, divergent contrary updating, or belief polarisation, happens when Alice starts with
a lower prior, and revises downwards (∆H

A < 0, likelihood ratio greater than one), whilst Bob starts
with a higher prior and revises upwards (∆H

B > 0, likelihood ratio less than one), or vice versa,
switching roles for Alice and Bob. That is, belief polarisation occurs either when

lB < 1 < lA and hA ≤ hB

or when
lA < 1 < lB and hB ≤ hA

(Jern et al., 2014; Nielsen and Stewart, 2019).
This is a general criterion which applies not only when E and H are the only variables under

consideration, but also in the more typical situation where the agents have probabilistic opinions
about other variables as well. In that case, the likelihoods for H would be determined in the usual
way by marginalising out over the additional variables. As a simple example, if pA(·) and pB(·)
are probability distributions concerning the variables E, H, and an additional variable V , then
the likelihood for H would be calculated as p(E|H) =

∑
V p(E|H,V ) p(V ). In realistic situations,

people may have opinions about many variables. In cases where two parties have very different
views about the relationships between other variables, it is not difficult to find situations where
their opinions on a particular hypothesis may diverge from one another given the same evidence (an
example is given in Jern et al. (2014) on p. 209). However, in many situations, the parties involved
do not have completely divergent world-views, but rather have the same basic understanding of
how the basic elements of the situation connect with one another. In such cases, one can ask
whether it is still possible to have belief polarisation due to more limited divergences in prior belief
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between the two parties. Thus, in order to formulate precisely the question of when interesting
belief polarisation can take place, we need a more precise characterisation of what should count as
common ground between the agents, and where their prior opinions may differ.

Jern et al. (2014) suggest a way in which to spell out what it means for two agents to agree
on the basic structure of a situation. This can be done in terms of Bayesian network models.
It is well-known that joint probability distributions p(·) can be conveniently represented using
Bayesian network models. A Bayesian network model consists of two elements: a graph and a
parametrisation of that graph. In the graph, all the variables are represented by nodes. Some
of the nodes are connected by arrows. Intuitively, an arrow from X to Y can be thought of
as indicating that the variable X has a direct influence on the variable Y . If there is an arrow
from X to Y , X is called a ‘parent’ of Y , and Y is called a ‘child’ of X. The graph must be
‘acyclic’, meaning that it is not possible to go in a cycle by following arrows. Thus, it is called a
‘directed acyclic graph’ (or ‘DAG’). The DAG represents the probabilistic independencies between
the variables in the joint probability distribution, given a specific precise condition.3 However,
there may be multiple probability distributions over the whole set of variables with the same set
of independencies. Thus possession of a particular graph structure does not uniquely correspond
to a given probability distribution. To fully specify a particular probability distribution, we add
‘parameters’ to the graph. These parameters specify conditional probability tables for all the nodes,
given their parents. We also specify prior probabilities for the ‘root’ nodes, that is, those nodes
with no parents.

The basic idea in Jern et al. (2014) is to say that two agents agree on the basic structure
of a situation when they agree on the relevant variables in question, as well as on the Bayesian
network structure and on the conditional probability tables that specify the relationships between
the variables. The agents may still differ, however, in their prior beliefs regarding the values of
the root nodes in the Bayesian network. In this paper, we follow Jern et al. in making these
assumptions about the common ground that our agents share, and when we talk about whether
belief polarisation is possible, it is under these conditions.

Suppose, as a simple example, the only variables included in the model are E and H, and the
agents agree that the appropriate Bayesian network is the one depicted in Figure 2. Roughly this
encodes the idea that the truth of the hypothesis affects the truth of the evidence, but not the other
way around. In this simple case, this can be thought of simply as part of what it means for E to
serve as evidence for H. We also assume that the two agents Alice and Bob agree on the conditional
probability table (a) shown in Figure 2. However, they may have different priors: pA(H) may be
different from pB(H). Since the likelihood ratio for H depends on p(E|H) and p(E|¬H), Alice and

3The precise condition is the ‘Markov condition’. More formally, a DAG is a graph 〈V,E〉, where V is a set
of random variables Vi and E is an asymmetric binary relation on V. We graphically represent 〈Vi, Vj〉 ∈ E as
Vi −→ Vj . Vi, Vj ∈ V are called adjacent if either Vi −→ Vj or Vj −→ Vi. If each node Vi (with i > 1) in a
tuple 〈V1, ..., Vn〉 is adjacent to Vi−1 and no Vi (with 1 < i < n) appears more often than once in 〈V1, ..., Vn〉, then
〈V1, ..., Vn〉 is called a path between V1 and Vn. A directed path from Vi to Vj is a path which takes the form
Vi −→ ... −→ Vj . DAGs are acyclic, meaning that they do not feature a directed path Vi −→ ... −→ Vi. The set
of a variable Vj ’s direct ancestors in the graph, i.e., the set of all Vi with Vi −→ Vj , is denoted by Par(Vj). Its
elements are referred to as Vj ’s parents. The set of decendants of a variable Vj contains Vj itself as well as any node
Vk such that there is a directed path from Vj to Vk. We denote the set of descendants of Vj by Des(Vj). Then
the Markov condition is satisfied by a DAG 〈V,E〉 and a probability distribution p(·) over V iff every node in V is
probabilistically independent of its non-descendants conditional on its parents, i.e., every node Vj ∈ V is independent
of V\Des(Vj) conditional on Par(Vj). The Markov condition can also be interpreted as a principle characterising
causal structures (Spirtes et al., 1993; Pearl, 2000). For a philosophical justification of its causal interpretation, see
(Gebharter, 2017b; Schurz and Gebharter, 2016). For other realistic interpretations see, for example, (Schaffer, 2016;
Gebharter, 2017a,c, 2019). In this paper, however, we refrain from any such realistic interpretation.
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H p(E|H)
0 0.3
1 0.8

(a)
H p(E|H)
0 0.8
1 0.3

(b)

Figure 2: Simple Bayesian network model and two different example conditional probability tables.
In the first column, a zero corresponds to H taking the value ¬H (i.e., H is not true), and a one
corresponds to H taking the value H (i.e., H is true).

Bob have the same likelihood ratio as one another, and thus they agree on the direction of the
update given evidence E. This means that contrary updating and particularly belief polarisation
can never occur in such a model under the assumptions we are making. A simple case which would
fit this structure is one whereH is a variable representing whether or not a patient has a disease, and
E is a variable with two values corresponding to a positive or negative test result. The conditional
probability table in Figure 2(a) encodes the understanding that when the disease is present, it is
more likely that the patient will present a positive test result than if the disease is not present.

Notice here that if the agents disagree about the conditional probability table, for example
if Alice takes it to be the table in Figure 2(a) and Bob takes it to be the table in Figure 2(b),
then this would express a very different understanding of the significance of the test. Alice takes
a positive test result as evidence that the patient has the disease, whereas Bob thinks the test
is now more likely to give a positive result if the disease is not present than if it is. Alice will
increase her probability that the patient has the disease when she sees a positive test result (Alice’s
likelihood ratio is then less than one), whereas Bob decreases his probability that the patient has
the disease when he sees a positive test result (his likelihood ratio is greater than one). This kind of
fundamental disagreement over the conditional probability table is ruled out by our assumptions.

When the model includes three or more variables, whether or not belief polarisation can occur
depends on the structure of the Bayesian network. Some graph structures never allow it, whereas
some do, under certain parameter settings. Jern et al. (2014) provide a complete classification of
all the three-variable networks in terms of whether they allow for belief polarisation or not. As a
simple example, suppose the structure is that depicted in Figure 3(a). In this case, the likelihood
ratio for H is l = p(E |H)

p(E |¬H) =
∑

V p(E |V ) p(V |H)∑
V p(E |V ) p(V |¬H) , which does not depend on the prior for H. Since H

is the only root node, agents will always agree on the likelihood ratio, and so there can be no belief
polarisation on H.

On the other hand, one of the structures which does allow for belief polarisation under certain
conditions is Figure 3(b). In this case, the likelihood ratio is l = p(E |H)

p(E |¬H) =
∑

V p(E |V ,H) p(V )∑
V p(E |V ,¬H) p(V ) . It is

noteworthy that this likelihood ratio does not depend on the prior for the hypothesis p(H), but does
depend on the prior for the additional variable p(V ). The somewhat counterintuitive fact that the
likelihood ratio depends on the prior for V but not for H will also be an important feature of the
model we will present in section 3. Belief polarisation, then, is possible for some cases where Alice
and Bob have different priors for V . Suppose, for example, that H represents whether the patient
has a disease, and E is a test result as before. However, now there is a further variable which can
influence the test result, namely the patient’s blood sugar level, which we represent by the variable
V (see Jern et al. (2014), pp. 208f). We assume that V , like H and E, is a binary variable: the
patient’s blood sugar level can be either high (V) or low (¬V), for example. Now let us suppose
that a positive test result is more probable when the patient has the disease and has a high blood
sugar level, but it is also quite likely when the patient does not have the disease but has a low blood
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(a) (b)

p(H) p(V) H V p(E|H,V )
Alice 0.8 0.8 0 0 0.8
Bob 0.2 0.2 0 1 0.3

1 0 0.1
1 1 0.9

(c)

Figure 3: (a) A structure involving the three variables H,E, V which does not allow for belief
polarisation; (b) a structure of the three variables which does allow belief polarisation for certain
parameter settings, such as those shown in the table (c).

sugar level. Now suppose doctor Alice is fairly confident that the patient has the disease and also
thinks that the patient has a high blood sugar level, then she becomes even more convinced that
the patient has the disease when she sees a positive test result. If, on the other hand, doctor Bob
is doubtful whether the patient has the disease, and also is inclined to think that the patient has
a low blood sugar level, then he may become more convinced that the patient does not have the
disease, given a positive test result. This situation could happen for example when the parameters
are chosen as in the probability table shown in Figure 3(c). In this case, Alice’s probability for H
increases from her prior probability 0.8 to a posterior probability of 0.88, whilst Bob’s probability
for H decreases from his prior probability of 0.2 to a posterior probability of 0.08. Thus we see
belief polarisation.

In summary then, belief polarisation in Bayesian models can be identified by looking at the
likelihood ratios of each of the parties involved for a particular hypothesis. In general, these
likelihood ratios depend on all the other opinions that the agent holds and which can be represented
in a Bayesian network. There are some network structures which allow for belief polarisation, even
in cases where the agents agree on the basic structure of the network. In these cases, the polarisation
arises because of a difference in prior probabilities assigned to the root nodes of the network.

3 Source reliability models
In this paper, we are interested in the role of source reliability in belief polarisation. We therefore
consider a special class of Bayesian network models, namely those which explicitly include nodes
for not only hypotheses of interest, but also for the reliability of sources of evidence bearing on
those hypotheses. In such a model, an agent is updating a joint assignment of degrees of belief
for both hypotheses and source reliabilities. Several different Bayesian models of source reliability
have been developed in the literature (Olsson, 2013; Bovens and Hartmann, 2003; Merdes et al.,
2020). We focus here on the type of model presented by Bovens and Hartmann (2003). Bovens and
Hartmann have explored a number of properties of these models, including the conditions for when
agreement between multiple pieces of evidence boosts confirmation for a hypothesis. What we will
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Figure 4: Simple source reliability model

do here is to examine the effects of mixed evidence, where different pieces of evidence give differing
indications about whether the hypothesis in question is true. These cases are of interest, since as
we have seen, psychological experiments show that belief polarisation can occur in situations where
the evidence is mixed. The question then is whether belief polarisation can arise in simple Bayesian
source reliability models, and if so, under what conditions.

As we have seen, one of the most basic models of evidence-collecting is that depicted in Figure 2.
Here it is assumed that whether or not the hypothesis is true has bearing on whether or not certain
evidence will be present. A source reliability model is a simple extension of this model, which takes
the evidence to come in the form of a report from a source which has some reliability represented by
a variable R. The basic structure is depicted in Figure 4. A basic assumption of this model is that
two factors influence what evidence reports are received—first, the truth or falsity of the hypothesis
itself, and second, the reliability of the source of the report. By using this structure, we make two
further assumptions: i) the hypothesis H is independent of the reliability of the source R, and ii)
H and R are dependent when conditioned on the evidence E. Assumption i) makes sense when the
truth of the hypothesis does not influence the reliability of the source, nor does the reliability of
the source influence the truth of the hypothesis. In our legal case introduced earlier, for instance,
it is clear that whether or not the police report or the forensic report are reliable has no bearing on
whether the defendant committed the crime. And also, whether or not the defendant committed
the crime has no influence on the reliability of the reports. The reliability of the police report is
determined by factors such as the integrity and disinterestedness of the police, for which it should
be irrelevant whether or not the defendant committed the crime. Similarly, the reliability of the
DNA test depends on the precise nature of the test that is carried out and what its false positive
and false negative rates are. Again, the guilt of the defendant should have no influence on this. The
independence assumption i) means that the prior probabilities for H and R should be assignable
independently of each other. The model thus does not allow the possibility of biased influence of
prior opinion, in the sense that it does not allow the agent’s prior views of R to depend on her prior
views of H, or vice versa. Assumption ii) is also a natural one. Suppose, for example, the evidence
comes from an eyewitness. As soon as the agent is presented with evidence (E or ¬E), H and R
should become relevant to each other. If Alice, for example, considers a particular witness highly
reliable, then she will assign a higher probability to H after hearing this witness report E than she
would had she not assigned such a high degree of reliability to this particular witness. And, vice
versa, had Alice, for example, already assigned a high prior to H, then she should consider a witness
less reliable after hearing the witness claim ¬E.

So far, we have only considered one evidence variable, but the agent may actually receive
multiple pieces of evidence, which we represent by variables E1, E2, ..., En. If each of these pieces of
evidence comes from an independent source, the structure of the Bayesian network is as depicted in
Figure 5. Each source has a reliability Ri for 1 ≤ i ≤ n. Following Bovens and Hartmann (2003), we
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H Ri p(Ei|H,Ri)
0 0 a
0 1 0
1 0 a
1 1 1

Figure 5: Source reliability model with n pieces of evidence from n independent sources and condi-
tional probability table.

make the following further assumptions about the conditional probabilities in the source reliability
models. We take H, Ei, and Ri to be all binary variables. When the source is reliable (Ri = 1,
which we denote Ri), the evidence that it produces perfectly discriminates between the truth and
falsity of the hypothesis. That is, p(Ei|H,Ri) = 1 and p(Ei|¬H,Ri) = 0. On the other hand,
when the source is unreliable (Ri = 0, denoted ¬Ri), it is indifferent to the truth or falsity of the
hypothesis, and merely acts like a randomiser, giving a probability of positive evidence ai regardless
of whether the hypothesis is true or false. That is p(Ei|H,¬Ri) = p(Ei|¬H,¬Ri) = ai. We assume
for simplicity that when each source is unreliable, it has the same randomisation parameter a, or
chance of giving an incorrect report (i.e., we assume that p(Ei|H,¬Ri) = p(Ej |H,¬Rj) = a for all
i, j with 1 ≤ i, j ≤ n). The conditional probability table for each evidence node is thus specified as
in the table in Figure 5. As before, we will use the following notation for the priors: h will denote
p(H), ρi will denote p(Ri). We write h for p(¬H) = 1− h, and similarly ρi denotes p(¬Ri) = 1−ρi.

4 Results
In this section we present our findings regarding the source reliability models shown in Figures 4
and 5. We find that belief polarisation is not possible on the hypothesis in such models given only
one piece of evidence. However, given multiple pieces of evidence, belief polarisation can arise due
to differential weighting of the evidence produced by differences in the priors on reliability of the
sources of evidence.

4.1 Simple model with one piece of evidence
4.1.1 Updating probability for hypothesis

First, let us consider a simple model where there is just one piece of evidence E (see Figure 4). In
this case, there is no polarisation on H. This can be seen by considering the likelihood ratio for H,
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given a positive report E, which can be computed as:

l+ =
p(E|¬H)

p(E|H)

=

∑
R p(E|¬H, R) p(R)∑
R p(E|H, R) p(R)

=
a ρ

a ρ+ ρ

=
1

1 + ρ
a ρ

(1)

It is clear that this expression is always less than one, since ρ
a ρ is positive. This means that the

posterior probability for H always increases, given a piece of positive evidence E. Furthermore, we
can see that the size of the update is governed by ρ

a ρ for a fixed h. ∆H is greater when ρ is larger
and/or when a is smaller. When ρ is larger, the agent has initially more trust in the reliability of
the source, and thus is more responsive to what it says. The update is also larger when a is small,
because this means that the chance that the positive report arises because the source is actually
unreliable but erroneously gives a positive report is small.

Similar calculations show that when the evidence is negative ¬E, the likelihood ratio for H is:

l− =
a ρ+ ρ

a ρ

= 1 +
ρ

a ρ
(2)

Since ρ
a ρ is positive, this is always greater than one. This means that the posterior probability for

H always decreases, given a piece of negative evidence ¬E. Furthermore, the size of the update ∆H

for a given h is larger when the source is initially more trusted (high ρ). The update is also larger
when a is large, because this means that the chance that the negative report arises because the
source is actually unreliable but erroneously gives a negative report is small.

No matter what priors Alice and Bob start with then, either they both update to a higher
posterior probability (∆H

A > 0 and ∆H
B > 0), when the piece of evidence is positive, or they both

update to a lower posterior (∆H
A < 0 and ∆H

B < 0) when the piece of evidence is negative. Thus,
there can be no belief polarisation with respect to the hypothesis given a single piece of evidence.

Since the likelihood ratio for H does not depend at all on the prior h for the hypothesis, the
prior h has no effect on the direction of the update. If Alice and Bob have different priors for H,
they will still update in exactly the same direction regardless of whether they have different priors
for the reliability of the source, though the size of their update ∆H depends on their individual
priors hA and hB as well as on how reliable they consider the source to be.

4.1.2 Updating probability for reliability

It is also of interest to consider how the agents update their probabilities for the reliability of the
source. Again, the update is determined by the likelihood ratio. For a positive piece of evidence E
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Figure 6: Each agent has a prior h and a prior ρ. All possible choices of priors are displayed on
the h − ρ plane. The directions of updates are shown, given one piece of positive evidence E. In
the region where h < a, ∆R < 0. In the region where h > a, on the other hand, ∆R > 0. Belief
polarisation for reliability can happen when, for example, Alice’s prior is chosen as point A and
Bob’s as point B. In such a case, Alice starts from a lower prior ρA and her probability for R
decreases. Bob starts from a higher prior ρB and his probability for R increases.

this is given by:

r+ =
p(E|¬R)

p(E|R)

=

∑
H p(E|¬R, H) p(H)∑
H p(E|R, H) p(H)

=
a h+ a h

h+ 0h

=
a

h

Thus, the likelihood ratio for the reliability does depend on the prior h, but it does not depend on
the prior ρ. If h < a, the likelihood ratio for a positive piece of evidence will be greater than one,
and hence the posterior for reliability is lower than the prior, ∆R < 0. If h > a, on the other hand,
∆R > 0. This is illustrated in Figure 6. This makes sense if we think that someone who initially
sees the probability of H as low will take a positive report E as an indication that the source is
unreliable. Whereas, if the probability of H is initially high, a positive report will reinforce the view
that the source is reliable.
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For a negative piece of evidence ¬E, the likelihood ratio is:

r− =
p(¬E|¬R)

p(¬E|R)

=

∑
H p(¬E|¬R, H) p(H)∑
H p(¬E|R, H) p(H)

=
a h+ a h

0h+ 1h

=
a

h

In this case, if h < a, the posterior probability for the reliability increases, and if h > a, the posterior
probability for the reliability decreases. If someone thinks that the probability of H is very low,
then a piece of negative evidence is taken as an indication that the source is reliable. Whereas,
if someone thinks that the probability of H is high, then a piece of negative evidence is taken to
indicate that the source is not so reliable.

Thus, in this model, even though there cannot be polarisation regarding the hypothesis itself,
polarisation regarding the reliability of the source is possible. This could, for example, happen in
the legal case if Alice has a lower prior for the reliability of a source of evidence than Bob, ρA < ρB ,
and she also thinks that the prior probability that the accused is guilty is low (hA < a), while Bob
considers it to be high (hB > a). In that case, a positive piece of evidence will make Alice think
the source is even less reliable (∆R

A < 0), whereas Bob will think it is more reliable (∆R
B > 0).

4.2 Multiple pieces of evidence from independent sources
In some of the canonical experiments on belief polarisation, the subjects were presented with mixed
evidence—that is, multiple pieces of evidence where some of the evidence appears to be in favour
of the hypothesis, whereas some goes against it. As we saw in section 3, we can represent this
as a situation where the agents are presented with n pieces of evidence E1, ..., En, all coming
from different and independent sources.4 For example, in a legal case, the jury might receive a
police report, a report from forensic investigation, and eyewitness reports. In principle, each of
these reports should be independent of the others. The graphical structure of a source reliability
model representing these cases is depicted in Figure 5. This structure together with the Markov
condition guarantees the independence of the variables R1, ..., Rn and, thus, the independence of
the n sources. Again, we assume the probabilistic constraints in the table in Figure 5 in order to
keep things simple and to guarantee that the variables R1, ..., Rn represent the reliability of the
different sources assigned by the agents.

4.2.1 Updating probability for hypothesis

The direction of updating on the probability for the hypothesis H is determined, as we saw in
section 2, by the likelihood ratio:

l =
p(E1, E2, ..., En|¬H)

p(E1, E2, ..., En|H)

4In this paper we do not consider the case of sequential pieces of evidence from the same source. Models which
take account of this kind of updating can be found in Olsson (2013), Hahn et al. (2018) and Merdes et al. (2020).
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On the basis of the DAG in Figure 5, the denominator p(E1, E2, ..., En|H) is

p(E1, E2, ..., En|H) =
∏
i

∑
Rj

p(Ei|Rj ,H) p(Rj)

and likewise for the numerator p(E1, E2, ..., En|¬H). Thus, the likelihood ratio for H factorises as

l =
∏
i

li

=
∏
+

l+i
∏
−
l−i (3)

where li is the likelihood ratio for observation Ei. This is a product of the likelihood ratios for the
positive pieces of evidence (for which li = l+i = p(Ei|¬H)

p(Ei|H) = 1
1+

ρi
a ρi

) and the likelihood ratios for the

negative pieces of evidence (for which li = l−i = p(¬Ei|¬H)
p(¬Ei|H) = 1 + ρi

a ρi
).

As in the model in subsection 4.1, the likelihood ratio does not depend at all on the prior h for the
hypothesis H. It does, however, depend on the priors for the reliabilities of the sources, namely ρi.
If Alice and Bob assign different priors for the reliability of sources, they may update to different
extents on each piece of evidence. In some situations this may give rise to belief polarisation.
Suppose, for example, that Alice and Bob receive two pieces of evidence. Alice starts with a higher
prior for H than Bob. She also assigns a higher prior to the reliability of the source of the first piece
of evidence than to the source of the second piece of evidence. Bob, on the other hand, assigns a
higher prior to the reliability of the source of the second piece of evidence than the first. Suppose
Alice and Bob now receive a positive piece of evidence from the first source and a negative piece of
evidence from the second. Then because Alice initially trusts the first source more than the second,
she is more responsive to the positive evidence than the negative. The overall effect of updating on
the mixed evidence is that Alice’s probability increases, ∆H

A = pA(H|E1,¬E2)− pA(H) > 0. Bob,
on the other hand, is more responsive to the negative evidence than to the positive evidence, and
so his probability decreases, ∆H

B = pB(H|E1,¬E2)− pB (H) < 0. Thus there is belief polarisation.
Notice that given the same reliability priors, if Alice had started with a lower prior for H than
Bob, the same updating can result in convergence of their posterior probabilities. Both cases are
illustrated in Figure 7.

In general, the probability update ∆H depends on the reliability priors for the different sources,
the value of the parameter a, and the relative number of pieces of positive and negative evidence.
The probability update ∆H is negative when the overall contribution of the negative evidence
outweighs the overall contribution of the positive evidence in making the overall likelihood ratio
greater than one. The condition for this is:

−∏
i

(
1 +

ρi
a ρi

)
>

+∏
i

(
1 +

ρi
aρi

)
Here, the product on the left hand side is over all negative pieces of evidence and the product on
the right is over all positive pieces of evidence. For the special case where we have just two pieces
of evidence, one positive and one negative, the likelihood ratio is

l+− =

(
1

1 + ρ1
a ρ1

)(
1 +

ρ2
a ρ2

)
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(a) (b)

p(H) p(R1) p(R2)
Alice 0.75 0.6 0.4
Bob 0.25 0.4 0.6

(c)
p(H) p(R1) p(R2)

Alice 0.25 0.6 0.4
Bob 0.75 0.4 0.6

(d)

H Ri p(Ei|H,Ri)
0 0 0.4
0 1 0
1 0 0.4
1 1 1

(e)

Figure 7: Assume Alice and Bob both observe E1 and ¬E2 and that they both agree on the
conditional probabilities in (e). Assume further that the only difference between them is that Alice
starts with a higher prior for H and assigns a higher reliability to the first source and a lower
reliability to the second source than Bob does as in (c). Then this results in belief polarisation (a).
If Alice and Bob switch their priors for H while keeping all the other probabilities the same—i.e.,
if they would now have the priors given in (d)—this would result in convergence (b).
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(a) (b)

Figure 8: Direction of updates to probability for H after receiving conflicting evidence E1 and ¬E2.
(a) Direction of updates to probability for H shown on the ρ1 − ρ2 plane. These do not depend on
the prior for H. Belief polarisation happens if Alice starts with a lower prior for H, hA < hB , and
her reliability priors fall in the ∆H < 0 region, whereas Bob’s reliability priors fall in the ∆H > 0
region. An example is shown where Alice has priors at A and Bob has priors at B. (b) Direction
of updates to probability for H shown on the h − ρ2 plane for the case where ρ1 = 0.1. A and B
denote choices of priors for Alice and Bob which would give rise to belief polarisation on H.

which is greater than one when: (
1 +

ρ2
a ρ2

)
>

(
1 +

ρ1
aρ1

)
This occurs when:

ρ2
ρ2

>
aρ1
a ρ1

For any given a, there is thus a region on the ρ1 − ρ2 plane where it is possible that the size of the
update on the negative evidence is greater than the size of the update on the positive evidence. In
these cases, the probability for H decreases given both pieces of evidence (∆H < 0).

Suppose now that hA < hB . Polarisation will occur exactly when Alice’s priors for reliability
fall in the region where ∆H is negative, and when Bob’s priors for reliability fall in the region where
∆H is positive. Such a case is illustrated in Figure 8.

The effect of varying a on the regions is shown in Figure 9. We see that the region where ∆H < 0
grows for higher a. This is because, as we have seen, for higher a, a positive piece of evidence has
less effect on the probability update and a negative piece of evidence has more. An interesting case
is where a = 0.5. In this case, the probability of getting positive evidence when the hypothesis is
false is equal to the probability of getting negative evidence when the hypothesis is true. In this
balanced situation, the probability update ∆H is positive on exactly half of the ρ1−ρ2 plane. Since
∆H
A is negative in half of Alice’s parameter space of reliability priors, and ∆H

B is positive in half of
Bob’s parameter space, belief polarisation will occur in one quarter of the total parameter space
of Alice and Bob’s reliability priors. This is the maximum proportion of the parameter space on
which belief polarisation can occur. Moving a away from 0.5 reduces the size of the region where
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Figure 9: Effect of varying a on ∆H after receiving conflicting evidence E1 and ¬E2 shown on the
ρ1 − ρ2 plane. Each dotted line represents an increase of a by 0.1, starting from a = 0.1 and up to
a = 0.9. The higher a becomes, the smaller the region where ∆H > 0 becomes. If a = 0.5, then
the regions where ∆H > 0 and ∆H < 0 each make up exactly half of the ρ1 − ρ2 plane. Under the
assumption that each possible combination of h, ρ1, and ρ2 is equally probable for both Alice and
Bob, this is the situation where belief polarization is as likely as it can get.

belief polarisation occurs, since it produces an imbalance between the size of the ∆H < 0 and
∆H > 0 regions. Similarly, as we increase the amount of evidence beyond two pieces of evidence, an
imbalance between the number of pieces of positive and negative evidence will also produce such
an imbalance between the size of the ∆H < 0 and ∆H > 0 regions, and hence reduce the region
in which belief polarisation occurs. In the case where the amount of evidence is increased, but the
evidence remains balanced (i.e., equal numbers of pieces of positive and negative evidence), the
proportion of the parameter space where belief polarisation occurs still cannot be increased beyond
the maximum of one quarter.5

4.2.2 Updating probability for reliability

We will now look at the direction of update of the posterior probabilities for the reliabilities when
there are multiple pieces of evidence. We compute the likelihood ratio for one of the reliabilities,
say R1:

r =
p(E1, E2, ..., En|¬R1)

p(E1, E2, ..., En|R1)
(4)

5Thus, in this model, we do not see the ‘information overload’ effect which has been found in other models,
such as the model considered in Pothos et al. (2021), where considering more evidence leads to a greater chance of
polarisation.
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On the basis of the DAG in Figure 5, the denominator p(E1, E2, ..., En|R1) can be computed as:

p(E1, E2, ..., En|R1) =
∑

H,R2,R3,...,Rn

p(H) p(E1|H,R1) p(E2|H,R2) p(R2) ... p(En|H,Rn) p(Rn)

=
∑
H

p(H) p(E1|H,R1)

n∏
j=2

p(Ej |H)

= h p(E1|H,R1)

n∏
j=2

p(Ej |H) + h p(E1|¬H,R1)

n∏
j=2

p(Ej |¬H) (5)

A similar calculation gives the numerator:

p(E1, E2, ..., En|¬R1) = h p(E1|H,¬R1)

n∏
j=2

p(Ej |H) + h p(E1|¬H,¬R1)

n∏
j=2

p(Ej |¬H) (6)

Substituting into Equation 4 the expressions given by Equation 5 and Equation 6 thus gives the
likelihood ratio:

r =
h p(E1|H,¬R1)

∏n
j=2 p(Ej |H) + h p(E1|¬H,¬R1)

∏n
j=2 p(Ej |¬H)

h p(E1|H,R1)
∏n
j=2 p(Ej |H) + h p(E1|¬H,R1)

∏n
j=2 p(Ej |¬H)

=
h p(E1|H,¬R1) + h p(E1|¬H,¬R1)

∏n
j=2 lj

h p(E1|H,R1) + h p(E1|¬H,R1)
∏n
j=2 lj

(7)

Consider the special case where n = 2 and suppose the first piece of evidence is positive, E1, and
the second piece of evidence is negative, ¬E2. Then the likelihood ratio

r+− =
p(E1,¬E2|¬R1)

p(E1,¬E2|R1)

is given by substituting l2 = l−, given by the expression in Equation 2, into Equation 7:

r+− =
a

h

(
h+ h (1 +

ρ2
a ρ2

)

)
Thus the updating of the probability for R1 depends on the prior h and the prior ρ2, as well as a.
Again, there is a region of parameter space where ∆R1 > 0 and a region where ∆R1 < 0. These
regions are shown in Figure 10(a) for the case where ρ1 = 0.1 and a = 0.1. There can be cases of
polarisation on R1 where Alice has priors in the ∆R1 < 0 region and Bob has priors in the ∆R1 > 0
region. In Figure 10(b) we show how these regions intersect with the regions where ∆H > 0 and
∆H < 0. The parameter space is then divided into four regions. It is then possible that Alice and
Bob’s probabilities for both the hypothesis and the reliability update in the same direction (when
they both have priors in the same region). But it is also possible for certain choices of priors that
Alice and Bob polarise on the hypothesis, or on the reliability, or both.

5 Discussion and relation to other work
How do our results relate to work in experimental psychology on belief polarisation? One of the
most well-known studies of belief polarisation looked at how people updated their beliefs about
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(a) (b)

Figure 10: Dependence of update directions on priors after receiving conflicting evidence E1 and
¬E2, shown on the h−ρ2 plane for the case where a = 0.1 and ρ1 = 0.1. (a) Direction of updates to
probability for R1. The plane is divided into a region where ∆R1 > 0 and a region where ∆R1 < 0 .
Belief polarisation for reliability can occur when Alice starts with a lower prior for R1, ρ1A < ρ2B ,
and her reliability priors fall in the ∆R1 < 0 region, whereas Bob’s reliability priors fall in the
∆R1 > 0 region. An example is shown where Alice has priors at A and Bob has priors at B. (b)
Direction of updates to both H and R1. Depending on how priors are chosen, Alice and Bob can
polarise on H, on R1, on both, or neither. For example, if Alice chooses A and Bob chooses B1,
there is belief polarisation on R1, but not on H. On the other hand, if Alice chooses a prior at A
and Bob chooses a prior at B2, there is belief polarisation on both R1 and H.
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the effectiveness of the death penalty as a crime deterrent after seeing mixed evidence (Lord et al.,
1979). Participants were asked to read about two fictional studies, one of which supported the
idea that the death penalty is an effective crime deterrent, and the other which supported the idea
that it is not. It was observed that supporters of the death penalty who already believed it to
have a deterrent effect became more convinced that it was an effective crime deterrent after seeing
the studies, whereas opponents who initially did not believe in the deterrent effect became more
convinced that it was not an effective deterrent. The same evidence thus led to belief updates in
opposite directions after seeing both studies. It was also found that the participants did respond
to the individual studies in the sense that they all shifted their attitude in favour of deterrent
efficacy when presented with the prodeterrent study and shifted against it when presented with
the antideterrent study. However, the amount by which the opinions shifted differed between
proponents and opponents. Proponents revised their opinion more than opponents after reading
the prodeterrent study, and less than opponents after reading the antideterrent study.

A conclusion that has often been drawn from such experimental studies of belief polarisation is
that it results from biased assimilation of the evidence presented. The key idea is that, as Lord et al.
(1979) put it, ‘people tend to interpret subsequent evidence so as to maintain their initial beliefs’
(p. 1099). There have been a number of proposals concerning what the exact mechanism can be
that drives this differential weighting of evidence, with some favouring more affective and others
favouring more cognitive explanations. If what the agent is doing is simply discounting evidence
that disagrees with their prior views on H, then this would seem to amount to a rather irrational
form of dogmatism (Kelly, 2008). It may then be a case of motivated reasoning or confirmation bias
(Taber and Lodge, 2006; Taber et al., 2009). Various other processes have been suggested which
may not be so blatantly a case of irrational bias. It may be, for example, that prior beliefs influence
how evidence is to be interpreted (Fryer et al., 2013). Or it may be that people have the tendency
to scrutinise evidence which disagrees with their prior views to a greater extent than evidence that
agrees with it (Lord et al., 1979; Munro and Ditto, 1997; McHoskey, 1995). Another proposal is that
real human agents have bounded memories, and it may make sense to forget reasons and evidence
which does not fit into a coherent picture (Singer et al., 2019). For all these theories, some kind of
biased influence of the initial belief in the hypothesis on the way evidence is handled or processed
is postulated.

However, as we saw in section 2, for some belief networks, differences in the priors assigned
to a hypothesis H have no impact on the likelihood ratio and thus are not responsible for belief
polarisation on H. Belief polarisation can nonetheless be produced by differences in priors for
other variables in the agents’ belief networks. Jern et al. (2014) have used this point to suggest
an alternative explanation for the results in Lord et al. (1979). They propose that the Lord et al.
(1979) results could also be produced, for example, by a simple network with the structure shown in
Figure 3(b) (Jern et al., 2014, pp. 211f). In this model, H is a variable representing the hypothesis
that the death penalty is an effective crime deterrent, E is a study which may either support the
idea that the death penalty is an effective crime deterrent (E) or support the idea that it is not
(¬E), and V is a variable representing the view that the consensus expert opinion supports the
effectiveness of the death penalty. Jern et al. show that if Alice and Bob have different priors for
V as well as H, that a pattern of updating like that observed in the Lord et al. study can be seen
in such a model. Jern et al. do not claim that this is necessarily the mechanism which is at work
in this experiment. Their point is simply that alternative explanations are available, which do not
involve any biased evaluation of the evidence. Whether or not such an alternative explanation is
the correct one depends on whether the beliefs of the subjects really are governed by a specific extra
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belief like V.
In this paper, we have examined whether taking into account opinions about the reliability of the

source of evidence can also provide alternative explanations of the belief polarisation phenomenon.
Such an explanation has already been suggested in Cook and Lewandowsky (2016) in a model which
also includes worldview as a variable. We find that indeed a source reliability model such as depicted
in Figure 5 can also reproduce the pattern of weighting of evidence seen in the Lord et al. (1979)
experiment. Whereas the alternative explanations invoked by Jern et al. (2014) rely on specific
extra beliefs which subjects then may or may not be entertaining, it is perhaps plausible that in
fact we always do have some beliefs about the reliability of our sources which we are updating in
tandem with our views about the hypotheses in question. Thus, the type of explanation we offer
potentially has a more generic character.

However, it is actually not so clear that the mechanism modeled in Figure 5 actually represents
a plausible alternative explanation of the Lord et al. (1979) set-up. This is because the explanation
relies, as we have seen, on subjects assigning different prior reliabilities to the two sources. Notice
that if ρ1 = ρ2, the condition for the likelihood ratio (Equation 3) no longer depends on the priors
at all, and thus belief polarisation is not possible. However, in the Lord et al. study there is no
particular reason why the participants should set their priors differently for the reliabilities of the
two studies, given that they are presented in exactly the same way. In the experiment, participants
were simply given cards which present the results of the studies. It seems natural then to expect
that they should assign the same prior for reliability to each of the studies, and if this is the case,
then the model would predict no belief polarisation. In the experiment, participants were asked
to assess the reliability of the studies, but on the basis of what the studies themselves said. Thus,
what was examined here was not a prior probability for the reliability of the study, but a posterior
which already depends on the content of the study itself.

Even if the model does not provide a convincing explanation of the Lord et al. (1979) results,
we still think that the mechanism which it elucidates may well be at work in real-life contexts. In
many real-life settings, agents do have prior views about the reliability of their sources. They may,
for example, trust one news source more than another. In the legal case, some jurors might have
greater initial trust in the police than others. Some may have greater trust in forensic investigations
than others, or in the reliability of eye-witnesses. The experimental set-up of Lord et al. may
actually represent a rather unusual situation, since it is arranged in such a way that agents have
no independent way to form prior opinions about the reliability of their sources. It is even possible
that such an unusual set-up effectively forces people to assess the reliability of their information
differently from how they normally would, making use of their own prior views about the hypothesis
since that is all they have access to.

What our model shows is that even small initial differences in how reliable we take our sources
to be can in certain circumstances be amplified into divergence of opinion on crucial hypotheses,
even if there is initially no difference of opinion on these hypotheses. The reliability priors deter-
mine whether or not a subject updates in a positive or negative direction given mixed evidence.
However, there is no systematic connection between having higher prior for the hypothesis and
having reliability priors which produce positive updates, or vice versa—if this is the case, then
there will be belief polarisation. But it is also possible to have a low prior for the hypothesis, and
reliability priors which induce a positive update, in which case, there will be convergence—as we see
in Figure 10(b), all different combinations are possible. Thus, in this model the correlation between
having a high prior for H and having reliability priors that lead to positive update can be acciden-
tal, rather than driven by any kind of bias. The model predicts then that we should not expect
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always to see polarisation. Rather whether polarisation occurs depends on the subjects happening
to have a certain constellation of prior opinions. In fact, follow-up experiments to the Lord et al.
(1979) study have shown that indeed belief polarisation only occurs in a certain subset of subjects,
and then rather infrequently Kuhn and Lao (1996). This kind of result is what a model like ours
would predict. On the other hand, the natural expectation if the effect is caused by some kind
of consistent biased assimilation is that it should occur more of the time. An exception of course
would hold if there were some reason to expect that the bias manifests itself in some people but
not others. Jern et al. (2014) have set up an experiment to test whether in a particular case, belief
polarisation can be explained by a normative Bayesian model rather than by biased assimilation.
To make such a comparison it is necessary to carefully compare the effects of certain manipulations
of prior beliefs on the proportions of subjects responding in a certain way (Jern et al., 2014, pp.
215–218). In principle it may be possible to do similar experiments to study the effects of subjects’
prior beliefs about source reliability, as suggested by simple source reliability models.

6 Conclusion
In this paper, we have considered the question of whether beliefs about reliability of sources of
information may play a role in driving belief polarisation. We have found that in a simple Bayesian
model in which agents update not only their opinions about hypotheses but also about source
reliability, belief polarisation can occur on mixed evidence. In this model, the amount by which an
agent’s opinion changes when it is updated on a piece of evidence depends on how reliable she takes
the source of the evidence to be. Thus, if an agent initially has more trust in the reliability of a
particular source than another agent, she may update more strongly on evidence from that source.
When two agents are presented with mixed evidence, consisting of some evidence in favour of and
some evidence against a certain hypothesis, their differential updates due to differences in prior
opinions about reliability of sources may produce belief polarisation. This kind of mechanism for
producing belief polarisation differs from mechanisms invoked in many of the standard explanations
in that it does not rely in any way on the agents involved being influenced by their prior views on
the hypothesis in any biased or undue way.
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