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Abstract 

The replication crisis has caused researchers to distinguish between exact replications, which 

duplicate all aspects of a study that could potentially affect the results, and direct 

replications, which duplicate only those aspects of the study that are thought to be 

theoretically essential to reproduce the original effect. The replication crisis has also 

prompted researchers to think more carefully about the possibility of making Type I errors 

when rejecting null hypotheses. In this context, the present article considers the utility of two 

types of Type I error probability: the Neyman-Pearson long run Type I error rate and the 

Fisherian sample-specific Type I error probability. It is argued that the Neyman-Pearson 

Type I error rate is inapplicable in social science because it refers to a long run of exact 

replications, and social science deals with irreversible units (people, social groups, and social 

systems) that make exact replications impossible. Instead, the Fisherian sample-specific 

Type I error probability is recommended as a more meaningful way to conceptualize false 

positive results in social science because it can be applied to each sample-specific decision 

about rejecting the same substantive null hypothesis in a series of direct replications. It is 

concluded that the replication crisis may be partly (not wholly) due to researchers’ unrealistic 

expectations about replicability based on their consideration of the Neyman-Pearson Type I 

error rate across a long run of exact replications. 
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In 2015, the Open Science Collaboration attempted to replicate the findings of 100 

psychology studies. They found that only “39% of effects were subjectively rated to have 

replicated the original result” (Open Science Collaboration, 2015, p. 943). More recently, a group 

of researchers attempted to replicate the findings of 21 social science studies published in Nature 

and Science between 2010 and 2015 (Camerer et al., 2018). Using relatively large sample sizes, 

this project found that 62% of studies replicated the original results. Finally, another international 

multi-lab replication attempt of 28 psychology effects found that 54% replicated (Klein et al., 

2018). These replication rates are generally considered to be unsatisfactory, and they have 

contributed to a replication crisis in the social sciences and beyond (for a review, see Shrout & 

Rodgers, 2018).  

There have been two main responses to the replication crisis. The first response has been 

to focus on the statistical practice of hypothesis testing, with a particular emphasis on p values and 

Type I error probabilities (e.g., Benjamin et al., 2018; Lakens et al., 2018). This approach aims to 

help researchers to better distinguish between potentially replicable effects and nonreplicable 

noise. 

The second response has been to encourage more replication attempts in order to better 

understand which effects are actually replicable and which are not (e.g., LeBel, Berger, Campbell, 

& Loving, 2017; Zwaan, Etz, Lucas, & Donnellan, 2018). This response involves making original 

research studies more reproducible by making research materials openly available to other 

researchers and by facilitating the publication of replication attempts (Nosek, Spies, & Motyl, 

2012). 

In the present article, I provide an integrative discussion of these two responses to the 

replication crisis by considering two different types of replication in relation to two different types 

of Type I error probability. Specifically, I consider the distinction between exact and direct 

replications and highlight the point that exact replications are impossible in social science, whereas 

direct replications are possible and essential. I then consider the Neyman-Pearson long run Type I 

error rate and argue that it is only meaningful in situations in which a long run of exact replications 

are possible. Given that exact replications are impossible in social science, I argue that the 

Neyman-Pearson Type I error rate is not meaningful in social science. Instead, the Fisherian Type 

I error probability is more appropriate because it can be implemented in situations in which exact 

replications are impossible. Hence, I argue that the Fisherian Type I error probability is more 

applicable in social science than the Neyman-Pearson Type I error rate because it does not rely on 

the concept of a long run of exact replications. 

I should note that some commentators argue that researchers should abandon significance 

testing and, with it, the concept of Type I errors (e.g., Amrhein, Greenland, & McShane, 2019; 

Wasserstein, Schirm, & Lazar, 2019). In the present paper, I assume that readers are interested in 

undertaking significance testing, and I address the second-order question of which significance 

testing approach is more appropriate in the context of the replication crisis: the Neyman-Pearson 

approach or the Fisherian approach. 

I should also note that I do not focus on the Bayesian approach to hypothesis testing in this 

article because many articles have already compared significance testing with Bayesian hypothesis 

testing (e.g., Berger, 2003; Berk, Western, & Weiss, 1995; Fisher, 1959, p. 17, 20-23; 

Wagenmakers, 2007; Wagenmakers et al., 2018; Wagenmakers & Gronau, 2018). Critically, these 

articles tend to compare the Bayesian approach with the Neyman-Pearson approach, rather than 

the Fisherian approach.1 In the current article, I limit my considerations to significance testing, and 

I compare the Neyman-Pearson and Fisherian approaches in the context of exact and direct 
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replication studies. To my knowledge, no previous articles have addressed this particular issue, 

and yet it is one that has important implications for scientists who use significance testing. In 

particular, it affects the meaning and interpretation of “statistically significant results” as well as 

expectations regarding the replication of these results. I begin with a comparison of exact and 

direct replications. 

 

Different Types of Replication 

Exact Replications are not Possible in Social Science 

Exact replications require the duplication of all of the aspects of an original study that could 

potentially affect the results of that study. These aspects include the sampling procedure, sample 

size, testing conditions, stimuli, measures, data coding and aggregation method, and analyses (e.g., 

Lindsay & Ehrenberg, 1993; Schmidt, 2009; Shrout & Rodgers, 2018). In social science, each of 

these methodological aspects is likely to vary from one study to the next. For example, consider a 

study that investigates the hypothesis that men have higher self-esteem than women. If an initial 

study samples participants from the U.S.A., and a replication attempt samples participants from 

France, then the sampling procedure has changed. If the initial study measures self-esteem after 

measuring the perceived societal status of men and women, but the replication attempt does not, 

then the testing conditions have changed. If the initial study uses Rosenberg’s (1965) Self-Esteem 

Scale, and the replication attempt uses a French translation of this scale, then the measurement 

approach has changed. Finally, if the initial study controls for age in its analysis, but the replication 

attempt does not, then the analytical approach has changed. 

Even if all methodological aspects of a study are kept exactly identical from one sample to 

the next, participants’ culturally-based interpretation of the method is likely to undergo systematic 

changes across time and location (Billig, 2018; Cesario, 2014; Iso-Ahola, 2017; Schmidt, 2009; 

Schwarz & Strack, 2014; Stroebe & Strack, 2014; Zwaan et al., 2018). For example, participants’ 

interpretation of the items in Rosenberg’s (1965) Self-Esteem Scale is likely to be different 

depending on whether they were born in 1970 or 2020 and depending on whether they grew up in 

the U.S.A. or China. Consequently, as Serlin (1987) explained, “there is no psychological basis 

for expecting conclusions to hold for a population that differs in any respect from the sampled one, 

including the population into which the sampled population evolves an hour after sampling” (p. 

366; see also Earp & Trafimow, 2015, p. 3; Schmidt, 2009, p. 92). The Greek philosopher 

Heraclitus put it this way: “No man ever steps in the same river twice, for it’s not the same river 

and he’s not the same man.” Of course, the river and man in question retain many stable features 

from one moment to the next. Nonetheless, they will also undergo changes that distinguish them 

from their past versions. In this sense, rivers and people are what Schmidt (2009, p. 92) called 

irreversible units in that they are complex time-sensitive systems that accumulate history. The 

scientific investigation of these irreversible units cannot proceed on the assumption that exact 

replications are possible. Social scientists need to take into account the fact that people are time- 

and context-sensitive units of analysis that have the potential to interpret identical situations in 

multiple different ways (e.g., Ferguson, Carter, & Hassin, 2014), and they need to interpret their 

research results as being the product of an “interaction between general processes and the social 

context in which they operate” (Tajfel, 1981, p. 21; see also Billig, 2018). Consistent with this 

context-based interpretation, a reanalysis of the Open Science Collaboration’s (2015) psychology 

replication attempts found that effects that were more likely to be contextually sensitive (i.e., more 

likely to vary in time, culture, or location) were less likely to be replicated (Van Bavel, Mende-

Siedlecki, Brady, & Reinero, 2016; cf. Klein et al., 2018; Stanley, Carter, & Doucouliagos, 2018). 
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Researchers can eliminate the influence of methodological and cultural variations by 

randomly dividing their sample into two or more subsamples and then attempting to replicate their 

results from one subsample to the next. However, even this holdout subsample approach does not 

produce exact replications because, unlike the parent sample, the subsamples are not randomly 

sampled from the population. They are only randomly sampled from the parent sample. 

Consequently, although subsamples allow exact replications to be conducted with respect to the 

parent sample, they do not allow exact replications to be conducted with respect to new samples 

that are randomly drawn from the population (Krause, 2019, Footnote 1). 

Finally, even if exact replications were possible in social science, they would not be 

meaningful in some cases because many social effects have sociocultural causes that vary over 

time and location, causing corresponding changes in their size and even their existence (Billig, 

2018; De Boeck & Jeon, 2018; Ferguson et al., 2014, p. 301; Iso-Ahola, 2017; Strack, 2017). To 

illustrate, Zuckerman, Li, and Hall (2016) conducted a meta-analysis of the effect in which men 

report higher self-esteem than women. They found that this “gender difference emerged after the 

1970s, increased until 1995, and declined afterwards” (Zuckerman et al., 2016, p. 34). They 

proposed a historical model as a potential explanation of these changes. Assuming that this 

historical model is correct, failure to demonstrate a gender difference in self-esteem in an exact 

replication in 2020 would not be inconsistent with the demonstration of this gender difference in 

1995 because the size of the true effect is assumed to have declined. 

Taken together, the above issues have led several researchers to conclude that exact 

replications are not possible or useful in social science (Anderson et al., 2016; Berk & Freedman, 

2003; Berk et al., 1995; Brunswik, 1955; Camilli, 1990, p. 137; Cumming, 2008; De Ruiter, 2018; 

Earp & Trafimow, 2015; Hampel, 2003, p. 3; Hansen, 2011; Iso-Ahola, 2017; Lindsay & 

Ehrenberg, 1993; Macdonald, 1997, p. 337; Nosek & Errington, 2017, 2019; Nosek et al., 2012; 

Rubin, 2017a; Schmidt, 2009; Schneider, 2015; Stroebe & Strack, 2014; Zwaan et al., 2018). This 

is not to say that exact replications are impossible in other situations. In particular, exact 

replications may be possible and meaningful in situations in which the population and associated 

effect are assumed to be unchanging, and the sampling procedure, testing conditions, stimuli, 

measures, data aggregation approach, and analyses can all be duplicated from one test to the next 

while holding constant all other potentially influential factors. As I discuss further below, industrial 

quality control acceptance procedures provide a good example that meets these criteria. 

 

Direct Replications are Possible in Social Science 

Although exact replications are not possible in social science, close or direct replications 

are possible, and they are regarded as being essential for scientific progress (Brandt et al., 2014; 

Zwaan et al., 2018). Unlike exact replications, direct replications do not need to duplicate all 

aspects of the research methodology that might potentially influence the original effect. They only 

need to duplicate those aspects of the methodology that are currently regarded as being 

theoretically essential to reproduce the original effect (De Ruiter, 2018; Klein, 2014, p. 328; LeBel 

et al., 2017, p. 255; Nosek et al., 2012, p. 626; Zwaan et al., 2018, p. 4). These theoretically 

essential aspects are identified in “a theoretical commitment based on the current understanding 

of the phenomenon under study, reflecting current beliefs about what is needed to produce a 

finding” (Nosek & Errington, 2017, as cited in Zwaan et al., 2018, p. 3; see also LeBel et al., 2017, 

p. 255; Open Science Collaboration, 2015).  

Hence, an exact replication needs to recreate all of the theoretically essential and 

potentially influential elements of the original study, whereas a direct replication needs to recreate 
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only the theoretically essential elements of the original study, and it can allow potentially 

influential but theoretically extraneous elements to vary from one study to the next. Indeed, it is 

important to allow potentially influential elements to vary between different studies in order to 

confirm their lack of influence and demonstrate the generality of the putative effect (Anderson et 

al., 2016; Lindsay & Ehrenberg, 1993, p. 220; Schmidt, 2009, p. 92). For example, a social scientist 

can undertake a series of direct replications in order to demonstrate that their proposed effect 

generalizes to different groups of participants who are tested at different times and in different 

places using different measures and different types of analyses. If any of these variables are 

considered theoretically essential for demonstrating the putative effect, then the researcher needs 

to hypothesize moderating effects that constrain the generality of the effect (De Ruiter, 2018; 

Rubin, 2017b, p. 315; Simons, 2014, p. 76; Simons, Shoda, & Lindsay, 2017). For example, in the 

case of historical changes in the gender difference in self-esteem, researchers need to develop 

theories that integrate sociological, cultural, and psychological variables in order to predict when 

and where the gender difference will and will not occur (e.g., Greenfield, 2017). 

 

Different Types of Type I Error Probability 

The replication crisis has generated a discussion about not only the feasibility of 

implementing exact and direct replications but also the importance of detecting Type I errors 

during hypothesis testing (for a review, see Shrout & Rodgers, 2018). This second discussion has 

focused on a particular type of Type I error that is based on the Neyman-Pearson approach to 

hypothesis testing (Neyman & Pearson, 1928, 1933; Nosek, Ebersole, DeHaven, & Mellor, 2018).2 

Below, I consider some interpretational difficulties with this Neyman-Pearson approach in the 

context of scientific disciplines that do not permit exact replications. 

 

The Neyman-Pearson Type I Error Rate 

Imagine a series of equally sized samples that all belong to one of two populations: a null 

population or an alternative population. Further imagine a researcher who does not know which 

population the samples belong to. The researcher’s null hypothesis is that the samples belong to 

the null population, and their alternative hypothesis is that the samples belong to the alternative 

population. The researcher conducts a test in which they randomly draw one sample, measure the 

sample data, and compute a test statistic value and accompanying p value. In this scenario, the p 

value indicates the probability of obtaining a test statistic value that is as extreme or more extreme 

as the current value if exact replications of the test were to be reconducted using other samples in 

the series and assuming that the null hypothesis is correct. The researcher compares this p value to 

a prespecified significance threshold, or alpha level. If the p value falls at or below the alpha level 

(e.g., p ≤ .050), then they declare their result to be “significant,” and they decide to behave as if 

the series of samples belongs to the alternative population rather than the null population. In other 

words, they reject the null hypothesis and accept the alternative hypothesis. This approach is 

intended to limit, or control, the maximum frequency with which the test would lead to an incorrect 

decision to reject the null hypothesis if a long run of exact replications of the test were to be carried 

out on the other samples in the series. If the test’s alpha level is set at .050 (i.e., reject the null 

hypothesis if p ≤ .050), then it is assumed that the test’s random measurement error (i.e., the 

random discrepancy between the measured sample and the true sample) and random sampling 

error (i.e., the random discrepancy between the true sample and the true population) would cause 

a sample from the null population to yield a test statistic value at least as extreme as the current 

value in no more than 5.00% of this long run of exact replications (Meehl, 1967, p. 104). Hence, 
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the alpha level controls the Type I error rate such that, “in the long run of experience, we shall not 

too often be wrong” (Neyman & Pearson, 1933, p. 291). Note that this approach does not allow us 

to know the probability of making a Type I error in relation to the particular sample that has been 

tested. It only indicates the maximum rate of making a Type I error across a long run of exact 

replications of a test that is reperformed on a series of samples (Neyman, 1971, p. 13; for a list of 

common misinterpretations of “significant results,” see Gigerenzer, Krauss, & Vitouch, 2004, pp. 

2-3). 

Importantly, the Neyman-Pearson Type I error rate only applies to a long run of a test if 

the test’s methodology remains fixed and unchanged and the sampling is random (Neyman, 1937, 

pp. 334-335; Neyman & Pearson, 1928, p. 177, p. 231, p. 232). Indeed, Neyman and Pearson 

(1928) stressed that “the limitation implied by the assumption of perfect random sampling must 

not of course be overlooked” (p. 232). When a test’s methodology is fixed and the sampling is 

random, the only possible reasons for incorrectly rejecting the null hypothesis based on a test of a 

particular sample are random measurement error and random sampling error. However, if any 

potentially influential aspect of the testing methodology and/or sampling procedure changes from 

one test to the next, then the alpha level becomes inapplicable because the change may lead to 

samples being drawn from populations other than the specified, “admissible,” null and alternative 

populations (Neyman & Pearson, 1933, p. 294). To illustrate, imagine that a researcher conducts 

a direct replication of their test in which they change a potentially influential part of the test (e.g., 

the sampling procedure, testing conditions, stimuli, or measures). In this case, the change may 

result in samples being drawn from a population other than the prespecified null and alternative 

populations. Hence, any incorrect decision to reject the null hypothesis and accept the alternative 

hypothesis may now be attributed to either (a) random measurement and sampling error causing a 

sample from the null population to appear like a sample from the alternative population or (b) a 

sample from some third, unspecified population appearing like a sample from the alternative 

population. It is for this reason that the Neyman-Pearson alpha level is only applicable to exact 

replications of the same test. It does not apply to direct replications, because direct replications 

may sample from different inadmissible populations. 

It should be noted that it is possible to compute an average alpha level for a range of 

different tests that each refer to a different set of admissible populations (Neyman, 1977, pp. 108-

109). For example, if the alpha levels of each of three different tests were .05, .05, and .05, or even 

.10, .05, and .001, then the average alpha level would be .05. However, this average alpha level 

does not necessarily apply to each of the specific tests. It merely indicates the mean alpha across 

the tests. Hence, it remains the case that each individual test’s specific alpha level applies only to 

an exact replication of that individual test. 

It also is possible to conceptualize the average alpha level as the Type I error rate for a 

combination of different tests that provide a test of a combined null hypothesis. However, in this 

case, the average alpha level would apply to a long run of exact replications of a combined test 

that draws samples from a single combined population. 

Hence, whichever way the alpha level is conceptualized, it only applies to an exact 

replication of the associated test. Any deviation from the test’s methodology opens up the 

possibility that the incorrect rejection of the null hypothesis is due not only to random measurement 

and sampling error but also to sampling from an inadmissible population that was not specified by 

the original test. 

In summary, the Neyman-Pearson alpha level indicates the maximum frequency of making 

a Type I error if, and only if, a test was to be repeatedly reconducted on a long series of different 
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random samples that are all drawn from the exact same null population. This conceptualization of 

the Type I error probability is most appropriate in situations in which it is possible to undertake a 

long run of exact replications (Fisher, 1955, p. 69-70; see also Neyman, 1950, p. 331-335; Szucs 

& Ioannidis, 2017, p. 2). Such situations are typified by quality control tests in the context of 

industrial production (Fisher, 1955; Gigerenzer, 1993; Pearson, 1937, p. 54; see also Chow’s, 

1998, concept of utilitarian experiments). For example, a manufacturer might apply a quality 

control check on a factory’s production line in order to test for a fault in a particular model of 

mobile phone (e.g., do the phones have a longer than expected start-up time?). In this situation, 

the manufacturer is able to design a replicable sampling process that ensures that every item in the 

objective, well-defined population (i.e., every phone on the production line) has a known 

probability of being sampled (e.g., Gigerenzer, 1993, p. 320; Neyman, 1950, p. 332; see also Berk 

et al., 1995, p. 432-433). And, for each test, the manufacturer is able to duplicate all of the factors 

that may potentially influence the test result (testing conditions, measure of start-up time, analyses, 

etc.). Consequently, it is meaningful to consider the long run Type I error rate in industrial quality 

control situations because, in these situations, the rejection of the null hypothesis may only be 

explained as being due to either a true positive (i.e., a production line of faulty mobile phones) or 

a false positive (i.e., a sample of non-faulty phones that are mischaracterised as being faulty). 

There is no opportunity to explain the rejection of the null hypothesis in terms of any other 

potentially influential factors (e.g., a change in the way in which the quality control check process 

is carried out that has resulted in a different model of phone being sampled from a different 

production line). 

As previously established, exact replications are not possible in social science. In 

particular, social scientists are usually unable to design a random sampling process that ensures 

that every individual from the target population of interest (e.g., men and women) has a known 

probability of being sampled (Berk & Freedman, 2003; Berk et al., 1995; Gigerenzer & Marewski, 

2015; Hacking, 1965, p. 125; Krause, 2019; Macdonald, 1997, p. 340; see also Greenland, 2006). 

Instead, they tend to use a convenience sampling approach and, following ethical guidelines, they 

only include participants who self-select to participate in the study and provide their informed 

consent. However, the Neyman-Pearson approach is not valid when “the sampling has not been 

random” (Neyman & Pearson, 1928, p. 177; see also Gigerenzer, 2004, p. 599; Hacking, 1965, p. 

99-101; Ludbrook & Dudley, 1998, p. 127; Papineau, 1994, p. 443; Neyman, 1937, pp. 334-335; 

Neyman & Pearson, 1928, p. 232; Seidenfeld, 1979, p. 33; Shaver, 1993; Sterba, 2009; Strack, 

2017).3 Consequently, and unlike the quality control situation, it is not possible to control the long 

run Type I error rate in relation to the target population of interest (e.g., “men and women”; Frick, 

1998; Greenland, 2006; Shaver, 1993). It is only possible to control this error rate in relation to the 

population that is actually randomly sampled. In social science, if random sampling occurs at all, 

then it occurs in relation to a very specific, transient, and potentially biased subpopulation of the 

target population of interest. For example, in order to investigate a proposed gender difference in 

self-esteem, a researcher might design a sampling procedure that randomly samples from the 2020 

cohort of male and female undergraduate psychology students at an American university. In this 

case, the researcher is considering a time- and location-specific statistical null hypothesis in order 

to assess the more general substantive null hypothesis that men do not have greater self-esteem 

than women (e.g., Chow, 1998; Hager, 2013; Hurlbert & Lombardi, 2009, pp. 335-337; Meehl, 

1967; Neyman, 1950). The associated significance test allows the researcher to determine whether 

the gender difference in self-esteem among 2020’s male and female undergraduate psychology 

students at the American university is sufficiently large to decide to behave as if the sample was 
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not drawn from a corresponding statistical null population such that “in the long run of experience, 

we shall not too often be wrong” (Neyman & Pearson, 1933, p. 291). But the big question is why 

the researcher should be concerned about being wrong about a long run of tests of this particular 

statistical null hypothesis when the hypothesis has no potential to be retested in a series of exact 

replications. After all, the 2020 cohort of male and female undergraduate psychology students at 

the American university is a transient and constantly changing population (Rubin, 2017a; Schmidt, 

2009; Serlin, 1987), and the Neyman-Pearson long run Type I error rate is not applicable when 

“the sampling has not been random or…the population has changed during its course” (Neyman 

& Pearson, 1928, p. 177, my emphasis). Furthermore, the psychological context associated with 

this particular statistical hypothesis is time- and location-specific and, consequently, not repeatable 

(Ferguson et al., 2014; Hansen, 2011; Schmidt, 2009; Van Bavel et al., 2016; Zuckerman et al., 

2016). And yet it is only meaningful to control the Neyman-Pearson Type I error rate in relation 

to a testing methodology that has the capacity to be repeated across a long run of exact replications 

that hold all potentially influential factors constant, including the psychological context. 

Of course, it is possible to imagine a hypothetical long run of exact replications of a specific 

statistical test. Indeed, social scientists can imagine a perfectly exact series of replications in which 

all potentially influential aspects of the methodology remain constant over an infinite number of 

tests in which samples are randomly drawn from a closed and unchanging population (Camilli, 

1990, p. 138; Ludbrook & Dudley, 1998, p. 127). However, it is not useful or meaningful to 

imagine this scenario because it has no bearing on the reality of the social world or scientific 

practice (see also Berk & Freedman, 2003; Berk et al., 1995). As explained above, discussions 

following the replication crisis have concluded that many scientific disciplines proceed on the 

basis of direct replications rather than exact replications. Hence, researchers in these disciplines 

who use the Neyman-Pearson approach need to ask themselves why they are concerned about a 

long run Type I error rate that applies to a hypothetical series of exact replications when they are 

conducting a time- and context-specific test that refers to a transient and constantly changing 

population. In other words, researchers should consider why they are concerned about the long run 

Type I error rate for a “frequency of events in an endless series of repeated trials which will never 

take place” (Fisher, 1959, p. 101; see also Grayson, 1998). 

Neyman and Scott (1958) discussed this issue when considering the application of the 

Neyman-Pearson statistical approach to cosmology: 

We are reminded that our Universe is unique. On the other hand, a statistical approach 

suggests questions and assertions formulated in terms of frequencies in repeated trials…if 

one contemplates the Universe as a single realization of a chance mechanism, it may appear 

impossible to subject any assertion about this chance mechanism to a test because it is 

impossible to repeat the experiment (p. 38). 

Neyman and Scott’s (1958) response to this problem was to argue that events in the 

universe are just as nonrepeatable as the sequence of outcomes in a roulette game, but we can treat 

groups of these events as being repeatable. For example, they argued that, “in order to treat toulette 

[sic] games indeterministically, we cut the total sequence in sections of convenient length and 

consider them as replications of the same experiment, with the same chance mechanism behind it” 

(Neyman & Scott, 1958, p. 39). However, this approach is only appropriate if it is plausible to 

assume that the same chance mechanism (cause or data-generating mechanism) that determines 

one section of the sequence of events also determines the other sections of the sequence. In the 

case of a game of roulette, this assumption is reasonable. In contrast, in the case of, for example, 

a game of poker, this assumption is problematic because it is understood that, as the game 
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proceeds, the players accumulate the history of the responses of the other players, and they learn 

and adapt their own responses as they go. Consequently, the chance mechanism that determines 

the outcomes in the first five hands of the poker game will be different to the chance mechanism 

that determines the outcomes in the last five hands. Hence, we return to the problem that, in some 

cases, “it is impossible to repeat the experiment” (Neyman & Scott, 1958, p. 38) because the 

chance mechanism has changed or, as Neyman and Pearson (1928) put it, “the population has 

changed during its course” (p. 177). 

Again, the above points do not imply that the Neyman-Pearson approach is incorrect, only 

that it is more appropriate in some scenarios than in others (Hubbard, 2004, p. 300; Hubbard, 2011; 

Hurlbert & Lombardi, 2009; Gigerenzer & Marewski, 2015; Perezgonzalez, 2015a, p. 8; 

Perezgonzalez, 2017). Specifically, the Neyman-Pearson approach is most appropriate in 

situations in which it is possible to randomly sample from the entire target population of interest 

using the exact same testing procedure while holding potentially influential factors constant and 

when it makes sense to conceive the underlying chance mechanism as being immutable in “the 

long run of experience.” In turn, these possibilities make it meaningful to control the long run Type 

I error rate. In contrast, in social science, (a) it is only possible to randomly sample from a transient 

and parochial subpopulation of the target population of interest, (b) it is not possible to repeat the 

testing procedure without changes in potentially influential factors, and (c) it does not make sense 

to consider the underlying chance mechanism (cause) as being fixed across time. Consequently, it 

is not meaningful to consider the long run Type I error rate. It is for this reason that Fisher 

characterised the Neyman-Pearson Type I error rate as “irrelevant” and “misleading” in scientific 

contexts (Fisher, 1926, p. 100; Fisher, 1955, p. 70; Fisher, 1958, p. 272; Fisher, 1959, p. 101; 

Fisher, 1961, p. 3; see also Perlman & Wu, 1999, pp. 364-365). 

 

The Fisherian Type I Error Probability 

Type I error probability is an important concept when researchers make decisions about 

hypotheses, and I am not suggesting that we abandon it. My concern is only with the way in which 

the concept is operationalized. In social science, it is not meaningful to operationalize the Type I 

error probability in relation to a series of samples that could have been randomly drawn from the 

exact same null population. Instead, it is more meaningful to consider the Type I error probability 

in relation to a single, time- and location-specific sample. Fisher’s (1922, 1958, 1959) approach to 

significance testing allows a consideration of this sample-specific type of Type I error probability. 

Although the Neyman-Pearson approach to hypothesis testing is often regarded as the more 

superior, modern replacement of the Fisherian approach, the Fisherian approach has recently 

enjoyed a revival (Haig, 2017, 2018; Hubbard, 2004, 2011; Hubbard & Bayarri, 2003; Hurlbert & 

Lombardi, 2009; Perezgonzalez, 2015a, 2017; Schneider, 2015). Like the Neyman-Pearson 

approach, the Fisherian approach compares an observed p value to a significance threshold (e.g., 

p ≤ .050).4 However, unlike Neyman-Pearson tests of statistical null hypotheses, the Fisherian 

approach treats p values that fall at or below this threshold as evidence against broader substantive 

null hypotheses.5 Hence, if a researcher observes a p value (e.g., p = .025) that falls below their 

significance threshold (e.g., p ≤ .050), and they assume, counterfactually, that all necessary 

statistical and methodological assumptions have been met, then they can accept the p value as 

providing a preliminary piece of evidence against the substantive null hypothesis, and they can 

adopt the “provisional” (i.e., initial but changeable) attitude that the substantive null hypothesis 

should be discounted (Fisher, 1955, p. 74,; Fisher, 1959, p. 42, p. 100; Hubbard, 2011; Macdonald, 

1997, p. 339).6 The smaller the p value relative to the significance threshold, the greater the 
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preliminary evidence against the substantive null hypothesis, and so the stronger the provisional 

attitude that this hypothesis should be discounted. 

Importantly, Fisher was firmly against the Neyman-Pearson concept of a long run Type I 

error rate (e.g., Fisher, 1959, p. 42, p. 100) because it relies on the assumption of “repeated 

sampling from the same population” (Fisher, 1955, p. 71; Fisher, 1959, p. 78, p. 83) and, given the 

reference class problem (Venn, 1876), it is often difficult for the researcher to know “which 

population is to be used to define the probability level” (Fisher, 1959, p. 71; Gigerenzer, 1993, p. 

320). For example, when investigating gender differences in self-esteem among 2020’s male and 

female undergraduate psychology students at an American university, the null population may 

refer to “men and women,” “twenty-first century men and women,” “young men and women,” 

“educated men and women,” “American men and women,” and so on. In cases such as this, Fisher 

argued that researchers need to imagine a reference class (e.g., “men and women”) on the 

understanding that they may be wrong and that some other reference class is correct (e.g., “young 

men and women”). He argued that this reference class uncertainty makes the concept of a long run 

Type I error rate irrelevant because it may refer to an incorrect reference class. Instead of 

considering the long run Type I error rate during repeated sampling from the same population, 

researchers should conceive each new sample as coming from a potentially different population 

(e.g., young vs. old men and women). Hence, researchers should always ask themselves: “of what 

population is this a random sample?” (Fisher, 1922, p. 313). 

Despite his strong opposition to the Neyman-Pearson Type I error rate, Fisher was in favour 

of researchers considering the probability that they had made an error in provisionally rejecting a 

null hypothesis (e.g., Fisher, 1937, p. 16; Fisher, 1959, p. 35; see also Fisher, 1959, pp. 100-101). 

Indeed, and as others have pointed out, the Fisherian significance threshold provides a basis for 

computing a Type I error probability, but one that is a conceptually different to the type of Type I 

error rate provided by the Neyman-Pearson approach (Macdonald, 1997, p. 339; Mayo, 2014; 

Perezgonzalez, 2015a, p. 5, Perezgonzalez, 2017, p. 8; Royall, 1997, p. 86). In particular, the 

Fisherian Type I error is a sample-specific probability in that it is conditioned on a hypothetical 

population that is imagined to reflect the characteristics of the particular sample under 

investigation rather than on a series of random samples from a well-defined objective population. 

In the Fisherian approach, researchers make provisional (preliminary) decisions about rejecting 

substantive null hypotheses based on a specific sample of data, and these provisional decisions are 

guided by whether observed p-values fall below researchers’ significance thresholds (e.g., Fisher, 

1937, p. 16; Fisher, 1955, p. 74; Fisher, 1959, p. 35, p. 100-101). Consequently, Fisherian 

researchers can also make provisional Type I errors in relation to their decisions (Cox & Hinkley, 

1974, p. 66; Royall, 1997, p. 73) and, assuming that all necessary statistical and methodological 

assumptions are met, the significance threshold indicates the probability of making this error with 

regards to a specific sample of data.7 If an observed p value falls below a researcher’s significance 

threshold of p ≤ .05, then the researcher may decide to provisionally reject the substantive null 

hypothesis on the understanding that they have a 5.00% probability of making an error due to “an 

exceptionally rare chance” that has occurred in relation to the particular sample of data under 

consideration (Fisher, 1959, p. 39). 

Again, Fisherian sample-specific Type I error probabilities are quite different from 

Neyman-Pearson long run Type I error rates because they do not refer to a maximum frequency of 

incorrectly rejecting a statistical null hypothesis across a long run of exact replications (for related 

discussions, see Berger & Delampady, 1987, p. 329; Hubbard, 2004, 2011; Hubbard & Bayarri, 

2003, p. 174; Fisher, 1955, p. 71-72; Fisher, 1959, p. 78; see also Fisher, 1962, p. 530; Goodman, 
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1999, p. 999; Heike, Târcolea, Tarcolea, & Demetrescu, 2004, p. 5; Hubbard, 2004, 2011; 

Johnstone, 1987, p. 483; Neyman, 1971, p. 13; Royall, 1997, pp. 41-50). Instead, a Fisherian Type 

I error probability is conditioned on “a population of samples in all relevant respects like that 

observed [excluding the test results]” (Fisher, 1955, p. 72). Critically, this imaginary hypothetical 

infinite population (Fisher, 1922, p. 311) does not contain any recognizable relevant subsets to 

which different error probabilities may apply. The concern about recognizable relevant subsets is 

a central but often overlooked aspect of Fisher’s approach (Camilli, 1990, p. 137; Johnstone, 1987, 

p. 485; Johnstone, 1989; Seidenfeld, 1979; Senn, 2005), and it is integral to his notion of fiducial 

probability and his fiducial argument (Pedersen, 1978, p. 152).8 In order to apply a Fisherian 

significance threshold (e.g., p ≤ .050) in relation to a population, researchers need to assume 

(“imagine”) that the population does not include any theoretically relevant subpopulations (e.g., 

born in the U.S.A. vs. born in China; born before 2000 vs. born after 2000, high or low on sexism, 

etc.) that could give rise to substantively different probability statements. The variables that 

demarcate these relevant subsets (e.g., culture; age) might be described as hidden moderators 

(Zwaan et al., 2018). It is this “postulate of ignorance” about relevant subsets in the population 

(Fisher, 1958, p. 268; Fisher, 1959, pp. 32-33, p. 57) that allows the move from a Type I error rate 

across the long run (an aleatory, frequentist form of probability) to a Type I error probability in 

the current case (an epistemic, sample-specific form of probability; Johnstone, 1987, 1989). 

Specifically, the postulate of ignorance allows researchers to legitimately (logically) attach the 

significance threshold and its associated Type I error probability to samples that are drawn from 

an imaginary (hypothetical), sample-specific population, or reference set, rather than to samples 

that are drawn during an imaginary long run of exact replications from the exact same, fixed, well-

defined, objective population (delineating the frequentist sample space). As Fisher (1959, p. 83) 

explained, the observed sample “is not one of an objective series of similar samples from the same 

population existing in reality, though it can be regarded by an act of imagination as one of a 

hypothetical reference set.” This hypothetical reference set is conditioned on an ancillary statistic 

that has the same value as that of the observed sample (Cox, 1958, pp. 359-361; Fisher, 1955, pp. 

71-72; Johnstone, 1987, p. 482; Lehmann, 1993, p. 1245-1246; Pedersen, 1978, p. 152). So, for 

example, looking at Fig. 1, the Fisherian significance threshold (e.g., p ≤ .050) may indicate the 

probability of making an incorrect provisional decision to reject the substantive null hypothesis 

that men do not have greater self-esteem than women based on the unique situation in which self-

esteem is measured among a sample of “people” (reference set) from a parochial population of 

first-year, undergraduate, psychology students at the University of X and under the assumption 

that this reference set does not contain any recognizable relevant subsets. As Fisher (1959, p. 23) 

explained, “[relevant] subsets must always exist; it is required that no one of them shall be 

recognizable.” Hence, in Fig. 1, although Sample A may be drawn from a relevant subset (e.g., 

“psychology students,” “undergraduate students,” “people born during 1990-1995,” or “people 

high in sexism”), the researcher must not be able to recognize these subsets as being relevant to 

their Type I error probability statement. In other words, the researcher should have no theoretical 

or empirical grounds for suspecting that these factors make a difference. 
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Fig. 1. Imagine that a researcher tests for a gender difference in self-esteem. In this case, a Fisherian researcher 

would imagine a reference set that does not contain any potentially relevant subsets. For example, they might 

imagine that year of birth (1990-1995 or 1996-2001), sexist attitudes (high or low), degree subject (psychology), 

and university (the University of X) do not affect the size of the gender difference in self-esteem. In this scenario, 

Samples A to D are considered to be part of the same hypothetical infinite population of “people.” In contrast, a 

Neyman-Pearson researcher would conceive their test as having the potential to repeatedly sample from the 

same, well-defined, objective, parochial population, which in this case is “first-year undergraduate psychology 

students at the University of X.” A Neyman-Pearson researcher would also assume that their test is able to sample 

from all potentially influential (relevant) subsets within that population (i.e., Samples A, B, C, and D).  

 

Again, a key implication of the Fisherian approach is that Type I error probabilities are 

sample-specific (Ludbrook & Dudley, 1998, pp. 128-129). If a researcher actually drew another 

sample of participants from the parochial population, then they might unwittingly draw it from a 

relevant subset of that population that has a different ancillary value and that does not conform to 

the original Type I error probability. For example, in Fig. 1, a replication conducted five years 

after the original study might be more likely to draw Samples A and B rather than Samples C and 

D. Hence, the significance threshold and its associated Type I error probability always need to be 

interpreted in relation to an imagined null population that is predicated on the characteristics of 

the observed sample and that does not contain any recognisable relevant subsets. The sample can 

then be conceived as being a random sample from this hypothetical infinite null population 

(reference set; Fisher, 1922, p. 311; Fisher, 1958, pp. 263-264; Gigerenzer, 2006, p. 245; 

Johnstone, 1987, p. 497; Johnstone, 1989; Sterba, 2009, p. 716). 

It might be argued that there is something circular in conditioning probability statements 

on hypothetical infinite populations that are imagined to resemble observed samples. However, 

this act of imagination merely serves to alert researchers to the fact that their results do not 

necessarily generalize to other populations, as represented by other samples. 

It should also be noted that the Neyman-Pearson and Fisherian approaches both require an 

act of imagination on the part of the researcher. However, the implications of these acts of 

imagination are quite different. In the Neyman-Pearson case, the act of imagination is to believe 
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that it is possible to repeatedly sample from the exact same parochial population (e.g., first-year 

undergraduate psychology students at the University of X). As discussed above, this belief is 

theoretically unreasonable and empirically unrealistic in the case of people, social groups, and 

social systems because these units of investigation change over time (e.g., the psychology 

department at University of X may expand to a new campus in a new country). In contrast, in the 

Fisherian case, the act of imagination is to assume that the hypothetical reference set does not 

contain any relevant subsets that would give rise to alternative probability statements. In the 

absence of any theory or evidence that would allow the recognition of such relevant subsets, this 

assumption is reasonable and scientifically useful (Senn, 2005). Furthermore, as explained below, 

the validity of this assumption can be tested in a series of real future studies that sample from 

similar populations (direct replications) and different populations (conceptual replications) but 

never from the same population (exact replications). 

 

Contrasting the Neyman-Pearson and Fisherian Approaches 

In summary, the Neyman-Pearson Type I error rate refers to a replicable random sampling 

procedure that has the potential to sample from all relevant subsets in the target population of 

interest during a long run of exact replications. In contrast, the Fisherian Type I error probability 

refers to a hypothetical sampling procedure that is restricted to an imaginary sample-specific 

population (reference set) that does not contain any recognizable relevant subsets. Which of these 

error probabilities is more appropriate in social science? I argue that there are four reasons that the 

Fisherian sample-specific Type I error probability is more appropriate than the Neyman-Pearson 

long run Type I error rate. 

First, and as discussed above, social scientists investigate irreversible units in the form of 

people, social groups, and social systems. Consequently, it is impossible for social scientists to 

conduct exact replications because potentially influential factors will always vary from one study 

to the next. In this context, it is more realistic to consider a Fisherian Type I error probability for 

the specific sample under investigation than it is to consider a Neyman-Pearson Type I error rate 

for a long run of exact replications.  

Second, and as a result of the first reason, social scientists should condition their Type I 

error probabilities on the sample that they actually observed rather than on samples that they could 

have observed in a long run of replications. The Neyman-Pearson long run Type I error rate does 

not meet this conditionality principle (Cox, 1958, p. 359-361; Lehmann, 1993, p. 1245-1246; 

Wagenmakers, 2007, p. 783). Instead, the Neyman-Pearson approach provides an unconditional 

Type I error rate that applies across all of the potentially relevant subsets within a population (e.g., 

in Fig. 1, across people born during 1990-1995 and 1996-2001 as well as across people who are 

high and low on sexism). This unconditional approach is problematic because the current sample 

may be drawn from a subset of the population that is substantively different to the other subsets in 

the population. To address this problem, the Fisherian Type I error probability is conditioned on 

the current sample and only applies to a corresponding hypothetical infinite population (reference 

set) that does not contain any subsets that the researcher recognizes to be relevant to the statistical 

inference in question. Following this conditional approach, the relevance of population subsets 

may become recognized (discovered) during the course of a series of direct or conceptual 

replications. For example, sexist attitudes may be recognized as an important moderator of the 

gender difference in self-esteem such that the gender difference is stronger among people who are 

high in sexism. 
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Third, social scientists are not able to randomly sample the entire target population of 

interest (e.g., men and women). Instead, they are only able to sample from parochial populations 

(e.g., 2020’s male and female undergraduate students at an American university). Consequently, 

they are not able to undertake a comprehensive assessment of potential moderating variables in a 

single study (i.e., variables that demarcate relevant subsets in the population). Instead, social 

scientists need to conduct a series of actual direct replications across a range of parochial 

populations that all share the defining characteristics of the broader target population of interest 

(e.g., men and women in the U.S.A, men and women in China, men and women in France, etc.; 

Hurlbert, & Lombardi, 2009, pp. 336-337; Fisher, 1937, p. 16). They then need to collate their 

results in order to reach firmer conclusions about the conditions under which the broader 

substantive null hypothesis is and is not rejected (e.g., by conducting a meta-analysis that includes 

a moderation analysis). The Fisherian Type I error probability is better suited to this piecemeal 

cumulative approach to knowledge building because it can be applied to each sample-specific, 

provisional, belief-changing decision that researchers make about rejecting the same broad 

substantive null hypothesis in a series of direct and conceptual replications. In contrast, the 

Neyman-Pearson long run Type I error rate is less useful in this context because it refers to an 

unconditional, final decision about rejecting a parochial, context-specific, statistical null 

hypothesis that is specified across a long run of exact replications. 

Finally, social scientists need to follow Fisher’s postulate of ignorance when they make a 

“theoretical commitment” that their observed results will replicate in direct replications (LeBel et 

al., 2017, p. 255; Nosek et al., 2012, p. 626; Zwaan et al., 2018, p. 4). In particular, a researcher 

who specifies the elements of their original study that are essential for a direct replication also 

needs to concede a “subjective ignorance” (Fisher, 1959, p. 33) about potentially influential but 

theoretically extraneous elements that may vary from one study to the next (e.g., whether 

participants’ culture or age will have any effect on the results; for discussions, see Cesario, 2014; 

Earp & Trafimow, 2015, p. 3). If the researcher is not ignorant about a particular element, and they 

are able to recognize it as a theoretically relevant subset (e.g., the effect should only hold for 

heterosexual students), then they need to make that subset their reference set and declare it as an 

essential element for any subsequent direct replication (Fisher, 1959, p. 111; Johnstone, 1987, 

1989; Senn, 2005; for similar reasoning, see De Ruiter, 2018; Rubin, 2017b, p. 315; Simons, 2014, 

p. 76; Simons, Shoda, & Lindsay, 2017). Otherwise, they must claim a subjective ignorance about 

potentially theoretically relevant subsets and associated hidden moderators. 

Consistent with Fisher’s emphasis on subjective ignorance, the scientific literature is 

replete with cases in which researchers have discovered effects that were initially assumed to be 

quite general and then found to be qualified by previously hidden moderators such that their 

generality in size or existence became more circumscribed as research progressed (for a discussion 

and examples, see Firestein, 14/02/2016; Redish, Kummerfeld, Morris, & Love, 2018). As Redish 

et al. (2018, p. 5043) explained, “in many…cases, what have been called ‘failures to replicate’ are 

actually failures to generalize across what researchers hoped were inconsequential changes in 

background assumptions or experimental conditions.” Similarly, Nosek and Lakens (2014, p. 138) 

explained that “different results between original and replication research could mean that there 

are unknown moderators or boundary conditions that differentiate the two studies” (see also Open 

Science Collaboration, 2015, p. 6; see also Camerer et al., 2018; Zwaan et al., 2018, p. 4). To be 

clear, the discovery of these hidden moderators (relevant subsets) does provisionally falsify (lower 

the estimated relative verisimilitude of) the original unconditional hypothesis. Nonetheless, the 

acknowledgment of such previously hidden moderators allows the development of a new 
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hypothesis. In some cases, this new hypothesis may represent a progressive update in the 

theoretical explanation for the originally hypothesised effect (e.g., moderator variable X is 

introduced into the theory in order to predict when the originally hypothesised effect will and will 

not occur; Lakatos, 1976; McGuire, 1983, pp. 7-8; Zwaan et al., 2018, p. 4; see also the 

commentaries to Camerer et al., 2018). In some cases, the new hypothesis may refer to the 

methodology that is essential to produce the originally hypothesised effect (e.g., maintaining 

measurement error below a certain level; Duncan & Davachi, 2018). Finally, in some cases, the 

new hypothesis may entail a completely different explanation for the effect and sometimes one 

that is theoretically less interesting than the original hypothesis (e.g., explaining the effect in terms 

of methodological artefacts such as demand characteristics or stimulus sampling failures). None 

of these new hypotheses imply that the original effect was a Type I error. Instead, they represent 

alterative explanations for a genuine (true positive) effect. 

It is important to appreciate that, in the Fisherian approach, the consideration of hidden 

moderators (relevant subsets) occurs in addition to, rather than instead of, the consideration of 

Type I and II errors.9 Hence, assuming that all necessary statistical and methodological 

assumptions are met, a failure to replicate an effect in a direct replication may be due to (a) “a very 

remarkable and exceptional coincidence” in the initial study (i.e., a sample-specific Type I error; 

Fisher, 1959, p. 35), (b) a lack of sensitivity to detect the effect in the direct replication (i.e., a 

sample-specific Type II error; Fisher, 1937, p. 25), or (c) the operation of a previously unknown 

moderator variable that becomes recognised as demarcating a relevant subset in the population 

(Camerer et al., 2018; Open Science Collaboration, 2015, p. 6; Nosek & Lakens, 2014, p. 138; 

Nosek & Errington, 2019, p. 4; Zwaan et al., 2018, p. 4). 

In summary, the Fisherian Type I error probability provides a means of evaluating each 

sample-specific result in a series of actual direct replications without reference to the results of a 

series of impossible and unobserved exact replications. Scientists who sample irreversible units 

from parochial populations, who condition their inferences on observed data per se, and who 

concede subjective ignorance about the essential elements of direct replications should find the 

Fisherian sample-specific Type I error probability more applicable to their research than the 

Neyman-Pearson long run Type I error rate. 

 

Return to the Replication Crisis 

Researchers have advocated two main approaches in response to the replication crisis. The 

first approach has been to improve the identification of Type I errors. The second approach has 

been to undertake direct replications. None of the arguments that are presented in this article 

oppose either of these approaches. Instead, the present article questions how social scientists 

should conceptualize Type I errors given that exact replications are impossible in social science 

and direct replications are possible and essential. 

I considered two types of Type I error probability. The Neyman-Pearson alpha level limits 

the maximum frequency of Type I errors that would occur in a long run of exact replications of a 

test that was reconducted on a series of samples from the same objective population. In contrast, 

the Fisherian significance threshold indicates the probability of making a Type I error about the 

provisional decision to reject a substantive null hypothesis on the basis of a specific piece of 

evidence from a specific sample of a hypothetical population. Of these two approaches, the 

Neyman-Pearson approach is least applicable in social science because social science deals with 

irreversible units (viz., people, social groups, and social systems) that make exact replications 

impossible and, therefore, long run error rates meaningless. 
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The Fisherian sample-specific Type I error probability is more appropriate in social science 

because it limits a consideration of the Type I error probability to a provisional decision about 

rejecting a substantive null hypothesis based on a single sample rather than to a final decision 

about rejecting a statistical null hypothesis in relation to a series of samples. In the Fisherian 

approach, assessments of replicability depend on the results of a series of real direct replications, 

and significance thresholds are used to assist researchers in making provisional decisions in each 

study. Putative effects can be investigated using this gradual, piecemeal, cumulative approach in 

order to (a) test their generality and (b) generate new hypotheses about their limiting conditions 

that may be included in revised theories (Firestein, 14/02/2016; Lakatos, 1976; McGuire, 1983, 

pp. 7-8, p. 14; Redish et al., 2018). In other words, the Fisherian approach “afford[s] direct 

guidance as to what elements we may reasonably incorporate in any theories we may be attempting 

to form in explanation of objectively observable phenomena” (Fisher, 1959, p. 35). Fisher 

described this process of progressive theoretical development as “learning by observational 

experience” (Fisher, 1937, p. 9; Fisher, 1955, p. 73; Fisher, 1959, p. 100-101; for a similar view, 

see McGuire’s, 1983, contextualist vision of science). He argued that the Neyman-Pearson 

approach is not well-suited to learning by observational experience because its concept of long run 

error rates implies a fixed and closed system of “repeated sampling from the same population” 

(Fisher, 1955, p. 71; Fisher, 1959, p. 78, p. 83) in which “nothing essentially new can be 

discovered” (Fisher, 1959, p. 109; see also Cox, 1958, p. 360). In particular, the Neyman-Pearson 

long run Type I error rate is not suitable if one’s aim is to discover (recognise) relevant subsets 

(hidden moderators) within the population. 

Fisher predicted that “the principles of Neyman and Pearson’s ‘Theory of Testing 

Hypotheses’ are liable to mislead those who follow them into much wasted effort and 

disappointment” (Fisher, 1959, p. 89). Indeed, it is possible to attribute part (but not all) of the 

replication crisis to researchers’ unrealistic expectations about replication rates that are based on 

Neyman-Pearson long run error rates. For example, one of the ways in which the Open Science 

Collaboration (OSC, 2015, p. 4) computed a replication rate was to refer to the Neyman-Pearson 

concept of power: 

On the basis of only the average replication power of the 97 original, significant effects [M 

= 0.92, median (Mdn) = 0.95], we would expect approximately 89 positive results in the 

replications if all original effects were true and accurately estimated; however, there were 

just 35. 

Because it is based on the Neyman-Pearson Type II error rate (i.e., 1 – power), this 

calculation is only valid for exact replications. However, the OSC studies were direct replications, 

not exact replications. As Gilbert, King, Pettigrew, and Wilson (2016, p. 1) explained, using the 

concepts of power and the Type II error rate in this way assumes 

that the one and only way in which OSC’s replication studies differed from the original 

studies is that they drew new samples from the original population. In fact, many of OSC’s 

replication studies differed from the original studies in other ways as well. 

Indeed, Gilbert et al. (2016) reviewed the OSC studies and highlighted cases in which 

different populations and procedures were used compared to those used in the original studies. 

Hence, the OSC studies represented direct replications, rather than exact replications. 

Consequently, it is inappropriate to use Neyman-Pearson long run error rates to compute a 

replication rate for the OSC studies, and doing so may help to explain the “disappointment” that 

many researchers felt about the OSC replication rate (Fisher, 1959, p. 89). 
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To end, I want to make it clear that I am not dismissing the social reality of the replication 

crisis: There is quite obviously a crisis of confidence about the standard approach to science. 

However, I do think that it remains unclear as to what extent the crisis is due to scientifically 

problematic levels of replicability rather than researchers’ unrealistic expectations about 

replicability that are based, in part, on a consideration of Neyman-Pearson long run error rates. In 

this respect, adopting the Fisherian sample-specific Type I error probability may be beneficial not 

only because the Fisherian approach is more consistent with the subject matter and research 

practices of social scientists, but also because it may help to reduce the emphasis on ultimately 

unachievable exact replication rates and instead increase the focus on the degree of evidence that 

has been obtained for and against a prospective effect in a series of unique studies. 
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Endnotes 

1. The Bayesian approach is more similar to the Fisherian approach than it is to the Neyman-

Pearson approach. In particular, both the Bayesian and Fisherian approaches are conditioned 

on the data in hand rather than on a long run of samples. The critical difference between the 

Bayesian and Fisherian approaches is that the Fisherian approach does not proceed on the basis 

of the prior probability distribution of the hypothesis under investigation. Indeed, the Fisherian 

approach requires a “subjective ignorance” about this prior probability distribution because it 

would allow the recognition of relevant subsets within the population (Fisher, 1959, p. 25-26). 

Fisher (1959, p. 17, 20-23) argued that, although the Bayesian approach is valid when prior 

probabilities are known, his significance testing approach is more appropriate when prior 

probabilities are unknown and, by definition, study-specific prior probabilities are unknown in 

novel research situations (including non-exact replications). 

2. In this article, I focus on the Neyman-Pearson theory (1928, 1933). I do not consider extensions 

of this theory. For example, I do not consider Berger’s (2003) extension of the Neyman-

Pearson approach, which considers conditional frequentist testing as a means of unifying the 

Neyman-Pearson, Fisherian, and Bayesian approaches. In addition, I do not focus on Mayo 

and Spanos’ (2006, 2011) extension, which argues that Neyman-Pearson long run “error 

probabilities may be used to make inferences about the process giving rise to data, by enabling 

the assessment of how well probed or how severely tested claims are” (Mayo & Spanos, 2006, 

p. 328). Importantly, this error statistical approach also includes the Fisherian approach. 

Hence, it represents a “‘hybrid’ of sorts” (Mayo & Spanos, 2006, p. 333-334). However, it is 
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unclear how this hybrid is supposed to operate given that the Neyman-Pearson and Fisherian 

approaches use fundamentally different reference classes for their probability statements (viz., 

a well-defined objective sample space vs. a hypothetical reference set conditioned on the 

sample in hand, respectively; Fisher, 1959, p. 78; Lehmann, 1993, p. 1247). It is also notable 

that the error statistical approach emphasises that the “severity evaluation must be sensitive to 

the particular outcome” (Mayo & Spanos, 2006, p. 330). This emphasis on the data in hand 

brings the error statistical approach closer to the Fisherian approach than to the Neyman-

Pearson approach (Hurlbert & Lombardi, 2009, p. 326; Lehmann, 1997, p. 789). 

3. Note that random sampling is not the same as randomization (Berk et al., 1995; Fienberg & 

Tanur, 1996; Ludbrook & Dudley, 1998; Papineau, 1994, p. 442). Random sampling refers to 

the random selection of a sample from a population, and it allows generalization from the 

sample to the population. Randomization refers to the random assignment of participants to 

conditions, and it allows a clearer interpretation of research results in the presence of 

potentially confounding variables. Both Fisher and Neyman and Pearson stressed the 

importance of randomization in research design (e.g., Fisher, 1937; Neyman, 1950; Pearson, 

1937). However, only the Neyman-Pearson approach requires random sampling in order to 

allow generalization to the objective population (Ludbrook & Dudley, 1998). The Fisherian 

approach does not require random sampling because generalization is made to a hypothetical 

sample-specific infinite null population that contains no recognizable relevant subsets 

(Johnstone, 1989). 

4. Some commentators have argued that researchers should abandon significance thresholds 

(alpha levels) and instead consider p values without reference to any benchmark for 

“significance” (e.g., Amrhein et al., 2019; Amrhein, Korner-Nievergelt, & Roth, 2017; 

Hurlbert & Lombardi, 2009, p. 318; Wasserstein et al., 2019). This view has sometimes been 

attributed to Fisher’s later publications (Gigerenzer, 1993, p. 316-317; Gigerenzer et al., 2004, 

p. 11). Although Fisher advised researchers to report exact p values in his later publications, 

he did not advise them to abandon the use of significance thresholds. Instead, he recommended 

that researchers should not set significance thresholds at “p ≤ .050” in an automatic fashion, 

and that they should vary their thresholds in a way that takes into account the particular 

circumstances of each hypothesis that they test (e.g., Fisher, 1955, p. 74; Fisher, 1959, p. 42, 

pp. 100-101). In considering the call to abandon significance thresholds, it is important to 

appreciate that, in the absence of a reference point for determining which p values are 

“significant,” “surprising,” “small,” or “low,” p values cannot affect researchers’ attitudes or 

guide their behaviour. For example, in the absence of a significance threshold, a p value of 

.0001 does not warrant any action or change in attitude on the part of the researcher because it 

is quite possible to obtain this p value when the statistical null hypothesis is true (Mayo & Cox, 

2006, p. 80; Perezgonzalez, 2015b, p. 3). In order for p values to contribute to decisions and 

attitude change, researchers need to imbue them with evidential meaning, and the only way to 

do this is to interpret them in relation to a significance threshold. The use of significance 

thresholds enables researchers to make provisional decisions about rejecting the substantive 

null hypothesis. These decisions then feed into further decisions about conducting follow-up 

studies and testing new research questions. 

5. In the Neyman-Pearson approach, researchers who reject a statistical null hypothesis are not 

expected to adopt any belief about that hypothesis. They are only expected to act in a way that 

is consistent with the rejection so that, “in the long run of experience, we shall not too often be 

wrong” (Neyman & Pearson, 1933, p. 291). In contrast, in the Fisherian approach, researchers 
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consider pieces of evidence against a substantive null hypothesis that has the potential to “be 

disproved by a single failure” (Fisher, 1937, p. 19; e.g., “all swans are white”; for a different 

view, see Hager, 2013, p. 254). This evidence informs the researchers’ belief about the 

substantive null hypothesis via the modus tollens argument. However, it is important to note 

that a false substantive null hypothesis provides only one potential reason for a significant 

result. Other reasons include the various statistical and methodological assumptions that form 

part of the overall null model, including distributional assumptions and systematic errors 

(Greenland & Chow, 2019). Hence, a significant result may be due either to a false null 

hypothesis or to a false assumption in the null model or both. In interpreting significant results, 

researchers need to weigh up the likelihood of each of these potential explanations in the 

context of a priori theory and evidence, robustness checks, error checking, and logical 

reasoning in order to arrive at a provisional decision about whether the result is better explained 

by a false null hypothesis or by a false assumption. For example, they must weigh up the 

likelihood that a significant result was primarily caused by a problematic violation of a 

distributional assumption, a systematic data coding error, or a false null hypothesis (Fisher, 

1959, pp. 39-41). This process of inference to the best explanation may be informed by the 

results of tests of distributional assumptions and checks for coding errors as well as a priori 

knowledge about the likelihood of such assumption violations. Researchers can then make an 

informed decision about whether or not to conclude that the significant result was caused by a 

false null hypothesis rather than a false statistical or methodological assumption. Given that 

researchers can err during this process of inference to the best explanation, as well as the 

potential for Type I errors, their decisions are only “provisional” (preliminary), pending further 

corroboration.  

6. Taking into account the fact that significant results may arise from “chance coincidence” (i.e., 

Type I errors), Fisher (1937, p. 16) argued that “no isolated experiment, however significant 

in itself, can suffice for the experimental demonstration of any natural phenomenon.” 

Researchers are only able to make a firm decision about rejecting a substantive null hypothesis 

on the basis of a series of real direct and conceptual replications that “rarely fail to give us a 

statistically significant result” (Fisher, 1937, p. 16; see also Fisher, 1926, p. 85, p. 504). Hence, 

a single p value from a single study provides only a “provisional” piece of evidence against 

the substantive null hypothesis. The word “provisional” indicates that “no irreversible decision 

has been taken; that, as rational beings, we are prepared to be convinced by future evidence 

that appearances were deceptive, and that in fact a very remarkable and exceptional 

coincidence had taken place” (Fisher, 1959, p. 35; see also Fisher, 1959, pp. 100-101). 

7. Some commentators have argued that Fisherian p values cannot be equated with Type I errors 

(e.g., Hubbard, 2004, 2011; Hubbard & Bayarri, 2003). In making this argument, they compare 

the Fisherian p value with the Neyman-Pearson alpha level. I agree with this line of reasoning. 

In the present article, I make a separate argument by comparing the Fisherian significance 

threshold (e.g., p ≤ .050) with the Neyman-Pearson alpha level (e.g., α ≤ .050), and I am careful 

to distinguish the different implications of passing this threshold in each case. Hence, 

consistent with Hubbard and colleagues, I do not equate a Fisherian p values with the Neyman-

Pearson alpha level. 

8. Fisher’s fiducial argument provides a method of making a probability statement about a 

population parameter conditional on a sample statistic in the absence of prior information about 

the parameter. This fiducial inference has been the subject of much controversy and criticism, 

including the concern that the resulting fiducial probabilities are not additive (for reviews, see 
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Fraser, 2008; Zabell, 1992). At one point, fiducial inference was described as being “essentially 

dead” (Pedersen, 1978, p. 147). Contrary to this view, there has been a renewed interest in 

fiducial inference, with several statisticians currently investigating various instantiations of 

this idea (e.g., Bowater, 2017; Hampel, 2003; Heike et al., 2007; Iverson, 2014; Veronese & 

Melilli, 2015; for reviews, see Hannig, Iyer, Lai, & Lee, 2016; Rønneberg, 2017). It is beyond 

the scope of the current paper (and the competency of its author) to consider the fiducial 

argument in detail. It is sufficient to note that Fisher’s epistemic view of probability allows the 

consideration of a sample-specific significance testing approach (i.e., fiducial probability 

statements about sample statistics that are conditioned on hypothetical infinite null populations 

that contain no recognizable relevant subsets) without the need to consider probability 

statements about population parameters that are conditioned on hypothetical superpopulations 

that contain no recognizable relevant subpopulations (i.e., fiducial inference; for a similar 

conclusion, see Lehmann, 1993, p. 1242). 

9. The Neyman-Pearson Type II error rate refers to the maximum frequency of incorrectly 

rejecting the statistical alternative hypothesis in the case of a long run of exact replications that 

randomly draw different samples from the same objective population. This error rate refers to 

a single precise statistical alternative hypothesis, its associated “true” effect size in comparison 

with the null hypothesis, and the test’s power to detect that effect (Perezgonzalez, 2015a, 

2017). The Fisherian approach does not endorse any of these concepts. Nonetheless, Fisherian 

researchers do consider multiple possible alternative substantive hypotheses (models, 

populations) in contrast to the substantive null hypothesis (e.g., Fisher, 1959, p. 35, pp. 78-79), 

and Fisher discussed the sensitivity of tests instead of their power (e.g., Fisher, 1937, pp. 25-

26; Gigerenzer, 1993, p. 320; Hubbard & Bayarri, 2003, p. 173; Hurlbert & Lombardi, 2009, 

p. 318; Lehmann, 2011, p. 51; Lehmann, 1993, p. 1245; Macdonald, 1997, p. 339; Meehl, 

1967, p. 107; Perezgonzalez, 2015a, 2017). Furthermore, Perezgonzalez (2017) has recently 

shown that it is possible to compute a priori and post hoc sensitiveness for Fisherian tests if 

researchers have an idea of the minimum effect size in which they are interested. In this 

approach, sensitiveness is defined as the minimum sample size that is required in order to 

obtain a significant result at a specified significance threshold for a given minimum effect size 

of interest. 
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