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Abstract 
Scientists often adjust their significance threshold (alpha level) during null hypothesis significance 
testing in order to take into account multiple testing and multiple comparisons. This alpha 

adjustment has become particularly relevant in the context of the replication crisis in science. The 

present article considers the conditions in which this alpha adjustment is appropriate and the 
conditions in which it is inappropriate. A distinction is drawn between three types of multiple 

testing: disjunction testing, conjunction testing, and individual testing. It is argued that alpha 

adjustment is only appropriate in the case of disjunction testing, in which at least one test result 

must be significant in order to reject the associated joint null hypothesis. Alpha adjustment is 
inappropriate in the case of conjunction testing, in which all relevant results must be significant in 

order to reject the joint null hypothesis. Alpha adjustment is also inappropriate in the case of 

individual testing, in which each individual result must be significant in order to reject each 
associated individual null hypothesis. The conditions under which each of these three types of 

multiple testing is warranted are examined. It is concluded that researchers should not 

automatically (mindlessly) assume that alpha adjustment is necessary during multiple testing. 
Illustrations are provided in relation to joint studywise hypotheses and joint multiway ANOVAwise 

hypotheses. 
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The multiple testing of hypotheses occurs in the most areas of science. For example, it 

occurs in clinical science, where researchers investigate whether a treatment affects multiple 

disease symptoms, and it occurs in psychology, where researchers investigate whether multiple 

groups of people hold different attitudes to one another. 

Multiple testing has been implicated in the replication crisis in science (e.g., Benjamin et 

al., 2018; Forstmeier et al., 2017; Goodman et al., 2016). In particular, it has been suggested that 

researchers who do not adequately correct their significance threshold, or alpha level, during 

multiple testing are at a greater risk of making Type I errors (incorrectly rejecting null hypotheses) 

and, consequently, publishing nonreplicable false positive results (Goodman et al., 2016). 

Many books and articles explain how to adjust alpha levels during multiple testing (e.g., 

Bretz et al., 2011; Dmitrienko & D'Agostino, 2013; Dudoit & Van der Laan, 2008; Goeman & 

Solari, 2014; Hsu, 1996; Klockars, 2003; Pan, 2013; Shaffer, 1995; Streiner, 2015). However, far 

fewer articles consider when to adjust alpha levels during multiple testing (Proschan & Waclawiw, 

2000). The most common view is that alpha adjustment is almost always required during multiple 

testing. For example, in their article on the control of false positives in neuroimaging, Bennett et 

al. (2009, p. 417) explained that “it is a statistical necessity that we must adapt our threshold criteria 

to the number of statistical tests completed on the same dataset.” Similarly, in their tutorial on 

multiple testing in genomics, Goeman and Solari (2014) argued that “there can be no reason not 

to correct for multiple testing in a genomics experiment” (p. 24). Commentators who hold different 

views tend to be in complete opposition to any alpha adjustment. For example, O’Keefe (2003, p. 

431) argued that “the practice of requiring or employing such adjustments should be abandoned,” 

and Rothman (1990, p. 43) argued that “a policy of not making adjustments for multiple 

comparisons is preferable because it will lead to fewer errors of interpretation” (see also Hurlbert 

& Lombardi, 2012, p. 30; Mead, 1988; Perneger, 1998; Rothman et al., 2008; Sinclair et al., 2013; 

Stewart-Oaten, 1995; Wilson, 1962; for a brief review, see Hurlbert & Lombardi, 2012, pp. 30-

31). Researchers cannot be blamed for being confused about alpha adjustment when they are 

confronted with these contradictory viewpoints. 

Some articles have provided a more moderate and nuanced perspective in which an alpha 

adjustment is warranted in some cases of multiple testing but not in others (Armstrong, 2014; 

Bender & Lange, 2001; Greenland, 2020; Hewes, 2003; Matsunaga, 2007; Proschan & Waclawiw, 

2000; Schulz & Grimes, 2005; Streiner, 2015; Tutzauer, 2003; Wason et al., 2014; Weber, 2007). 

Although numerous qualifying conditions have been proposed, a common criterion relates to the 

distinction between exploratory and confirmatory research. Some researchers believe that alpha 

adjustment is more appropriate when multiple testing occurs in exploratory research situations that 

involve unplanned analyses rather than in confirmatory research situations that include planned 

analyses (e.g., Armstrong, 2014; Cramer et al., 2016; Streiner, 2015; for a review, see Frane, 2015). 

However, other researchers hold the opposite view – that alpha adjustment is more appropriate in 

confirmatory situations than in exploratory situations (e.g., Bender & Lange, 2001; Schochet, 

2009; Stacey et al., 2012; Tutzauer, 2003; Wason et al., 2014; for a discussion, see Parker & Weir, 

2020, p. 3). Hence, the distinction between exploratory and confirmatory research does not seem 

to clarify when to adjust alpha. 

In the present article, I consider an alternative approach to determining when to adjust 

alpha during multiple testing. Rather than being based on the type of research situation 

(exploratory vs. confirmatory), my approach is based on the type of multiple testing. Specifically, 

I consider three types of multiple testing – disjunction testing, conjunction testing, and individual 

testing. I argue that an alpha correction for multiple testing is only necessary in the case of 
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disjunction testing and not in the cases of either conjunction or individual testing. I explain when 

it is appropriate to undertake each type of multiple testing and, consequently, when it is appropriate 

to adjust alpha. Based on this explanation, I argue that researchers should not automatically assume 

that alpha adjustment is necessary during multiple testing. I provide illustrations of the problems 

with this automatic (mindless) alpha adjustment assumption in relation to joint studywise 

hypotheses and joint multiway ANOVAwise hypotheses. I begin with an introduction to the issue 

of multiple testing. 

 

What is Multiple Testing? 

To understand multiple testing, it is first necessary to understand the null hypothesis 

significance testing approach. This approach is based on p values. A p value is the probability of 

obtaining a test statistic value or a more extreme value in a sample assuming that (a) the sample 

was drawn from a null population, as described in the null hypothesis, and that (b) all statistical 

assumptions are valid. In order to decide whether a test result is “significant,” researchers judge 

their observed p value against a threshold criterion value or alpha level.1 If the p value for an 

observed test statistic is less than or equal to the alpha level, then researchers categorize the result 

as being “significant,” and they decide to provisionally reject the null hypothesis that the sample 

was drawn from the null population. Otherwise, they categorise the observed result as 

“nonsignificant” and retain the null hypothesis. 

In many fields, researchers set their alpha level at .05, meaning that they are willing to 

accept that random measurement error and random sampling error will cause them to incorrectly 

reject the null hypothesis in no more 5.00% of a long run of exact replications of their test. Hence, 

there is a 5.00% probability that researchers will make a Type I error in the long run by rejecting 

the null hypothesis when it is true. 

It should be noted that null hypothesis significance testing is a hybrid of the Fisherian and 

Neyman-Pearson approaches (Dennis et al., 2019; Rubin, 2021). A key difference between these 

two approaches is that the Neyman-Pearson approach explicitly contrasts the null hypothesis with 

a formal alternative hypothesis, whereas the Fisherian approach does not. In addition, some neo-

Fisherians do not use significance thresholds to make dichotomous “reject” vs. “fail to reject” 

decisions about the null hypothesis (Rubin, 2021, Footnote 4). However, many Fisherians, 

including Fisher himself, do use significance thresholds to make such decisions, and the issue of 

multiple testing is relevant to them (e.g., Fisher, 1971, pp. 205-207). 

Imagine a case in which the same hypothesis is tested twice. For example, imagine that a 

group of researchers investigate the alternative hypothesis that eating jelly beans causes acne 

(Munroe, 2011). There are many different colours of jelly bean and so, to keep their study simple, 

the researchers randomly select two colours for testing: green and red. The researchers ask one 

group of participants to eat a bag of green jelly beans every day for a week and one group to eat a 

bag of red jelly beans every day for a week. The researchers also ask a control group of participants 

to eat a bag of sugar pills every day for a week. The researchers then count the number of spots on 

participants’ faces. 

In this jelly beans study, the researchers can make multiple comparisons in order to test the 

null hypothesis that the amount of acne among people who eat jelly beans is no greater than the 

amount of acne among people who eat sugar pills. In particular, the researchers can test for a 

significant increase in acne between (a) the green jelly beans group and the control (sugar pills) 

group and (b) the red jelly beans group and the control group. Hence, the researchers are 

conducting two tests of the same null hypothesis that eating jelly beans does not cause acne.2 
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Note that a hypothesis that undergoes multiple testing is called a joint hypothesis. Joint 

hypotheses comprise two or more constituent hypotheses. Hence, in the above example, the joint 

alternative hypothesis is that “eating jelly beans causes acne,” and the constituent alternative 

hypotheses are that (a) “eating green jelly beans causes acne,” and (b) “eating red jelly beans 

causes acne.” 

Imagine that the researchers in the jelly beans study use an alpha level of .05 as the 

significance threshold for their two one-sided tests. Further imagine that they find that the 

comparison between the green jelly beans group and the control group results in a significant p 

value of .030, but that the comparison between the red jelly beans group and the control group 

results in a nonsignificant p value of .070. What decision should the researchers make about the 

joint null hypothesis that eating jelly beans does not increase acne? There are three main 

approaches that they could take. 

First, the researchers could require that at least one of the two tests returns a significant 

result before they reject the joint null hypothesis. This “at-least-one-test-significant” strategy 

(Dmitrienko & D'Agostino, 2013) represents a disjunction testing approach, because it operates 

on the basis of a logical disjunction decision rule (Weber, 2007). 

Second, the researchers could require that both tests return a significant result before they 

reject the joint null hypothesis. This “all-tests-significant” strategy represents a conjunction testing 

approach, because it operates on the basis of a logical conjunction decision rule (e.g., Capizzi & 

Zhang, 1996; Dmitrienko & D'Agostino, 2013; Weber, 2007). 

Finally, the researchers could abstain from making a decision about the joint null 

hypothesis and instead only make decisions about each of the two constituent null hypotheses. For 

example, this individual testing approach might allow the researchers to conclude that eating red 

jelly beans causes acne, but eating green jelly beans does not. 

Below, I discuss each of these three types of multiple testing and their implications for 

adjustments to the alpha level. I illustrate my discussion with examples from psychology, clinical 

science, genomics, and neuroimaging in order to show how scientists might benefit from these 

different approaches to multiple testing. 

 

Disjunction, Conjunction, and Individual Types of Multiple Testing 

Disjunction Testing 

Disjunction testing is also called union-intersection testing (Bretz et al., 2011, p. 20; 

Hochberg & Tamrane, 1987, p. 28; Kim et al., 2004; Parker & Weir, 2020, p. 2; Roy, 1953), 

because multiple constituent alternative hypotheses form a union (dotted area in Figure 1), and 

multiple constituent null hypotheses form an intersection (grey area in Figure 1). 

Because the constituent null hypotheses form an intersection, it is only necessary to reject 

one of them in order to reject the corresponding joint intersection null hypothesis. For example, it 

is only necessary to reject the constituent null hypothesis that “green jelly beans do not cause acne” 

in order to reject the joint null hypothesis that “neither green jelly beans nor red jelly beans cause 

acne” and infer that “eating (either green or red) jelly beans causes acne.” 

Importantly, disjunction testing increases the probability of making a Type I error about 

the joint intersection null hypothesis, because it increases the number of opportunities that 

researchers have to incorrectly reject this hypothesis. In particular, if researchers undertake 

disjunction testing, then every test of a constituent hypothesis represents an opportunity to reject 

the joint null hypothesis. Consequently, when undertaking disjunction testing, it is important to 
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know the probability of making at least one Type I error in the collection, or family, of constituent 

null hypotheses. This Type I error rate is called the familywise error rate. 

 

Figure 1. Illustration of disjunction testing. Based on Kim et al. (2004, Figure 1[a]). 

 
Assuming that test results are independent from one another, the familywise error rate is 

computed by determining the probability that at least one of the tests of the constituent null 

hypotheses in the family is significant when the joint null hypothesis is true. This probability is 

equal to 1.00 – (the probability that none of the tests are significant). Following the multiplicative 

probability rule for independent events, the probability that none of the tests are significant when 

the joint null hypothesis is true is equal to the product of the probabilities that each of them is 

nonsignificant (i.e., 1 - α). Hence, for k constituent null hypotheses that are each tested using an 

alpha level of α, the familywise error rate is equal to 1 – (1 - α)k. For example, the probability that 

at least one of two tests will result in a Type I error at the .05 alpha level is equal to 1.00 – (1 - 

.05)2 = .098.3 Note that this Type I error rate is higher than the prespecified alpha level of .05. 

Consequently, if researchers use a disjunction testing approach, and they wish to maintain the 

probability of making a Type I error about the joint null hypothesis at the conventional alpha level 

(i.e., αJoint = .05), then they need to decrease the alpha level for each constituent null hypothesis 

(i.e., αConstituent < αJoint).
4 

The amount by which αConstituent needs to be decreased can be determined using an alpha 

adjustment approach. There are many different alpha adjustment approaches (e.g., the Benjamini-

Hochberg, Bonferroni, Dunn-Šidák, Holm, and Hochberg corrections; for a review, see Goeman 

& Solari, 2014). For example, the Dunn-Šidák correction uses the formula 1 – (1 - α)1/k (Šidák, 

1967). If this correction is used in the case of two constituent null hypotheses, then αConstituent should 

be reduced from .050 to .025 in order to maintain the Type I error rate for the joint null hypothesis 

at the prespecified αJoint of .050. 

The familywise error rate can be contrasted with the false discovery rate, which is the 

expected proportion of incorrectly rejected null hypotheses (Benjamini & Hochberg, 1995, p. 290). 

If all of the null hypotheses are true, then the false discovery rate is equivalent to the familywise 
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error rate. However, if some of the null hypotheses are false, then the false discovery rate will be 

less than the familywise error rate, because the false null hypotheses that are rejected do not count 

as erroneous rejections. Hence, unlike the familywise error rate, the false discovery rate is not 

conditioned on the joint null hypothesis being true, because it assumes that some of the associated 

constituent hypotheses may be false and, consequently, that the joint null hypotheses may be false. 

 

Conjunction Testing 

Disjunction testing represents an “at-least-one-test-significant” approach to joint null 

hypothesis testing. In contrast, conjunction testing represents an “all-tests-significant” approach. 

Berger (1982) proposed this approach as an intersection-union test (Berger, 1982; Berger & Hsu, 

1996; Bretz et al., 2011, p. 22). The intersection-union test refers to a configuration of multiple 

constituent alternative hypotheses as an intersection (dotted area in Figure 2) and multiple 

constituent null hypotheses as a union (grey area in Figure 2). 

 

Figure 2. Illustration of conjunction testing. Based on Kim et al. (2004, Figure 1[b]). 

 
Because the constituent null hypotheses form a union, it is necessary to reject all of them 

in order to reject the corresponding joint union null hypothesis (grey area). For example, it is 

necessary to reject both the null hypothesis that “green jelly beans do not cause acne” and the null 

hypothesis that “red jelly beans do not cause acne” in order to reject the joint union null hypothesis 

that “either green jelly beans do not cause acne or red jelly beans do not cause acne” and infer that 

“all (tested) jelly beans cause acne.” 

A key aspect of conjunction testing is that it does not require an adjustment to the alpha 

level for tests of each constituent null hypothesis (i.e., αConstituent = αJoint; Berger, 1982; Dmitrienko 

et al., 2009; Dmitrienko & D'Agostino, 2013; Kim et al., 2004; Kordzakhia et al., 2010; Mascha 

& Turan, 2012; Massaro, 2009; Neuhäuser, 2006; Pan, 2013; Rubin, 2017b; Weber, 2007; Westfall 

et al., 2001; Winkler et al., 2016). This is because, although researchers use multiple tests to test 

the joint union null hypothesis, they may only reject this hypothesis if and only if all of their tests 

yield significant results. Hence, they only have a single opportunity to reject the joint null 
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hypothesis at its prespecified alpha level of αJoint (Mascha & Turan, 2012). Consequently, αConstituent 

does not need to be reduced to compensate for multiple testing.5 

One disadvantage of conjunction tests is that they lack statistical power, because they fail 

to reject the joint null hypothesis if one or more constituent tests yield a nonsignificant result 

(Francis & Thunell, 2021; Julious & McIntyre, 2012). For example, imagine that a researcher 

wants to undertake a conjunction test with a power level of .80 (i.e., βJoint = .20). If two constituent 

hypotheses are each tested with a power value of .80 (i.e., βConstituent = .20), then the familywise 

Type II error rate will be 1.00 – (1 - .20)2 = .36, which is higher than the βJoint of .20. This Type II 

error rate of .36 equates to a power level of .64, which is lower than the desired power of .80. 

Conjunction testing is relatively common in clinical and translational science, in which 

treatments need to be shown to be effective on multiple aspects of a disease in order to be regarded 

as being successful (Dmitrienko et al., 2009; Dmitrienko & D'Agostino, 2013; Julious & McIntyre, 

2012; Kordzakhia et al., 2010; Mascha & Turan, 2012; Massaro, 2009; Neuhäuser, 2006; Pan, 

2013; Westfall et al., 2001). For example, researchers may test a new therapy for Alzheimer’s 

disease by requiring it to be effective on both cognition and global clinical scores (Dmitrienko et 

al., 2009; Dmitrienko & D'Agostino, 2013). Similarly, clinical treatments for chronic obstructive 

pulmonary disease are usually required to demonstrate both (a) improved forced expiratory volume 

and (b) symptomatic benefits (Neuhäuser, 2006). Conjunction testing may also be used to test the 

effectiveness of combination therapies such as exercise and diet to control weight gain; 

antihistamine and decongestant to treat allergic rhinitis; and bronchodilators and inhaled 

corticosteroids to treat asthma (Westfall et al., 2001). 

Conjunction testing has also been used in comparative genomics. Here, researchers are 

interested in identifying the same instances of gene expression in different species in order to draw 

conclusions about the generality of molecular or developmental mechanisms that underlie 

processes such as aging, energy metabolism, and diseases (Kim et al., 2004). For example, 

researchers may use conjunction testing to identify genes that are differentially expressed in the 

same way in response to caloric restriction in fruit flies, nematodes, and mice (for a worked 

example, see Kim et al., 2004). 

Finally, conjunction testing has been used in neuroimaging (e.g., Nichols et al., 2005). 

Here, researchers might compare differences between several task groups and a control group in 

order to determine differences in the activation of thousands of voxels, each of which represent 

different parts of an image of the brain. Conjunction testing has been employed in order to confirm 

that certain brain regions are active under two or more different tasks (Nichols et al., 2005; Winkler 

et al., 2016). 

 

Individual Testing 

Disjunction and conjunction testing allow researchers to test a joint null hypothesis that 

comprises two or more constituent null hypotheses. In contrast, individual testing only allows 

researchers to test individual null hypotheses that do not comprise a joint null hypothesis. Hence, 

individual testing allows decisions about individual null hypotheses but not about joint null 

hypotheses. For example, in the jelly bean study, individual testing would allow the researchers to 

infer that eating green jelly beans causes acne, but it would not allow researchers to infer that 

eating jelly beans in general causes acne. Consequently, individual testing is most appropriate 

when researchers are not interested in testing joint null hypotheses. 

Like conjunction testing, individual testing does not require an adjustment to the alpha 

level of each test (αIndividual; Armstrong, 2014, p. 505; Cook & Farewell, 1996, pp. 96-97; Fisher, 
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1971, p. 206; Hewes, 2003, p. 450; Hurlbert & Lombardi, 2012, p. 30; Matsunaga, 2007. p. 255; 

Parker & Weir, 2020, p. 2; Rothman, 1990, p. 45; Rubin, 2017b, pp. 271-272; Rubin, 2020, p. 380; 

Savitz & Olshan, 1995, p. 906; Senn, 2007, p. 150; Sinclair et al., 2013, p. 19; Tukey, 1953, p. 82; 

Turkheimer et al., 2004, p. 727; Veazie, 2006, p. 809; Wilson, 1962, p. 299). This point is often 

misunderstood (e.g., O’Keefe, 2003) and so it is important to clarify it. If multiple test results are 

used to make a decision about a single joint null hypothesis, and disjunction testing is used, then 

each test represents an independent opportunity to reject the joint null hypothesis, and the alpha 

level of each test (αConstituent) needs to be lowered in order to compensate for the increased number 

of opportunities to make a Type I error about the joint null hypothesis. In contrast, if a single test 

result is used to make a decision about a single null hypothesis, then that test result provides only 

one opportunity to make a Type I error about that null hypothesis. Consequently, the alpha level 

of the test (αIndividual) does not need to be lowered. 

Importantly, the logic of individual testing applies even when multiple instances of 

individual testing take place side-by-side within the same study (see also Cook & Farewell, 1996; 

Fisher, 1971, p. 206; Greenland, 2020, p. 5; Hurlbert & Lombardi, 2012, p. 30; Kotzen, 2013; 

Parker & Weir, 2020, p. 2; Rubin, 2017b, pp. 271-272; Savitz & Olshan, 1995, p. 906; Senn, 2007, 

p. 150; Tukey, 1953, pp. 82-83; Wilson, 1962). If each decision to reject each individual null 

hypothesis depends on no more than one significance test, then none of the individual tests 

constitute a “family” with respect to any single hypothesis. Consequently, it is not necessary to 

adjust alpha levels on the basis of any family-based error rate (e.g., familywise error rate, per 

family error rate, etc.; Hurlbert & Lombardi, 2012, p. 30). A family-based alpha adjustment is only 

necessary when researchers undertake disjunction testing of a joint intersection null hypothesis. 

Of course, a researcher who conducts a greater number of individual tests will have a 

greater opportunity to obtain more significant results and, consequently, a greater opportunity to 

make more Type I errors (e.g., Drachman, 2012; Goeman & Solari, 2014). For example, imagine 

that a researcher tests 100 true null hypotheses using 100 individual tests that each have an αIndividual 

of .05. In this case, the researcher has a greater opportunity to obtain more significant results and 

make more Type I errors than if they had only tested one true null hypothesis. Indeed, given that 

all 100 null hypotheses are true, the researcher should expect to obtain five significant results and, 

consequently, make five Type I errors. However, it is important not to confuse this expected 

outcome for the collection of individual tests (the per family error rate) with the probability of 

making a Type I error in relation to each individual test (the individual, marginal, or per 

determination error rate; Cook & Farewell, 1996, pp. 96-97; Tukey, 1953, p. 82). As the size of 

the family of tests increases, the individual error rate remains constant (i.e., αIndividual = .05; Senn, 

2007, pp. 150-151). It is only the per family error rate that increases (i.e., α × kfamily). 

To illustrate, if a person rolls a 20-sided dice 20 times instead of once, then they will 

increase the familywise probability that they will roll a “3” in at least one of their rolls from .05 to 

.64. However, they will not increase the individual probability that each roll will result in a “3.” 

This individual probability will always remain at .05, regardless of the number of rolls of the dice 

(for a similar example, see Kotzen, 2013). Hence, it is perfectly true that “the more tests that are 

run, the greater the likelihood that at least 1 will be significant by chance” (Streiner, 2015, p. 722). 

However, if researchers undertake individual testing using an αIndividual of .05, then it is also true 

that the probability that they will make a Type I error in the case of each specific individual 

hypothesis test is no more than 5.00%. It is a form of gambler’s fallacy to believe that each 

successive individual test in a series of individual tests has a greater than 5.00% chance of yielding 

a Type I error, even after the millionth test. 
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The uncomfortable feeling that some researchers might feel about conducting multiple 

individual tests may be attributed to a confusion between the alpha levels that are associated with 

individual testing (αIndividual) and the alpha levels that are associated with disjunction testing 

(αConstituent). To illustrate, consider the jelly beans study again, as originally conceived by Munroe 

(2011) in Figure 3. 

Munroe’s (2011) jelly bean study is supposed to highlight the inappropriateness of not 

adjusting the alpha level during multiple testing. However, it actually illustrates the confusion 

between αIndividual and αConstituent in a case of individual testing. In the study, the scientists conducted 

individual tests of 20 different hypotheses (i.e., one test per hypothesis), and they obtained a single 

significant result using an alpha level of αIndividual = .05. Based on the results of these individual 

tests, they inferred that there is “a link between green jelly beans and acne.” Contrary to Munroe’s 

intimation, this inference is entirely appropriate given its level of specificity – it refers to green 

jelly beans only and not to jelly beans of one or more unspecified colours – and the fact that it is 

based on a single significance test that used a conventional alpha level of .05 (for the same 

conclusion, see Lew, 2019, pp. 21-22). Hence, in this case, there is no more than a 5.00% 

probability that the scientists’ decision to reject the associated null hypothesis (i.e., “green jelly 

beans do not cause acne”) represents a Type I error.6 

The confusion in the jelly bean study relates to the fact that the scientists also have the 

potential to subsume their 20 hypotheses under a joint union alternative hypothesis that “either 

green, purple, brown, pink, blue, teal, salmon, red, turquoise, magenta, yellow, grey, tan, cyan, 

mauve, beige, lilac, black, peach, or orange jelly beans cause acne.” As shown in Table 1, if they 

undertook disjunction testing of the corresponding joint intersection null hypothesis using an 

αConstituent of .05 for each of the 20 constituent hypotheses, then the single significant result that 

they obtained would be likely to represent a Type I error in relation to the joint null hypothesis, 

because 1 out of every 20 significant results is expected to represent a Type I error when using an 

αConstituent of .05 (i.e., .05 x 20 = 1; the per family error rate). 

Importantly, if the scientists subsumed their 20 hypotheses under the joint union alternative 

hypothesis that “jelly beans (of one or more colours) cause acne,” then their inference should be 

that “jelly beans (of one or more colours) cause acne.” This inference would be inappropriate, 

because the scientists have a 64.15% probability of incorrectly rejecting the associated joint 

intersection null hypothesis when investigating 20 different colour of jelly bean. However, the 

scientists did not make this broader inference. Instead, they made the more specific inference that 

“green jelly beans cause acne.” This more specific inference is appropriate given that the scientists 

only have a 5.00% probability of incorrectly rejecting the associated null hypothesis (Lew, 2019, 

pp. 21-22).  

The problem in jelly bean study and more generally is that it is easy to confuse the alpha 

level for each hypothesis test in the individual testing situation (i.e., αIndividual) with the alpha level 

for each hypothesis test in the family testing situation (i.e., αConstituent) and to conclude that αIndividual 

needs to be adjusted because, if the 20 tests formed a family, then αConstituent would need to be 

adjusted (see also Greenland, 2020, p. 5). This alpha confusion leads to the erroneous conclusion 

that a single significant result that is obtained following 20 individual tests that each use an αIndividual 

of .05 is more likely to be a Type I error than a single significant result that is obtained using a 

single individual test that uses an αIndividual of .05 (e.g., Feise, 2002; Sainani, 2009). 

  



When to Adjust Alpha           10 

Figure 3. Illustration of multiple individual testing. Retrieved from https://xkcd.com/882/ 

 

 

https://xkcd.com/882/
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Table 1 

Distinguishing Type I Error Rates for Decisions About Joint and Individual Null Hypotheses 

 A Single Decision About 
a Single Joint Intersection Null 

Hypothesis 

Single Decisions About 
Multiple Individual Null 

Hypotheses 

Primary null hypothesis or hypotheses Neither green, purple, brown, 

pink, blue, teal, salmon, red, 

turquoise, magenta, yellow, grey, 

tan, cyan, mauve, beige, lilac, 

black, peach, nor orange jelly 

beans cause acne. 

1. Green jelly beans do not 

cause acne. 

2. Purple jelly beans do not 

cause acne. 

3. Brown jelly beans do not 

cause acne. 

… 

20. Orange jelly beans do not 

cause acne. 

Significance tests used to test the primary 

null hypothesis or hypotheses 

1. Green jelly beans vs. control. 

2. Purple jelly beans vs. control. 

3. Brown jelly beans vs. control. 
… 

20. Orange jellybeans vs. control. 

1. Green jelly beans vs. 

control. 

2. Purple jelly beans vs. 
control. 

3. Brown jelly beans vs. 

control. 

… 

20. Orange jellybeans vs. 

control. 

Number of significance tests (t) 20 20 

Number of primary null hypotheses (h) 1 20 

Number of significance tests per primary 

hypothesis (k = t/h) 

20 1 

Alpha level used for each significance test 

(α) 

.050 (αConstituent) .050 (αIndividual) 

Number of false positives expected among 

the significance tests: The per family error 

rate (kα) 

1.00 .050 

Type I error rate for each primary 

hypothesis: 
The familywise error rate: (1 – [1 – α]k) 

.64 .050 

Note. The computation of the familywise error rate assumes that the 20 tests are independent. In reality, this may not 

be the case. In the case of positive dependence, the familywise error rate will be lower than .64. 
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To clarify, in the jelly bean study, αIndividual is the value for 20 independent alphas (each set 

at .05) that are associated with 20 individual hypotheses that are each tested only once (e.g., “green 

jelly beans cause acne,” “red jelly beans cause acne,” “purple jelly beans cause acne,” etc.). 

Consequently, none of these 20 alphas need to be adjusted, because none of them are associated 

with disjunction testing. In contrast, αConstituent is the value for 20 disjunction tests of the same joint 

hypothesis (e.g., “jelly beans cause acne”) that is tested using an αJoint of .05. Consequently, 

αConstituent needs to be reduced (e.g., to .0025) in order to maintain αJoint at .05. 

Previous commentators have also attempted to clarify this alpha confusion. In particular, 

Matsunaga (2007, p. 255) explained that, 

 

if multiple H0s are tested, inflation is of no concern because Type I errors are partitioned 

per H0, each of which entails distinct alphas. If multiple tests are carried out within one H0, 

however, overall Type I error rate for that H0 becomes inflated and adjustment needs to be 

made (see also Rubin, 2017b, p. 272). 

 

In summary, if researchers perform 20 tests and obtain only one significant result using an 

alpha of .05, then they will have a 64.15% chance of making a Type I error with respect to a joint 

null hypothesis that is disjunction tested but only a 5.00% chance of making a Type I error with 

respect to an individual null hypothesis that is individually tested. It is for this reason that there is 

no contradiction in the two claims made by the scientists in Munroe’s (2011) cartoon (Lew, 2019, 

p. 21). The scientists may have sufficient evidence to make the specific claim that “we found a 

link between green jelly beans and acne (p < 0.05)” (Panel 17 in Figure 3) while lacking sufficient 

evidence to make the broader claim that this link extends to jelly beans of some unspecified colour 

or colours, and so they would need to concede that “we found no link between jelly beans and acne 

p > 0.05” (Panel 2 in Figure 3). 

 

Multiple Testing and Selection Bias 

In their discussion of multiple testing in genomics, Goeman and Solari (2014) proposed 

that the individual testing of multiple individual hypotheses does not necessitate a multiple testing 

correction, because “without multiple testing correction the probability of a type I error in each 

individual hypothesis remains equal to α regardless of the number of hypotheses that have been 

tested” (p. 2). Hence, Goeman and Solari hold a similar view to the one discussed above. However, 

they also proposed that the individual testing of multiple individual hypotheses can lead to a 

selection bias on the part of researchers (e.g., Benjamini & Bogomolov, 2011; Cox, 1965). 

Specifically, researchers may select and report significant results and fail to report nonsignificant 

results. According to Goeman and Solari, “multiple testing methods aim to correct for this 

selection process” (p. 2). In contrast, I argue that a selection bias only necessitates an alpha 

adjustment when testing joint null hypotheses and not when testing individual null hypotheses. 

To illustrate, consider the jelly bean study once again. If the researchers undertook 

individual testing, and they reported the significant result for green jelly beans without reporting 

the nonsignificant results for the other 19 colours of jelly bean, then the αIndividual level for the 

individual hypothesis that “green jelly beans cause acne” would remain valid, because a single test 

has been used to make a decision about a single individual hypothesis. Hence, the selection bias 

does not inflate the alpha level of individual tests during individual testing (for related discussions, 

see Kotzen, 2013, p. 167; Rubin, 2017a, p. 325; Rubin, 2017c; Rubin, 2017d, pp. 316-317; Rubin, 

2020).7 
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In contrast, a selection bias can lead to alpha inflation when testing joint hypotheses. 

Imagine that the scientists undertook 20 disjunction tests of the joint null hypothesis that “jelly 

beans do not cause acne,” but they retained their αConstituent level at the conventional level of .05 

instead of lowering it to compensate for their disjunction testing. Further imagine that the 

researchers found a single significant effect for green jelly beans using this unadjusted αConstituent 

level. In this case, failing to report the results of the other 19 tests misrepresents the situation as 

one of individual testing rather than disjunction testing, and the researchers may incorrectly infer 

that “jelly beans cause acne” (i.e., a joint hypothesis) on the basis of an αIndividual of 5.00% when 

the actual Type I error rate for this inference is 64.15% (i.e., αJoint). Hence, the selection bias 

inflates the relevant alpha level when testing joint null hypotheses but not when testing individual 

null hypotheses. 

More generally, selecting an effect from among a variety of other unrelated effects because 

it is larger than the other effects does not necessarily mean that the selected effect will be “biased.” 

A bias will only occur when the selection occurs among different instances of the same effect, not 

when it occurs between qualitatively different effects. By analogy, picking the largest cherry from 

a bowl of cherries is likely to result in an unusually large cherry (i.e., a biased cherry). In contrast, 

selecting the largest fruit from a barrel that contains a variety of average-sized fruits is likely to 

yield an average-sized watermelon. 

 

Distinguishing Between Alpha Specification and Alpha Adjustment 

None of the above points should be interpreted as suggesting that the alpha level during 

the individual testing of multiple hypotheses should always be set at the conventional .05 level. In 

every significance testing situation, researchers need to specify their alpha level in the context of 

a range of external background factors, including the plausibility of the hypothesis, the plausibility 

of potential alternative explanations, the theoretical and/or practical costs of Type I and Type II 

errors, the smallest effect size of interest, the sample size, and the variability in the data (Mudge 

et al., 2012). Hence, even in the individual testing situation, there may be grounds for lowering the 

alpha level below the conventional .05 threshold (e.g., Rothman et al., 2008, pp. 234-235). For 

example, a much lower alpha level would be appropriate when testing the implausible hypothesis 

that dead Atlantic salmon will exhibit brain activity in a specific brain region (Bennett et al., 2010), 

because extraordinary claims require extraordinary evidence. Importantly, this process of alpha 

specification is quite different from the previously discussed alpha adjustment during disjunction 

testing (for a similar view, see Parker & Weir, 2020, p. 564; Ryan, 1962, p. 305). In the former 

case, researchers specify an alpha level for their individual or joint hypothesis based on external 

factors. In the latter case, researchers adjust that prespecified alpha level in order to make it 

applicable to disjunction tests of constituent hypotheses. 

In some cases, prudent alpha specification may be more appropriate than alpha adjustment. 

For example, in the field of genomics, researchers are interested in screening associations between 

hundreds of thousands of single nucleotide polymorphisms (SNPs) and diseases or other 

phenotypic traits in order to identify the largest and most reliable associations. Hence, they might 

attempt to identify the top 20 SNP associations among hundreds of thousands of tests (Goeman & 

Solari, 2014; Pan, 2013). In this case, there is a need to reduce the alpha level for each test not 

because researchers want to undertake disjunction testing of a genome-wide joint null hypothesis 

but because they want to achieve a more stringent screening approach in order to identify the 

largest effect sizes, which they presume are more likely to be clinically and biologically 

meaningful (Otani et al., 2018). 
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To illustrate, consider Wu et al.’s (2018) tests of associations between 167,355 SNPs from 

532 pigs and phenotypic traits from the pigs’ litters (e.g., number born). In order to maintain the 

genome-wide significance level at 5.00%, they used a Bonferroni correction (i.e., .05/167,355). 

On finding at least one single significant association, this Bonferroni correction would allow the 

researchers to reject the joint null hypothesis that the genome is not associated with the phenotype 

expression. However, the researchers did not make this genome-wide inference. Instead, they 

made SNP-specific inferences about “the top significant SNPs” (p. 173) and their associated 

chromosomes. For example, they noted that eight SNPs were significantly associated with the 

number of pigs born in a litter, that seven of these were located on the same chromosome, and that 

one had a novel location. Hence, the researchers adjusted their αConstituent level, which enables a 

statistical inference about a genome-wide joint hypothesis, but they then ignored this joint 

hypothesis and instead made statistical inferences about individual hypotheses (i.e., which specific 

SNPs were associated with number of pigs born in a litter). Turkheimer et al.’s (2004) advice for 

functional brain imaging researchers is relevant here: “If before or after testing one wishes to 

consider the individual result on its own individual merit, then the multiple comparison correction 

becomes not only incorrect but also meaningless” (p. 727; see also Cook & Farewell, 1996; Cox, 

1965). Genetics researchers have also commented on this inferential mismatch. For example, Otani 

et al. (2018) recently noted that “the FWER [familywise error rate] criterion strictly controls the 

probability of having at least one false positive in millions of tests, and geneticists should generally 

recognize its inappropriateness regarding the primary purposes of GWAS [genome-wide 

association studies]” (p. 1). According to Otani et al. (2018), the primary purpose of GWAS 

research is to identify SNPs that have comparably large effects, because these are most likely to 

be clinically and biologically meaningful. Given this purpose, it is more appropriate to use an 

individual testing approach in which the alpha level for each test has been specified at a more 

stringent level in order to screen out the smaller, less biologically important effects. 

How are researchers supposed to determine a suitably stringent alpha level when they 

undertake multiple individual tests? As with single individual testing, a mix of community 

standards and cost analysis is required. In terms of community standards, conventional alpha levels 

can vary from field to field. For example, in a survey of 172 genome-wide association studies, 

Jannot et al. (2015) found that a consensus had emerged that an alpha level of .00000005 (i.e., 5.0 

× 10-8) is appropriate. In theory, this alpha level is based on a Bonferroni adjustment to the 

conventional 5.0% alpha level that assumes a million tests. However, in practice, it has been 

validated by considering the actual replicability of specific SNP-trait associations (Panagiotou et 

al., 2011). Hence, again, genomic researchers are more concerned about identifying specific SNP 

associations that are relatively large and replicable than they are about incorrectly rejecting the 

joint genome-wide null hypothesis. In terms of cost analysis, Type I errors need to be judged in 

relation to real world consequences and Type II errors. For example, Mudge et al. (2012) have 

proposed an optimal alpha approach that balances the costs of Type I and Type II errors in the 

context of a specified critical effect size (i.e., a smallest effect size of interest). In a meta-analysis 

of 242 microarray gene expression studies, Mudge et al. (2017) found that this optimal alpha 

approach resulted in Type I and II “error rates as low or lower than error rates obtained when using 

(i) no post-hoc adjustment, (ii) a Bonferroni adjustment and (iii) a false discovery rate (FDR) 

adjustment” (p. 1). 

In summary, there is an important difference between using a million tests to identify the 

top 20 largest individual associations and using a million tests to disjunction test a joint intersection 

null hypothesis. A lower alpha level may be warranted in both cases. However, it is more 
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appropriate to achieve this lower alpha through alpha specification in the former case (i.e., lower 

αIndividual to screen out nonsignificant associations that are most likely below the smallest effect 

size of interest) and alpha adjustment in the latter case (i.e., αConstituent < αJoint to maintain αJoint at 

.050). 

 

When Should Researchers Use Individual, Disjunction, and Conjunction Testing? 

To recap, there are three approaches to multiple testing: disjunction testing, conjunction 

testing, and individual testing. Disjunction and conjunction testing allow researchers to test joint 

null hypotheses, but individual testing does not. Furthermore, disjunction testing requires an alpha 

adjustment, but conjunction and individual testing do not. Hence, in order to know when to adjust 

alpha, researchers need to know when to use each of these three types of multiple testing, and it is 

to this issue that I now turn. 

The first point that researchers should consider is whether they are making a statistical 

claim that is warranted by a specific p value and alpha level. For example, based on the result of a 

t test and a conventional alpha level, a statistical claim might be: “Male participants had 

significantly higher self-esteem than female participants, t(479) = 2.11, p = 0.018.” In contrast, 

more substantive non-statistical claims may summarise the results of significance tests without 

themselves being warranted by a specific p value (Meehl, 1978, p. 824). For example, a non-

statistical claim might be: “Based on the results of Studies 1, 2, and 3, it was concluded that men 

have higher self-esteem than women.” Note that this claim is not explicitly tied to a specific p 

value and alpha level. Importantly, the question of whether to adjust an alpha level only applies to 

statistical claims. This question does not apply to claims that are not tied to a specific p value, 

because such claims are not associated with a specific alpha level, and they may be in error due to 

not only random sampling and measurement error but also theoretical errors, model 

misspecification, systematic measurement error, and so on (Rubin, 2017b, p. 272). 

If researchers are making a claim about statistical significance, then they need to consider 

whether their claim derives from the test of an individual null hypothesis or a joint null hypothesis. 

If they are testing an individual hypothesis, then they should use individual testing and an 

unadjusted alpha level (Cook & Farewell, 1996; Rothman et al., 2008, pp. 236-237; Wilson, 1962). 

If they are testing a joint hypothesis, then the decision about adjusting alpha depends on whether 

they are using disjunction testing or conjunction testing. 

 

Individual Hypotheses 

Individual hypotheses are hypotheses than can be tested using a single significance test. In 

some cases, researchers’ methods and designs constrain them into testing individual hypotheses. 

For example, researchers might have only one relevant predictor or comparison that relates to only 

one relevant outcome variable. Consequently, they have only one test that is relevant to their 

individual hypothesis. In this case, they are only able to conduct an individual test. 

In other cases, researchers may have several predictor variables, comparison groups, and/or 

outcome variables. As discussed above, in these cases, researchers may undertake individual 

testing using an unadjusted alpha level in order to make separate decisions about each individual 

null hypothesis. 

Researchers may also find that there are theoretical, practical, and/or empirical reasons 

(e.g., factor analyses) for aggregating across some of their constituent groups or variables in order 

to create composite groups or variables. They may then subject these composite groups or variables 

to individual testing at an unadjusted alpha level (Feise, 2002; Goeman & Solari, 2014; Hung & 
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Wang, 2010; Luck & Gaspelin, 2017; Matsunaga, 2007; Schulz & Grimes, 2005; Senn, 2007, p. 

151). 

A statistical aggregation approach may also be used to operationalize an individual test 

across groups or variables (Senn, 2007, p. 153). For example, a researcher might use a one-way 

ANOVA with simple contrasts that compare two experimental conditions to a control condition. 

Alternatively, a researcher might use a MANOVA to test the effects of a treatment on two or more 

outcome variables. To illustrate, consider the case of a clinical study that aimed to investigate the 

ability of a treatment to prevent premature infants from developing respiratory distress syndrome 

(RDS; Wang et al., 2015). There were three outcome variables: incidence of RDS at 24 hours, 

RDS-mortality through 14 days of age, and air leak through 7 days of age. As Dmitrienko (in Wang 

et al., 2015) explained, if it is necessary to demonstrate an effect of the treatment on a specific 

outcome (e.g., RDS-mortality) in order to mount the case for regulatory change, then disjunction 

testing would be inappropriate, because it would reject the joint null hypothesis on the basis of a 

significant result in relation to any of the three outcomes. Conjunction testing would be more 

appropriate in this case. However, it would lack power, which may be problematic in this particular 

scenario. Hence, Dmitrienko recommended using a single statistical test that provide a 

simultaneous assessment of the treatment effect across all three outcome variables and yields a 

single test statistic (e.g., a MANOVA). 

 

Joint Hypotheses 

The first requirement for testing a joint hypothesis is that the hypothesis should allow a 

statistical inference that has relevant and meaningful theoretical and/or practical implications 

(Cook & Farewell, 1996, p. 107; Cox, 1965, p. 223; Hochberg & Tamrane, 1987, p. 5; Parker & 

Weir, 2020, p. 2). To meet this requirement, researchers should ensure that the family of 

constituent hypotheses that comprise the joint hypothesis are theoretically consistent with their 

intended inference (see also Hung & Wang, 2010). In particular, the family must contain all 

relevant constituent hypotheses and no irrelevant constituent hypotheses (Cox, 1965; Hochberg & 

Tamrane, 1987, p. 6; Huberty & Morris, 1988, p. 572). It is helpful for researchers to make their 

research materials and data set publicly available online in order to allow others to verify the 

correct specification of their joint hypotheses and to check for any potential selection bias (Cox, 

1965; Goeman & Solari, 2014; Rubin, 2017b, p. 273; Rubin, 2020). 

The second requirement for testing a joint hypothesis is that researchers use an appropriate 

form of testing. Researchers should use disjunction testing when the rejection of any of the 

constituent hypotheses is sufficient to reject the joint hypothesis as a whole and the extent of 

generalisation across constituent hypotheses is unimportant. In contrast, researchers should 

undertake conjunction testing when it is important to demonstrate the confirmation of all 

constituent hypotheses within a joint hypothesis. 

In the case of disjunction testing, researchers also need to assume that the constituent 

hypotheses are theoretically exchangeable with regards to inferences about the joint hypothesis 

under investigation (e.g., Rosset et al., 2018). That is to say, a significant result in relation to any 

of the constituent hypotheses must provide the same logical basis for rejecting the joint null 

hypothesis. For example, the hypothesis that “red M&Ms cause acne” is not theoretically 

exchangeable with the hypotheses that “green jelly beans cause acne” and “red jelly beans cause 

acne” when testing the joint hypothesis that “jelly beans cause acne,” because M&Ms are not a 

type of jelly bean. Consequently, the red M&Ms hypothesis should not be included as a constituent 

hypothesis in the joint “jelly beans cause acne” hypothesis. Importantly, the exchangeability 
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assumption is violated if researchers have an a priori theoretical expectation that one or more of 

their constituent hypotheses will yield a different result to the others. For example, if it is expected, 

a priori, that green jelly beans cause acne but that red jelly beans do not, then it would be 

inappropriate to include these two hypotheses as constituent hypotheses in the joint hypothesis that 

“jelly beans cause acne.” 

Conjunction testing may be more appropriate than disjunction testing when researchers 

undertake theory testing. Theories usually predict that all of their constituent hypotheses are true. 

They do not usually predict that at least one of their constituent hypotheses is true. Consequently, 

it is more logical for researchers to use conjunction testing rather than disjunction testing when 

they want to make a statistical inference about a joint hypothesis that comprises a family of 

hypotheses that belong to the same theory. Again, however, conjunction testing may suffer from 

lower power. In addition, theory evaluation may be better conceived as a “qualitative exercise,” 

because it is influenced by non-statistical considerations (Haig, 2009, p. 220). 

 

Against an Automatic Alpha Adjustment Assumption 

To summarize, researchers only need to adjust their alpha level when they undertake 

disjunction testing of a joint null hypothesis. Furthermore, researchers should only undertake the 

disjunction testing of a joint null hypothesis when that hypothesis (a) enables a relevant theoretical 

and/or practical inference and (b) is better suited to disjunction testing rather than conjunction 

testing. This limited and qualified approach to alpha adjustment stands in contrast to the more 

common unqualified view that alpha adjustment is almost always necessary during multiple testing 

(e.g., Bennett et al., 2009; de Groot, 2014; Glickman et al., 2014). For example, in the introduction 

to their article on the false discovery rate, Glickman et al. provided the following explanation for 

alpha adjustment: 

 

The usual argument to convince researchers that adjustments are necessary when multiple 

tests are performed is to point out that, without adjustments, the probability of at least one 

null hypothesis being rejected is larger than acceptable levels. Suppose, for example, that 

a researcher performs 100 tests at the α = 0.05 significance level in which the null 

hypothesis is true in every case. If all the tests are independent, then the probability that at 

least one test would be incorrectly rejected is 1 - (1 - 0.05)100 = 0.9941, or 99.41% (p. 851). 

 

Similarly, in their article on multiple testing, Sainani (2009) provided the following explanation: 

 

Mathematically, the problem of multiple testing can be explained as follows: every 

statistical test comes with an inherent false positive, or type I error, rate—which is equal 

to the threshold set for statistical significance, generally .05. However, this is just the error 

rate for one test; when more than one test is run, the overall type I error rate is much greater 

than 5%. For example, if one runs 100 independent statistical tests where it is known no 

effects exist, the chance of getting at least one false positive (ie, at least one P value less 

than .05) is 99.4%...and 5 false positives are expected (because approximately 1 in 20 tests 

will yield a false positive) (p. 1089). 

 

At this stage, the missing qualifications to these explanations should be apparent: (a) They assume 

that none of the 100 tests represent individual tests of individual hypotheses. (b) They assume that 

the 100 tests form a coherent family of tests in relation to a theoretically- and/or practically-
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relevant joint hypothesis. (c) They assume that researchers are undertaking a disjunction test of 

this joint hypothesis, rather than a conjunction test. To be clear, I am not suggesting that these 

three qualifications are never met. I am only suggesting that they are often ignored, as in the above 

examples, and that this omission leads to an inaccurate view that, when undertaking multiple 

testing, it is always necessary to compute family-based error rates and adjust alpha levels on the 

basis of these error rates. 

It is important to note that automatic (mindless) alpha adjustment is not advocated by some 

of the experts in the field of multiple testing (Tukey, 1953, p. 82-83; see also Mead, 1988, pp. 310-

314; Parker & Weir, 2020, p. 4). Instead, they argue that the choice between individual and 

disjunction testing should depend on the number and type of inferences that are to be made. If 

multiple testing is used to make multiple independent statistical inferences, then no alpha 

adjustment is warranted. Below, I illustrate the problems with automatic alpha adjustment in 

relation to studywise error rates and multiway ANOVAwise error rates.8 

 

Studywise Error Rates 

I use the term studywise error rates (sometimes called experimentwise, global, or universal 

error rates) to refer to family-based error rates (e.g., familywise error rates, per family error rates, 

false discovery rates, etc.) that are associated with all of the hypotheses that are tested in a study, 

experiment, or sample or, in the case of exploratory analyses, all of the hypotheses that could have 

been tested (e.g., An et al., 2013, pp. 6-7; Cohen, 1990, p. 1304; Drachman, 2012, p. 2, p. 2; 

Klockars, 2003, p. 614; Luck & Gaspelin, 2017, p. 151; Maxwell & Delaney, 2004, p. 291; Miller, 

1981, p. 34; Parker & Weir, 2020, p. 3; Rubin, 2022; Ryan, 1962; Shaffer, 2006; Stacey et al., 

2012, p. 1830). Consistent with the above points, researchers only need to consider the studywise 

error rate if they undertake disjunction testing of the joint studywise null hypothesis that the study 

produces a null effect. Furthermore, researchers should only be expected to test this joint studywise 

hypothesis if there are theoretical and/or practical reasons for doing so. However, often these 

reasons are lacking. As Cook and Farewell (1996, p. 106) explained with reference to clinical 

trials, “a concern is that testing strategies are frequently adopted with the aim of controlling the 

experimental type I error rate without considering how this relates to the questions of main 

interest.” More recently, Parker and Weir (2020, p. 2) echoed this concern with respect to multi-

arm clinical trials: “If treatments are distinct and we are interested in individual treatment versus 

control comparisons,…then it is difficult to see how the concept of formulating a global 

intersection null hypothesis could be relevant.” If it is not useful to test the joint studywise 

hypothesis, then researchers should consider lower-order families of hypotheses and/or individual 

hypotheses for testing (Benjamini & Bogomolov, 2011; Efron, 2008; Fisher, 1971, p. 206; 

Hochberg & Tamrane, 1987, pp. 6-7; Hung & Wang, 2010; Mei et al., 2017; Rubin, 2017b). For 

example, in their discussion of multiple testing in microarray gene expression analysis, Yekutieli 

et al. (2006) explained that “the set of hypotheses that is of interest to the researcher in a single 

study does not necessarily form a single family of hypotheses” (p. 416). Instead, they suggested 

that families can be specified at the level of genes. Similarly, in discussing functional 

neuroimaging research, Benjamini and Bogomolov (2011) explained that hypotheses that refer to 

the same brain region should be regarded as belonging to the same family. Hence, joint studywise 

null hypotheses are often theoretically irrelevant. 

In contrast to the above views, De Groot (2014) suggested that it is necessary to test the 

joint studywise hypothesis in order to test “the value of the research as a whole” (p. 189). From 

this perspective, studies that have a high studywise error rate have a correspondingly low research 
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value, because their significant results are more likely to represent Type I errors. However, this 

reasoning assumes that the value of the research is associated with the joint studywise hypothesis, 

and this assumption is unwarranted unless the joint studywise hypothesis is relevant to the research 

question. Again, in many cases, the joint studywise hypothesis has no relevance to researchers’ 

specific research questions, because its constituent hypotheses refer to comparisons and variables 

that have no theoretical or practical basis for joint consideration (Bender & Lange, 2001, p. 343; 

Cook & Farewell, 1996, pp. 101-102; Hewes, 2003, p. 450; Morgan, 2007, p. 34; Parker & Weir, 

2020, p. 2; Perneger, 1998, p. 1236; Rothman et al., 2008, pp. 236-237; Rubin, 2020, 2022; Savitz 

& Olshan, 1995, p. 905; Schulz & Grimes, 2005, p. 1592). They are what Meehl (1978, p. 813) 

might call “a mere conjunction of unrelated assertions, a ‘heap of hypotheses’.” For example, in a 

study of alcohol and drug use disorders among homeless veterans, researchers used a Bonferroni 

correction when testing differences across a diverse range of variables, including age, gender, race, 

marital status, housing status, and mental health diagnoses (Tsai et al., 2014). In this case, it is 

unclear how a single joint alternative hypothesis might explain differences on all of these variables, 

and the researchers did not attempt this type of explanation. Consequently, it is unclear why it was 

necessary to adjust the alpha level on the basis of a studywise family of tests. Rothman et al. (2008, 

pp. 236-237) noted a similar problem in the field of epidemiology: 

 

A large health survey or cohort study may collect data pertaining to many possible 

associations, including data on diet and cancer, on exercise and heart disease, and perhaps 

many other distinct topics. A researcher can legitimately deny interest in any joint 

hypothesis regarding all of these diverse topics, instead wanting to focus on those few (or 

even one) pertinent to his or her specialities. In such situations, multiple-inference 

procedures…are irrelevant, inappropriate, and wasteful of information. 

 

In general then, researchers should not be concerned about erroneous answers to questions 

that they are not asking. In other words, they should not be concerned about the familywise error 

rate for a joint studywise null hypothesis that they are not, in fact, testing. Instead, they should be 

concerned about the error rates for the individual and/or joint hypotheses about which they actually 

make inferences (Cook & Farewell, 1996, p. 107; Cox, 1965, p. 223; Hochberg & Tamrane, 1987, 

p. 6). 

In some cases, the joint studywise hypothesis may subsume a collection of hypotheses that 

are all derived from the same theory. In this case, researchers may want to test the joint studywise 

hypothesis in order to make a statistical inference about the theory. However, as explained above, 

it is more appropriate to use conjunction testing, rather than disjunction testing, to test theories. 

Conjunction testing does not require an alpha adjustment. However, it may suffer from low power. 

The assumption that studywise error rates should be considered on an automatic basis also 

forms part of an argument against the use of significance testing in exploratory research situations 

and in favour of the preregistration of analysis plans (e.g., de Groot, 2014; Forstmeier et al., 2017; 

Nosek et al., 2019, p. 816; Nosek et al., 2018; Nosek & Lakens, 2014). According to this argument, 

the number of hypotheses that are tested or could be tested in exploratory research situations is 

unknown. Consequently, the size of the family of hypotheses that comprise the joint studywise 

hypothesis is unknown, and an appropriate alpha adjustment cannot be computed to control the 

associated studywise error rate (Hochberg & Tamrane, 1987, p. 6). Again, this argument assumes 

that researchers are interested in disjunction testing a joint studywise hypothesis that includes all 

of the constituent hypotheses that they tested or could have tested in other instances of their 
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exploratory study. However, if researchers are not interested in a disjunction test of this joint 

studywise hypothesis, then it becomes unnecessary for them to preregister their tests in order to 

control the associated studywise error rate and the vague atheoretical probability statement that 

this error rate underwrites (e.g., “our study yielded a significant effect, p < .05”). Instead, it is 

sufficient for researchers to make their research materials and data set publicly available (e.g., via 

the Open Science Framework https://osf.io/) in order for their audience to confirm that any joint 

hypothesis that they disjunction tested includes all of the relevant constituent hypotheses (Rubin, 

2017b, pp. 272-273; Rubin, 2020, 2022). Note that, in this case, although the exploratory, post hoc 

disjunction testing of a series of different joint hypotheses will inflate the error rate for the (usually 

irrelevant) joint studywise hypothesis, it will not inflate the error rates for each of the specific, 

theoretically informative joint hypotheses because, by definition, each error rate is limited to the 

constituent hypotheses within each joint hypothesis. 

Finally, the automatic consideration of studywise error rates also forms the basis for the 

recommendation to limit the number of tests that are performed in any given study (e.g., 

Armstrong, 2014; Cohen, 1990; Drachman, 2012; Goeman & Solari, 2014; Luck & Gaspelin, 

2017; Schochet, 2009; Schulz & Grimes, 2005; Senn, 2007, p. 150; for a review, see Frane, 2015; 

for a discussion, see Wilson, 1962, p. 299). For example, in his article on multiple testing in social 

policy impact evaluations, Schochet (2009) advised that “limiting the number of outcomes and 

subgroups…is one of the best ways to address the multiple comparisons problem” (p. 548). 

Similarly, in their article on multiple comparison corrections in ophthalmology research, Stacey et 

al. (2012) suggested that “the best way to address the problem is to limit the number of 

comparisons” (p. 1830). Again, if researchers undertake disjunction testing of a joint hypothesis 

that relates to all of the variables in their study, and they do not adjust their αConstituent alpha level, 

then the more variables that they include in their study, the greater the probability that they will 

make a Type I error with respect to the joint studywise hypothesis. However, this issue should not 

deter researchers from including relevant outcome variables in their study and then adjusting their 

alpha level accordingly. In addition, this issue assumes that all of the outcome variables in a study 

relate to the same joint hypothesis and, as discussed above, this may not be the case. Finally, the 

number of outcome variables in a study has no impact on alpha levels that are associated with 

either individual testing or conjunction testing (although increasing the number of variables would 

decrease the power of conjunction tests). Hence, in some cases, limiting the number of tests that 

are conducted in a study is unnecessary. 

In summary, the usefulness of studywise error rates depends on the theoretical and/or 

practical relevance of the joint studywise hypothesis. If this joint hypothesis is relevant to the 

research questions under consideration, then researchers should test it, and if they undertake a 

disjunction test, then they should adjust their alpha level. However, if the joint studywise 

hypothesis is irrelevant, then it should not be tested, and a corresponding alpha adjustment is not 

required (Cook & Farewell, 1996, p. 107; Cox, 1965, p. 223; Rothman et al., 2008, pp. 236-237; 

Savitz & Olshan, 1995, p. 905; Wilson, 1962). Furthermore, if conjunction testing is used to test 

the joint studywise hypothesis, then no alpha adjustment is required. Under these latter two 

conditions, it is inappropriate to “count the number of tests reported in a paper and multiply it by 

.05 to get a rough idea of the number of P values less than .05 that would be expected to arise by 

chance alone (if no effects being tested were real)” (Sainani, 2009, p. 1101). 

  

https://osf.io/
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Multiway ANOVAwise Error Rates 

The automatic alpha adjustment assumption applies to not only large families of 

hypotheses, such as those that comprise a joint studywise hypothesis, but also smaller families of 

hypotheses, such as those tested in a multiway ANOVA or multiple linear regressions (for the 

same comparison, see Yekutieli et al., 2006, p. 416) Hence, some researchers believe that it is 

necessary to control the multiway ANOVAwise error rate (e.g., Cramer et al., 2016; Kromrey & 

Dickinson, 1995; Luck & Gaspelin, 2017; Rodriguez, 1997; for a more moderate positions, see An 

et al., 2013; Kozak & Powers, 2017). 

Consider the example that Cramer et al. (2016) used to argue that alpha adjustment is 

necessary in exploratory multiway ANOVAs. Cramer et al. discussed a 2 (speed-stress: high/low) 

x 3 (age: 14-20 yrs/50-60 yrs/75-85 yrs) ANOVA that was conducted on response time data. This 

ANOVA tests three hypotheses: (a) a main effect of speed-stress, (b) a main effect of age, and (c) 

an interaction between speed-stress and age. Cramer et al. argued that “the multiway ANOVA 

brings with it the problem of multiple comparisons” (p. 640), because these three null hypotheses 

form a joint null hypothesis. As they explained, 

 

in an exploratory setting, all hypotheses implied by the design are considered and tested 

jointly, rendering this collection of hypotheses a family; in line with the idea that “the term 

‘family’ refers to the collection of hypotheses…that is being considered for joint testing” 

(Lehmann & Romano, 2005). As a result, we argue that a multiple comparison problem 

lurks in these exploratory uses of a multiway ANOVA (p. 641). 

 

Certainly, in an exploratory setting, it is likely that researchers would be interested in 

testing all three hypotheses in this multiway ANOVA. However, in an exploratory setting, it is 

also likely that researchers would not have any clear theoretical or practical reason for subsuming 

these three hypotheses under a joint ANOVAwise hypothesis and making a statistical inference 

based on disjunction tests of this hypothesis. Consequently, in this particular example, it is unlikely 

that researchers would want to adjust their alpha level for each hypothesis in order to control the 

multiway ANOVAwise error rate. Instead, it is more likely that they would use an individual 

testing approach and test each of the three hypotheses (i.e., the two main effects and the interaction 

effect) at their own individual, unadjusted alpha levels (i.e., αIndividual). 

But is it ever necessary to adjust alpha in order to compensate for multiple testing in 

multiway ANOVAs? One reason why researchers might consider adjusting their alpha levels in 

this context is if the ANOVA tested a group of hypotheses that were all predicted by the same 

theory. In this case, the researchers might want to undertake a test of that theory in the form of a 

joint hypothesis. However, as explained above, it is more appropriate to use an “all-tests-

significant” conjunction approach for theory testing than it is to use an “at-least-one-test-

significant” disjunction approach, and conjunction testing does not require an alpha adjustment. 

Hence, it is unlikely that researchers would ever have reasonable grounds for adjusting their alpha 

to compensate for multiple testing in a multiway ANOVA.9 

To illustrate, it is useful to consider the type of inference that might be made after 

correcting for multiple testing in Cramer et al.’s (2016) multiway ANOVA example. Specifically, 

imagine that a group of researchers adjusted their alpha level from .05 to .015 in order to 

compensate for the three multiple tests that they conducted (i.e., the two main effects and the 

interaction effect). Further imagine that, using this adjusted alpha level, the researchers found a 

significant main effect of speed-stress but no significant effect of age and no significant speed-
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stress by age interaction effect. Following a disjunction decision rule, the significant speed-stress 

main effect would be sufficient grounds to warrant the rejection of the joint null hypothesis that 

“neither speed-stress nor age nor their interaction are related to response times.” Logically, this is 

a correct statistical inference, because the significant speed-stress main effect refutes this joint null 

hypothesis (Hewes, 2003). However, it is not an inference that researchers are likely to be 

interested in making unless a theory predicts that “either speed-stress or age or their interaction 

are related to response times.” Scientific theories do not usually specify a disjunction relation 

between their predictions. Instead, it is more likely that a theory would predict that “speed-stress 

and age and both in combination are related to response times.” Consequently, it would be more 

appropriate to test this joint hypothesis using conjunction testing. 

 

Conclusions 

The multiple testing literature provides plenty of advice about how to adjust alpha levels, 

but it is relatively silent about when to adjust alpha levels. Some previous work in this area has 

suggested that alpha adjustment is only necessary in exploratory research situations (e.g., 

Armstrong, 2014; Cramer et al., 2016; Streiner, 2015; for a review, see Frane, 2015), whereas 

other work has suggested that alpha adjustment is only necessary in confirmatory research 

situations (e.g., Bender & Lange, 2001; Schochet, 2009; Stacey et al., 2012; Tutzauer, 2003; 

Wason et al., 2014). In this present paper, I argued that this focus on exploratory versus 

confirmatory research settings is misleading, and that what really matters is the type of multiple 

testing that is employed: disjunction testing, conjunction testing, or individual testing. 

If researchers make a decision about a joint null hypothesis after rejecting at least one (and 

not all) constituent null hypotheses, then an alpha adjustment is necessary. This disjunction testing 

approach is most useful when researchers aim to test a joint hypothesis without demonstrating the 

extent of generalisation across constituent hypotheses. 

In contrast, if researchers make a decision about a joint null hypothesis after rejecting all 

of its constituent null hypotheses, then no alpha adjustment is necessary. This conjunction testing 

approach is most useful when all of the constituent hypotheses need to be confirmed in order to 

confirm the joint hypothesis. 

Finally, if researchers make a decision about each null hypothesis separately, and they do 

not make a decision about joint null hypotheses, then no alpha adjustment is needed. Nonetheless, 

researchers should carefully consider the way in which they specify their alpha level during 

individual testing, and they should specify a lower alpha level when more stringent testing is 

required. 

The above qualifications and limitations make it inappropriate for researchers to 

automatically assume that alpha adjustment is necessary in the context of multiple testing. In 

particular, researchers should be cautious about applying default corrections for multiple testing 

in relation to studywise and multiway ANOVAwise families of hypotheses. 
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Endnotes 
1. In the Neyman-Pearson approach, some researchers may consider alpha size tests rather than 

alpha level tests (Casella & Berger, 2002). However, alpha size tests are difficult to construct 

in the case of disjunction and conjunction testing (Casella & Berger, 2002, p. 385). 

Consequently, I refer to alpha level tests here. 

 

2. The researchers could also collapse the green and red jelly beans conditions together and 

compare jelly beans versus the control (sugar pill) group, but they could do so on two measures 

of acne (e.g., inflammatory and noninflammatory). In this case, the researchers would be 

undertaking two tests of the same null hypothesis using two different outcome variables or 

endpoints. To keep things simple, I refer to the multiple comparisons example throughout this 

article. However, my arguments are equally applicable to the multiple endpoints situation. 

 

3. The familywise error rate assumes that test results are independent. As Greenland (2020, p. 

17) explained, the term independence is used to refer to several different concepts. In 

particular, he distinguished between logical and statistical independence. Logical 

independence refers to the mathematical independence of parameter values such that variation 

in one value is not logically dependent on variation in another. Logical independence may be 

demonstrated via the mathematics of a model. Statistical independence refers to independence 

among variables, estimators, standard errors, and tests, and it may be achieved via study design 

(e.g., randomisation). A weak form of statistical independence is uncorrelatedness, which 

assumes that there is no monotonic linear association between the variables (e.g., no positive 

correlation). As Greenland noted, “uncorrelatedness and hence statistical independence are 

rarely satisfied in nonexperimental studies.” Although this may be the case, two points allow 

a qualified interpretation of the familywise error rate under the assumption of independence. 

First, when interpreting the results of a disjunction test, researchers may adopt a counterfactual 

interpretation that (a) the joint null hypothesis is true and (b) all of the associated test 
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https://doi.org/10.1037/h0040447
https://doi.org/10.1002/hbm.23115
https://doi.org/10.1016/j.ygeno.2017.09.009
https://doi.org/10.1111/j.1467-9574.2006.00343.x


When to Adjust Alpha           30 

assumptions are true, including the assumption of independence. Second, researchers may 

complement this qualified interpretation with an acknowledgment that, if the constituent test 

results were positively dependent, then the actual familywise error rate would be less than the 

nominal familywise error rate, because a family of dependent tests provides less opportunity 

to incorrectly reject the joint null hypothesis than a family of independent tests (e.g., Weber, 

2007, p. 284). Hence, although the assumption of independence may not be met in reality, 

researchers may nonetheless interpret the familywise error rate as indicating a worst-case 

scenario that assumes that the constituent test results are independent. 

 

4. Instead of adjusting their alpha level downwards, researchers can adjust their p values upwards 

(e.g., Pan, 2013; Westfall & Young, 1993). However, there are reasons to prefer alpha 

adjustment over p value adjustment (van der Zee, 2017). 

 

5. Some commentators have argued that conjunction testing decreases the Type I error rate and 

therefore warrants a corresponding increase in the αConstituent level above the αJoint level (e.g., 

Capizzi & Zhang, 1996; Massaro, 2009; Weber, 2007). This argument is based on the 

assumption that the Type I error rate for k independent tests is the product of the Type I error 

rate for each test (i.e., αk). Hence, for example, the probability of obtaining two independent 

false positive results at the .05 alpha level is only .0025. However, during conjunction testing, 

all of the tests are required to be significant in order to reject the joint null hypothesis. 

Consequently, when undertaking conjunction testing, the alpha level for each of the constituent 

null hypotheses (αConstituent) cannot be higher than the alpha level for the joint null hypothesis 

(αJoint; Berger, 1982; Julious & McIntyre, 2012; Kordzakhia et al., 2010). 

 

6. Tukey (1953), who was a pioneer in the area of multiple testing, described this individual 

testing error rate as the per determination error rate (i.e., αIndividual). This error rate should not 

be confused with the per comparison error rate (i.e., αConstituent). Both error rates use unadjusted 

alpha levels. However, the per determination error rate is used in the context of the individual 

testing of an individual null hypothesis, whereas the per comparison error rate is used in the 

context of the disjunction testing of a joint null hypothesis. Tukey (p. 90) was firmly against 

the use of the per comparison error rate. However, he believed that the per determination error 

rate was “entirely appropriate” (p. 82) for some research questions (i.e., individual testing; see 

also Hochberg & Tamhane, 1987, p. 6). For example, he argued that a per determination rate 

was suitable when diagnosing potentially diabetic patients based on their blood sugar levels. 

As Tukey (1953, p. 82) explained: 

 

the doctor’s action on John Jones would not depend on the other 19 determinations made 

at the same time by the same technician or on the other 47 determinations on samples from 

patients in Smithville. Each determination is an individual matter, and it is appropriate to 

set error rates accordingly. 

 

7. A selection bias remains problematic during individual testing, because it involves the 

suppression of hypotheses after the results are known or SHARKing (Rubin, 2017d). 

SHARKing is problematic when suppressed falsifications are theoretically (as opposed to 

statistically) relevant to the research conclusions. For example, in the jelly bean study, it is 
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theoretically informative to know not only that green jelly beans cause acne but also that non-

green jelly beans do not appear to cause acne. 

 

8. Studywise and multiway ANOVAwise error rates are not the only types of error rates that have 

caused confusion in the area of multiple testing. Other examples include datasetwise error rates 

(in which the family includes all hypotheses that are tested using a specific dataset; Bennett et 

al., 2009, p. 417; Thompson et al., 2020), careerwise error rates (in which the family includes 

all hypotheses that are performed by a specific researcher during their career; O’Keefe, 2003; 

Stewart-Oaten, 1995), and fieldwise error rates (in which the family includes all hypotheses 

that are performed in a specific field). A key argument in the current article is that researchers 

do not usually make decisions about data sets, researchers, and fields. Instead, they make 

decisions about hypotheses. 

 

9. Multiple testing corrections may be necessary in multiway ANOVAs when a factor contains 

more than two levels and multiple comparisons are conducted between those levels in order to 

test a joint intersection null hypothesis (Benjamini & Bogomolov, 2011; Yekutieli et al., 2006). 

However, in this case, familywise error rates are limited to the comparisons that are made 

within factors. Familywise error is not computed across all factors in the ANOVA. 
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