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Abstract

To mitigate the Look Elsewhere Effect in multiple hypothesis testing using p-values, the paper
suggests an “entropic correction” of the significance level at which the null hypothesis is rejected.
The proposed correction uses the entropic uncertainty associated with the probability measure that
expresses the prior-to-test probabilities expressing how likely the confirming evidence may occur at
values of the parameter. When the prior-to-test probability is uniform (embodying maximal un-
certainty) the entropic correction coincides with the Bonferroni correction. When the prior-to-test
probability embodies maximal certainty (is concentrated on a single value of the parameter at which
the evidence is obtained), the entropic correction overrides the Look Elsewhere Effect completely
by not requiring any correction of significance. The intermediate situation is illustrated by a sim-
ple hypothetical example. Interpreting the prior-to-test probability subjectively allows a Bayesian
spirit enter the frequentist multiple hypothesis testing in a disciplined manner. If the prior-to-test
probability is determined objectively, the entropic correction makes possible to take into account in
a technically explicit way the background theoretical knowledge relevant for the test.

1 The main suggestion of the paper

The Look Elsewhere Effect is an important phenomenon in multiple (parameter dependent) statistical
hypothesis testing based on p-values. Given that this form of hypothesis testing is widespread in empirical
sciences, the problem of how to mitigate it is a standard topic in statistics, where it is treated sometimes
under the heading “Family-wise Error Rate” (see e.g. [1], [7], [12], [13], [14], [2] [11]).

The problem is especially acute in experimental high-energy particle physics [16], [15], [9], [4], [5].
The Look Elsewhere Effect is one of the reasons why in high-energy particle physics the significance
level of rejecting a hypothesis is required to be very high in comparison with typical significance levels
adopted in other sciences. One can argue however – as Dawid does [4], [5], based on the analysis of the
experimental confirmation of the Higgs particle – that the usual reasoning referring to the Look Elsewhere
Effect to motivate the demand of high significance in particle physics can be too much decoupled from the
theoretical background of the experiment. Dawid then suggests both a simple [4] and a more elaborate
[5] Bayesian way of taking into account the physicists’ prior-to-test theoretical belief in the truth of the
theory under test to mitigate the Look Elsewhere Effect.
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Motivated by Dawid’s analysis, in this paper we suggest another Bayesian way of mitigating the Look
Elsewhere Effect. Our main idea is to adjust the significance level by taking into account a possible prior-
to-test theoretical knowledge that indicates the probability with which the (dis)confirming phenomenon
might be found at different parameter values in the test. We demand the adjustment to satisfy three
requirements:

(i) The correction should be sensitive to the uncertainty embodied by the probability measure ρ that
represents the scientists’ prior theoretical knowledge (belief) about where (at which parameter
value t) the confirming evidence might be found in a test: the higher the uncertainty of ρ, the
higher significance is required. The uncertainty embodied by the probability measure ρ should be
justifiable on independent grounds as a quantity that expresses the uncertainty of ρ.

(ii) The correction should also be sensitive to the prior probability ρ(t) of the observed event xt to be
found in the test at a specific parameter value t: the higher ρ(t) the smaller significance is required.

(iii) The adjustment should yield the “Bonferroni correction” [7], [1], [12] in the case when ρ is the
uniform probability measure on the parameter space (which we assume to be finite, having N > 1
elements). Moreover, the uncertainty and the correction should be such that the correction depends
on ρ in a continuous manner; in particular, as ρ approaches (pointwise) the uniform probability,
the correction should approach the Bonferroni correction.

Taking the entropy of ρ as a measure of uncertainty of ρ, we define a quantitative entropic correction
of significance that depends on the entropy of ρ, on the value ρ(t) and on the number N of parameters,
and which satisfies the conditions (i)-(iii). Thus the proposed entropic correction mitigates the Look
Elsewhere Effect in a way that reflects specific structural features of the prior knowledge represented by
ρ, yielding the Bonferroni correction as a special case when the entropic uncertainty is maximal: when
ρ is the uniform probability on the parameters. The correction also is intuitively correct at the other
end of the uncertainty scale: when ρ is totally concentrated at a particular value of the parameter and
hence represents maximal certainty (its entropy is zero). In this case the suggested entropic correction
is zero: no need to adjust the p-value as a result of the Look Elsewhere Effect. In this extreme situation
the Bayesian certainty overrides the Look Elsewhere Effect completely. In the intermediate cases the
entropic correction depends very sensitively on the global features of ρ and the value ρ(t). We illustrate
the intermediate case on a simple hypothetical example.

To make the paper reasonably self-contained, section 2 recalls the main idea of statistical theory test-
ing, including the notion of p-values. Section 3 describes the Look Elsewhere Effect and the standard way
of correction of significance intended to mitigate the effect. Section 4 introduces the entropic correction
of significance, and section 6 contains some concluding comments.

2 Statistical hypothesis testing and p-values

In science one frequently tests a new theory T ′ using statistical methods. The typical situation is that in
these tests T ′ is evaluated not in isolation but in comparison with the old theory T (called “background
theory” or “null hypothesis”), and the comparison is in terms of so called “p-values”. This testing
procedure is a standard topic in statistics: it is described e.g. in Chapter 26 in [8]; the chapter “Hypothesis
Tests and Corroboration” in [10], the section 18.4 of [20], and [19] provide a compact summary with a
philosophical flavor; and the review in section 6 of [16] is from the perspective of particle physics. To
simplify the discussion, we call this way of comparative testing of T ′ Contrastive Statistical Confirmation
of T ′ using p-values, “T -CS-confirmation of T ′”, for short. The confirmation procedure is summarized
below, following the description in sections 6.2 and 6.3 in [16], but using a different and more explicit
notation.

A probability measure space (X,S, p) together with a random variable f : X → IR is called a statistical
test theory of theory T with respect to f , and f is called the statistical data function (also called “test
statistics”), if, assuming T to be true, one infers from T that the probability measure p on S specifies what
one expects to find about the values of f in empirically executable trials with results in X: Assuming T
is true, one expects to find f(x) to lie more frequently in sets d of real numbers for which p(f−1(d)) is a
“large” probability (f−1 is the inverse image function of f), and one regards T being in tension with the
observation if the observed values of f fall in a d such that p(f−1(d)) is “small”. What is a “small” and
what is a “large” probability depends on the particular testing situation, and in each testing situation
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the definition of “small” and “large” gets specified by fixing what are called the “significance level” of the
test: If p(f−1(d)) is smaller than a conventionally chosen significance level, then it is “small”, otherwise
it is “large”. The question of how one can decide whether (X,S, p) with a particular test statistics f is a
good statistical test theory for T does not have a general answer. It is the task of the specific sciences in
which T is a theory to come up with a (X,S, p) and a suitable f that can serve as a good statistical test
theory for T . The implementation of this idea of comparing T and T ′ in terms of statistical test theories
starts with the definition of the p-value:

Definition 1 (p-value). Let (X,S, p, f) be a statistical test theory for T . For an x ∈ X consider the
event E+

x that the value of f is equal or larger than f(x):

E+
x
.
= {y ∈ X : f(y) ≥ f(x)} (1)

Then the function p+f : X → [0, 1] defined by

p+f (x)
.
= p(E+

x ) = p({y ∈ X : f(y) ≥ f(x)}) (2)

is called the positive side pf -value function. The event E−x defined by

E−x
.
= {y ∈ X : f(y) ≤ f(x)} (3)

leads to the analogously defined function p−f : X → [0, 1] defined by

p−f (x)
.
= p(E−x ) = p({y ∈ X : f(y) ≤ f(x)}) (4)

and
p+,−f (x)

.
= 2 ·min{p−f (x), p+f (x)} (5)

is the two-sided pf -function.

Different theories and test situations use different statistical data functions. In a particular application
the statistical data function is chosen in such a way that the p-value can be interpreted as the measure
of incompatibility of theory T with the empirical test result: The smaller the p-value p+f (x), the less

compatible theory T is with the empirical test result x; the larger the p-value p+f (x), the more compatible

theory T is with the empirical test result x. This interpretation of p+f (x) depends very sensitively on

f , and, depending on the specific situation, one might have to use p−f (x) to interpret it the same way:

the smaller p−f (x), the less compatible T is with the empirical test result x. Sometimes a two-sided
pf -function has to be used as p-value in order for a similar interpretation of the p-value to be justified.

The typical procedure of testing T ′ in contrast to T using p-values has the assumptions and structure
described in the following definition of T -CS confirmation of T ′:

Definition 2 (T -CS confirmation of T ′).

1. One specifies

(i) A statistical test theory (X,S, p, f) for T .

(ii) A statistical test theory (X,S, p′, f) for T ′.

2. One assumes that the following hold:

(2.i) The positive side pf -value function p+f has the interpretation of indicating the (in)compatibility
of the evidence x with theory T .

(2.ii) The negative side pf -value function p′
−
f has the interpretation of indicating the (in)compatibility

of the evidence x with theory T ′.

(2.iii) Given a real number r, the probability that T ′ predicts for the event that the value of the test
function is smaller than r is smaller than the probability predicted by theory T for this event:

p′(f−1((−∞, r])) < p(f−1((−∞, r])) for all r ∈ IR (6)

3. Under these assumptions we say that T ′ is T -CS-confirmed by evidence x ∈ X if:
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(a) For some “small” real number α > 0 we have

p+f (x) ≤ α (7)

(b) For some “large” real number β > 0 we have

p′
−
f (x) ≥ β (8)

In view of assumption (2.iii) the conditions (7)-(8) do indeed positively distinguish T ′ from T because

� 3.(a) says: It is very unlikely to obtain the value f(x) or more extreme (larger) value of the test if
T is true; so we exclude T on this ground.

� 3.(b) says: It is not very unlikely to obtain the value f(x) or more extreme (smaller) value of the
test if T ′ is true, so we do not exclude T ′ on this ground.

The numbers α, β are called significance numbers, their choice is a matter of convention. The smaller
α and the larger β, the more strongly the evidence x T -CS-confirms T ′: A small α (high significance)
makes it more difficult to exclude the null hypothesis; a large β (called “the exclusion level” for the new
theory T ′ [16]) makes it easier to exclude the new theory T ′. In many applications it is customary to
take α = 0.02. In experimental particle physics typical values of α are taken to be the numbers which
correspond in case of a probability measure given by a Gaussian density to the probability that the value
of the identity function as random variable is outside of the symmetric interval of length kσ around its
expectation value, where σ is the variance of the Gaussian density. The value k = 5 results in α = 3·10−7.
This particular “5σ” value for α is regarded a very demanding p-value, and is the convention accepted in
particle physics. One of the reasons for choosing α very small is the Look Elsewhere Effect to be discussed
below. The exclusion level β is typically taken to be much larger than α [16][p. 21]; hence it is easier
for the new theory T ′ to be incompatible with evidence than it is for T . This is reasonable because T
is typically well-corroborated, hence discarding it needs strong evidence (high degree of incompatibility
with evidence); whereas “... incorrect exclusion of New Physics is not regarded as so dramatic” [16][p.
21].

The relation of p-values p+f (x) and p′
−
f (x) to α and β can be different from the one expressed by eqs.

(7)-(8). How to interpret the situation when the p-value of the null hypothesis T is not smaller than α, is
a somewhat controversial matter (see [10][pp. 229-230] and the references there). The Table 2 in [16][p.
21] summarizes all the logically possible cases. In our notation the possibilities listed in Table 2 in [16][p.
21] are reproduced below.

Decision if T true if T ′ true

p+f (x) ≤ α p′
−
f (x) > β T ′ is T -CS confirmed Type I error Good choice

p+f (x) > α p′
−
f (x) ≤ β T ′ is T -CS DISconfirmed Correct choice Type II error

p+f (x) > α p′
−
f (x) > β no decision weak test weak test

p+f (x) ≤ α p′
−
f (x) ≤ β ambiguous ambiguous ambiguous

2.1 Illustrative Example – coin flipping

To illustrate the concept of T -CS-confirmation of T ′ we describe a simple instance of the paradigm
example [17] of coin flipping. Let T ′ be the theory that a coin is not fair but biased towards its Head in
4:1 proportion, and let T be the theory that the coin is fair. The task is to T -CS-confirm T ′. Let the
probability space component of the statistical test theory for T be (XM ,SM , pM ), where the set XM is
the set of all possible outcomes of flipping the coin M times and pM is the uniform probability measure:

XM
.
= {(x1, . . . xM ) : xi = H,T ; i = 1, . . .M} (9)

pM ({(x1, . . . xM )}) .
=

1

2M
(10)

Let the statistical data function f be the number of heads thrown in M flips:

f((x1, . . . xM ))
.
= #{xi : i = 1, . . .M ;xi = H} (11)
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Here #{} denotes the number of elements in the set { }.
Let the probability space component of the statistical test theory for T ′ be (XM ,SM , p′M ), where p′M

is the probability measure describing M throws with a coin that is biased towards Head in 4:1 proportion:

p′M ({(x1, . . . xM )}) .
=
(4

5

)k(1

5

)M−k
(12)

where k is the number of H’s among (x1, . . . xM ).
Suppose the outcome of 10 throws is

x = (H,H, T,H,H,H,H,H,H,H) (13)

This outcome contains 9 Heads. Elementary calculation shows

p10
+
f (x) ≈ 0.01074 (14)

p′10
−
f (x) ≈ 0.89263 (15)

Thus choosing α = 0.03 and β = 0.7 one can conclude that the evidence of throwing 9 Heads in 10
throws T -CS-confirms the hypothesis T ′ that the coin is biased in favor of Heads in proportion to 4:1 –
in comparison with the null hypothesis T that the coin is fair.

3 Parameter-dependent Contrastive Statistical Confirmation and
the Look Elsewhere Effect

In some situations in which T ′ is to be T -CS confirmed, theory T ′ has a free parameter t with values in a
range R, and the theory’s claim to be tested has the form “For a specific value of parameter t, property
Φ holds”. A T -CS-type confirmation of T ′ in this case consists in establishing that T ′ is T -CS-confirmed
at some value t0 of the parameter. To this end, one makes all the concepts featuring in T -CS testing
parameter-dependent, and one stipulates certain connections between the parametrized notions in order
to compare the theories T and T ′.

To be specific, one starts with inferring from T a probability space (Xt,St, pt) for each t in R with
statistical data function ft, and proceeds with inferring from T ′=“For a specific value of parameter t,
property Φ holds” a statistical test theory (Xt,St, p′t) (with statistical data function ft) for each parameter
value t. To simplify the situation we assume that (i) the random events at every value of the parameter
are of the “same sort”; (iia) the background theory T predicts the same probability for the same type of
event at different parameter values and (iib) that the same holds for T ′; (iii) that the comparison is in
terms of the “same sort” of test function at every parameter value. The technical formulations of these
assumptions are summarized in (I)-(III) below. (For the notions of isomorphism of measurable spaces
and of probability measure spaces featuring in (I) and (II) see [3][p. 275], for a compact summary of
these notions see [18].)
Assumptions
For all parameter values t we have:

(I) The measurable spaces (Xt,St) are isomorphic to (X,S) via the isomorphisms ht : Xt → X.

(IIa) The (Xt,St, pt) is measure theoretically (strictly) isomorphic to (X,S, p) via the isomorphism
ht : Xt → X.

(IIb) The (Xt,St, p′t) is measure theoretically (strictly) isomorphic to (X,S, p′) via the isomorphism
ht : Xt → X.

(III) The statistical data functions ft do not depend on t: There is a statistical data function f : X → IR
such that ft = ht ◦ f ; i.e. ft(xt) = f(ht(xt)) for all xt ∈ Xt.

One then finds empirical evidence xt ∈ Xt for each parameter value t in the range R. One can define t-
dependent p-values p+ft(xt) and p′

−
ft(xt) in complete analogy with equations (2)-(4). The numbers p+ft(xt)

and p′
−
ft(xt) are called “local p-values”. In view of the assumptions (I)-(III) they can be written as

p+ft(xt) = p+f (ht(xt)) and p′
−
ft(xt) = p′

−
f (ht(xt)) (16)
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Assume that one has obtained as empirical evidence a set E = {xt ∈ Xt : t ∈ R} of elements, and one
finds an xt0 ∈ E for which the analogues of (7)-(8) hold for the local p-values:

p+f (ht0(xt0)) ≤ α (17)

p′
−
f (h′t0(xt0)) ≥ β (18)

and no other element xt in the evidence set E satisfies (17)-(18). Can one now regard T ′ = “For a specific
value of parameter t, property Φ holds” as T -CS-confirmed by evidence xt0 , declaring t0 as the parameter
value at which Φ holds? The problem with doing so without further consideration is that, if the parameter
space R is large and we collect evidence at every value of the parameter, then it becomes more and more
likely that we find evidence xt at some parameter value t that has the same or smaller (local) p-value as
xt0 has – even if T is true and T ′ is not. Thus the danger of making a Type I error increases because
the local p-value p+f (ht0(xt0)) at the particular parameter value t0 is an overestimation of the degree of
incompatibility of T with evidence xt0 . This “dilution of significance” in case of a parameter-dependent
testing is called the “Look Elsewhere Effect” [16], [15], [9], [4], [1].

The customary way to mitigate the “dilution of significance” of local p-values is to introduce a “global”
p-value pG(xt0) and, for rejecting the background theory in view of evidence xt0 , demand that this global
p-value be below a chosen threshold significance α. This demand then requires the local p-value to be
below a significance δ that is much smaller than α. By definition, the global p-value pG(xt0) of xt0 is the
probability that in testing at each parameter value we find at least one event xt at some parameter value
t such that the local p-value p+f (ht(xt)) of xt is less than or equal to the local p-value p+f (hto(xt0)) of xt0 .
The ratio

pG(xt0)

p+f (hto(xt0))
(19)

is called the trial factor [1], [9].
Calculating the trial factor is typically difficult in applications. This is because the global p-value of

an observed event xt0 is not determined by the local probability spaces (Xt,St, pt), (Xt,St, p′t) alone, not
even when one makes the assumptions (I)-(III). To obtain the global p-value one has to aggregate the local
probability spaces (Xt,St, pt), (Xt,St, p′t) into a single probability space; in particular one has to assume
some additional hypothesis about what probabilistic dependencies exist among probabilities of events at
different values of the parameter. It is not always obvious what the dependencies are – this depends on
the specific features of the whole testing situation. If R is a finite set containing N number of parameter
values (which we have assumed), and one takes as the aggregated probability space the product of the
local probability spaces, with the product probability measure as the aggregated probability measure,
which expresses that the events at different parameter values are independent, then one can calculate
pG(xt0) and obtain (see the Appendix for details):

pG(xt0) = 1− [1− p+f (ht0(xt0))]N (20)

For large enough N , the global p-value in (20) can be large (close to 1) even if p+f (ht0(xt0)) is small. So
if there are a large number of parameter values at which evidence is collected, it is very likely that one
finds evidence at some parameter value with significance equal or higher than the significance displayed
by the local p-value of xt0 , even if T is true. For instance, taking p+f (ht0(xt0)) = 3 · 10−7 (the 5σ value),
and 100 parameter values at which evidence is collected, we have

1− [1− p+f (ht0(xt0))]100 ≈ 3 · 10−5 (21)

So the local p-value gets diluted by two orders of magnitude, resulting in the trial factor to be about 100.
Thus, in the case of dilution (20), in order for a given local significance δ not to dilute above the global
significance α, the local significance δ must satisfy

δ ≤ 1− [1− α]
1
N (22)

Since in general the calculation of the global p-value is difficult and an analytic expression corresponding
to (22) is not available, procedures have been developed with the aim of controlling the Look Elsewhere
Effect in a simple manner (Chapter 9 in [12] gives a review of these procedures, in particular the procedure
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suggested by Benjamini and Hochberg [2]; see also [6]). The simplest, one-step procedure is the Bonferroni
correction [7], [1], [12]. In this correction one sets the local significance level δ as

δ
.
=

α

N
(23)

For the T -CS-confirmation of “Φ holds at value t0” by the observation xt0 , with significance α, one then
requires that the local p-value p+f (ht0(xt0)) satisfies

p+f (ht0(xt0)) ≤ δ =
α

N
(24)

If N is large, then for the global significance to be less than α, the local p-value p+f (ht0(xt0)) must be
very small. This is one of the reasons why local p-values are required in particle physics to be less than
the very demanding 3 · 10−7 (the 5σ value).

The Bonferroni correction is very demanding: one can show [12][p. 350] that it is the strongest
correction in the sense that any dilution of δ is bounded by α if δ ≤ α

N . Thus, controlling the dilution
of significance α by the Bonferroni correction in order to control Type I error one may over-compensate,
making Type II error more likely. This can happen especially for large N . (In section 4.1 we will see
an example showing that the Bonferroni correction can make it impossible to discard the null theory
T in a given test situation.) Motivated by this, other, multiple-step correction procedures have been
designed (see Chapter 9 in [12]). A common presupposition shared by the one-step Bonferroni and the
other, multi-step corrections is that we have no prior-to-test information whatsoever on the value of the
parameter at which the evidence confirming the new theory might happen. But this presupposition is
not always justified. There could be situations in which one does have expectations about how likely
it is that the confirming evidence occurs at different parameter values. In such cases the adjustment of
the local p-value should take into account this information. Neither the Bonferroni, nor the multi-step
corrections have the tools to incorporate such information. In the next section we make a suggestion for
a modification of the Bonferroni correction that is sensitive for such extra information.

4 Entropic taming of the Look Elsewhere Effect

Instead of requiring the local p-value p+f (ht0(xt0)) to satisfy the Bonferroni corrected significance condition
(24) it is reasonable to require a more fine-tuned condition

p+f (ht0(xt0)) ≤ δ =
α

C
(25)

where C is a number that contains information on how likely it is that the claim of T ′ is true at parameter
value t0. If one has a theoretical probability measure on R that indicates, before any actual test, how
likely it is that the claim of the theory is true at specific parameter values, then C should reflect two
features of this probability measure: (i) how much uncertainty the probability measure itself represents;
(ii) what the probability of the particular parameter value t0 is at which evidence xt0 obtains: the larger
the uncertainty, the larger C should be; the larger the probability of the particular parameter value t0
at which evidence xt0 obtains, the smaller C should be. We also demand that (iii) the correction (25)
yields the Bonferroni correction (23) when the uncertainty represented by ρ is maximal: for a ρ that is
uniform on the parameters, C = N should hold.

A possible specification of this idea is the following. Let ρ be the probability on R; ρ(t) is to be
interpreted as the prior-to-test probability that the true parameter value is t. Taking the usual entropy
H(ρ) = −

∑
t∈R ρ(t) log(ρ(t)) as the uncertainty of the probability measure ρ, and assuming that ρ(t0) 6=

0, the constant Cρ defined by

Cρ
.
= 1 +

N − 1

N log (N)
· H(ρ)

ρ(t0)
(26)

is a quantity that satisfies the requirements (i)-(iii): For fixed N , Cρ is greater the larger the uncertainty
expressed by the entropy of ρ, and Cρ is smaller the more probable it is before the test that the confirming
test result is at parameter value t0. If ρ is the uniform distribution: ρ(t) = 1/N , (t = 1, . . . N), then
H(ρ) = log(N), and Cρ = N , thus yielding the Bonferroni correction. On the other extreme, if ρ is
peaked at t0, i.e. ρ(t0) = 1, then H(ρ) is zero, hence Cρ = 1, i.e. no correction of the global significance α
is required. In this case the Look Elsewhere Effect is neutralized completely by the prior-to-test certainty
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that the parameter at which the confirming evidence happens is t0. In intermediate cases the entropic
correction factor Cρ given by (26) can take any value between N and 1 because the entropy function is
continuous in the probability profile (ρ(t1), ρ(t2), . . . ρ(ti) . . . ρ(tN )): if ρ(ti)→ 1, (and therefore ρ(tj)→ 0
(j 6= i)), then H(ρ) → 0. So, for ρ peaked enough around t0, the entropy H(ρ) will be small enough to
entail that the entropic correction results in a less demanding significance threshold than the one coming
from the Bonferroni correction.

If ρ(t0) = 0, i.e. if the prior-to-test probability of the true parameter value being t0 is zero, then one
should distinguish two sub-cases:

(i) If the entropy H(ρ) is non-zero, then one can choose a “cut-off” ε > 0 to be put in place of ρ(t0) in
the formula (26) that specifies Cρ, yielding the required significance Cε in this situation.

(ii) The entropy H(ρ) also is zero. This is an extreme situation because now ρ is totally concentrated
at a parameter t′ that differs from t0 where the evidence xt0 is found. So one has maximal prior-
to-test probabilistic certainty that the confirming evidence obtains at parameter t′; yet in the test
the confirming evidence is found at parameter t0 6= t′. In this extreme, unexpected situation it is
reasonable to demand a maximal (i.e. Bonferroni) correction of the significance.

Thus, instead of requiring (24), the entropic correction requires the local p-value to satisfy

p+f (ht0(xt0)) ≤ α

1 + N−1
N log (N) ·

H(ρ)
ρ(t0)

if ρ(t0) 6= 0 (27)

p+f (ht0(xt0)) ≤ α

1 + N−1
N log (N) ·

H(ρ)
ε

if ρ(t0) = 0, H(ρ) 6= 0 (28)

p+f (ht0(xt0)) ≤ α

N
if ρ(t0) = 0, H(ρ) = 0 (29)

We call Cρ given by (26) the entropic correction factor and α/Cρ the entropic correction of significance.
Cε denotes the entropic correction factor defined by the cutoff (i.e. Cε is the denominator in the right
hand side of (28)).

Similar considerations apply to the exclusion level condition expressed by eq. (8): The significance β
also gets diluted by the Look Elsewhere Effect. That is to say, as the number of parameters increases it
becomes more and more likely that one finds an xt0 at some parameter value t0 such that the local p-value
p′
−
f (ht0(xt0)) is larger than β even if T ′ is false. So, the local p-value p′

−
f (ht0(xt0)) is an overestimation

of a possible compatibility of T ′ with the evidence xt0 . Thus one needs a correction of β; but, in contrast
to α, the correction should increase β. To correct the significance β using the entropic correction factor
Cρ one can demand

p′
−
f (ht0(xt0)) ≥ 1− 1− β

Cρ
= 1− 1− β

1 + N−1
N log (N) ·

H(ρ)
ρ(t0)

if ρ(t0) 6= 0, H(ρ) 6= 0 (30)

Just like in the case of the entropic compensation of α, this correction possesses the intuitively desirable
properties: given N , the larger the entropy of ρ, the larger the correction of β (i.e. the larger the right
hand side of (30)); and the larger the prior-to-test probability ρ(t0) that the confirming evidence is at
parameter t0, the smaller the correction of β (i.e. the smaller the right hand side of (30)). If ρ is the
uniform probability hence the entropy is maximal and is equal to log (N), the entropic correction of β
reaches its maximum 1 − 1−β

N . This corresponds to the Bonferroni correction of α. If the entropy of
ρ is zero and thus ρ is concentrated on t0, entailing Cρ = 1, then the entropic compensation given by
(30) leaves the significance β unchanged – the Bayesian certainty overrides the Look Elsewhere Effect.
In intermediate cases the entropic correction of β provided by (30) forces the local p-value p′

−
f (ht0(xt0))

to be larger than β by an amount that is sensitive to the global properties of ρ and the prior-to-test
probability ρ(t0). This will be illustrated in section 4.1.

If ρ(t0) = 0, then, according to the two sub-cases H(ρ) 6= 0 and H(ρ) = 0 distinguished above in
connection with the correction of α, the entropic corrections of β corresponding to (28) and (29) are:

p′
−
f (ht0(xt0)) ≥ 1− 1− β

Cε
if ρ(t0) = 0, H(ρ) 6= 0 (31)

p′
−
f (ht0(xt0)) ≥ 1− 1− β

N
if ρ(t0) = 0, H(ρ) = 0 (32)
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To summarize: If one has a prior-to-test probability measure ρ indicating the probability ρ(t) of
finding a confirming evidence at parameter value t, then evidence xt0 T -CS-confirms T ′ at parameter
value t0 with significance α and exclusion level β if conditions (27)-(29) and (30)-(32) hold, and this
T -CS confirmation of T ′ has taken into account the Look Elsewhere Effect tamed entropically using the
information contained in ρ.

4.1 Illustrative Example – coin-flipping at different temperatures

To illustrate the entropic taming consider the parametrized version of the coin-flipping example in section
2: Assume that now the theory T ′ is that a coin is fair but at a particular temperature in the range of
0◦-100◦ Celsius becomes biased towards Head in 4:1 proportion. Theory T is that the coin is fair at any
temperature. The task is to T -CS-confirm T ′.

Assume that the temperature range is divided into 100 bins di of equal length (1 degree) and ten
flips are made at a temperature ti ∈ di (i = 1, . . . , 100) in each bin. The probability spaces (Xti ,Sti , pti)
(i = 1, . . . , 100) in this case are taken to be isomorphic via hti with the probability space describing ten
flips with uniform probability (the space (9)-(10) with M = 10). The probability spaces (Xti ,Sti , p′ti)
(i = 1, . . . , 100) are taken to be isomorphic with the probability space describing 10 flips with the 4 : 1
bias towards Head, with p′ given by (12). Suppose that the evidence is a set of flips with the coin ten
times at each temperature ti, and that this set contains the outcome described by eq. (13), obtained at
temperature 50◦:

x50◦ = (H,H, T,H,H,H,H,H,H,H)50◦ (33)

The local p-value of x50◦ was calculated in section 3 and is given by eq. (14):

p50◦
+
f50◦

(x50◦) = p10
+
f (h50◦(x50◦)) (34)

= p10
+
f ((H,H, T,H,H,H,H,H,H,H)) (35)

= 0.01074 (36)

This local p-value was low enough to reject the null-theory of fairness of the coin at significance level
0.03 in the case of the parameter-free test. In the current, parametric case, the Bonferroni correction
would not allow this conclusion because the Bonferroni correction would require the local p-value to be
less than 0.03/100 = 0.0003. In fact, since the smallest non-zero probability of an event now is 2−10, and
2−10 > 0.0003, T ′ could not be T -CS-confirmed at all by throwing 10 times with significance required
by the Bonferroni correction because it is impossible to reject the null hypothesis with the required
significance.

But suppose we have the following prior-to-flipping probability ρ about the temperature where the
bias might occur:

ρ(ti) = 0.05/98 ti 6= 50◦, 25◦ (37)

ρ(50◦) = 0.9 (38)

ρ(25◦) = 0.05 (39)

The entropic corrections of the significance and exclusion levels can be easily calculated:

(i) The entropic correction of the 0.03 significance for x50◦ for such a ρ is 0.02611. Since the local
p-value 0.01074 of the evidence x50◦ is below 0.02611, this evidence allows the rejection of T .

(ii) Calculating the entropic correction of the exclusion level β = 0.7 one obtains 0.73890 (rounded up
to 5 decimals). Since the local p-value p′10

−
f (x) = 0.89263 in eq. (15) is above this entropically

corrected exclusion level, T ′ is not rejected at parameter value 50◦.

In view of (i)-(ii) above, theory T ′ is T -CS-confirmed at 50◦ by x50◦ . This confirmation is at significance
0.02611 and exclusion level 0.73890, where these levels take into account the Look Elsewhere Effect,
tamed in an entropic manner.

The entropic correction of significance for an event consisting of nine Heads and one Tail, like x50◦

but occurring at 25◦ degrees, can also be calculated: it is 0.00814. This value is below of the local p-value
0.01074 of the evidence x50◦ . Hence, if the evidence of throwing 9 Heads in 10 throws were found at 25◦,
one would not be allowed to reject the hypothesis T that the coin is fair at this temperature and thus one
would not be able to conclude that T ′ is T -CS-confirmed at 25◦. This negative conclusion would be the
result of the Look Elsewhere Effect – even after having tamed the Look Elsewhere Effect in the entropic
manner.
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5 Assessing the performance of the entropic correction

If the coin in the example of the previous section does indeed change its non-biased character at t =
50◦, then the ρ assigning high (0.9) probability to t = 50◦, is a ”good” prior because it leads to the
correct decision. And the example also shows that this good decision is not possible on the basis of the
Bonferroni correction (with the chosen significance levels) – so the entropic correction performs better
than the Bonferroni correction in this case. If the prior assigning 0.9 probability to t = 50◦ is a very
bad reflection/anticipation of the parameter value at which the new theory is in fact true (because the
coin changes its non-biased character not at t = 50◦, yet the prior assigns high probability to this), then
rejection/acceptance based on the entropic correction (on the basis of the evidence of throwing 9 Heads)
is an error. In this latter case the entropic correction did not perform well. This observation leads to the
general question of how the taming of the Look Elsewhere Effect using the entropic correction compares
with using the Bonferroni correction in general in the sense that using the entropic correction is more
likely to result in rejecting hypotheses that are more likely false and is more likely to result in accepting
hypotheses that are more likely true.1 To formulate this question more precisely, one needs a measure
of good performance of a correction of significance in a parametric T -CS confirmation. Below we define
explicitly a measure that seems suitable to reflect the degree of good performance – without claiming
that it is the only one that does so.

Suppose ρ is understood as a probability measure that reflects some objective chances (e.g. frequen-
cies) with which T ′ is true at the parameter values. Suppose one tests T ′ at each parameter via a T -CS
confirmation, using both the entropic and the Bonferroni corrections of the significance levels α and β.

Let P
(α,β)
Ent (t) be the probability with which T ′ is confirmed when T -CS-tested at parameter t using the

entropic corrections of α and β, and P
(α,β)
Bonf (t) be the probability with which T ′ is confirmed when T -CS-

tested at parameter t using the Bonferroni corrections of α and β. At t the entropic correction performs

better than the Bonferroni correction if P
(α,β)
Ent (t) is closer to ρ(t) than P

(α,β)
Bonf (t) is, i.e. if

|P (α,β)
Ent (t)− ρ(t)| ≤ |P (α,β)

Bonf (t)− ρ(t)| (40)

The ρ-expected values of the left and right-hand sides of the inequality eq. (40) are reasonable indicators
of how well the entropic and Bonferroni corrections perform at this ρ at the significance levels α and β.
So we define performance indicators IEntρ;(α,β) and IBonfρ;(α,β) by

IEntρ;(α,β)
.
=

∑
t

ρ(t)|P (α,β)
Ent (t)− ρ(t)| (41)

IBonfρ;(α,β)

.
=

∑
t

ρ(t)|P (α,β)
Bonf (t)− ρ(t)| (42)

And we say:

Definition 3.

� The entropic correction performs better than the Bonferroni correction at ρ at the significance levels
(α, β) if

IEntρ;(α,β) ≤ I
Bonf
ρ;(α,β) (43)

� The entropic correction performs better than the Bonferroni correction overall if for all ρ and for
all significance levels α and β the inequality (43) holds.

Problem 1. Is the overall performance of the entropic correction better than the overall performance of
the Bonferroni correction?

Problem 1. seems to be a difficult one; at any rate we are unable to solve it. What we can do is to offer
numerical evidence in the particular case of the ρ specified in our example in section 4.1 (see eqs. (37)-
(39)) that, for this ρ, and for the significance levels α = 0.3 and β = 0.7, the entropic correction performs
better than the Bonferroni correction. In this particular case the performance indicators IEntρ;(0.3,0.7) and

IBonfρ;(0.3,0.7) can be calculated explicitly. We calculated numerically these numbers for five different testing

1We thank an anonymous referee who suggested to investigate this issue in more detail.
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situations: when we use as evidence outcomes of 10, 15, 20, 25 and 30 flips. Some details of the calculations
are in Section 6.2 of the Appendix. The result of the calculations show (see Table 2. in Section 6.2 of
the Appendix) that the entropic correction performs better in the case of this particular ρ and at these
significance levels in each of these five testing scenarios:

number of flips IEntρ;(0.3,0.7) IBonfρ;(0.3,0.7)

10 0.506838084 0.81252551
15 0.489350944 0.783931589
20 0.301453498 0.80315755
25 0.312234809 0.790270514
30 0.465918806 0.803975713

Comments on the numerical calculations:

(i) While in our example the performance of the entropic correction is better than the performance of

the Bonferroni correction in the sense that in each one of the testing scenarios IEntρ;(0.3,0.7) < IBonfρ;(0.3,0.7)

holds, the numerical calculations also show that it is not true that in each one of the testing scenarios
the performance of the entropic correction is better at every single parameter: it is not true that

|P (0.3,0.7)
Ent (t) − ρ(t)| ≤ |P (0.3,0.7)

Bonf (t) − ρ(t)| holds for all t in each one of the testing scenarios.
The reason for this is that when ρ(t) is very small, the entropic correction can be stronger than
the Bonferroni correction, and this can make it too hard to T -CS confirm the hypothesis at that
parameter using the entropic correction. In our example this happens in the testing scenario in
which the test is a sequence of tosses of length 30 and when it comes to the confirmation of the coin
transforming into a biased one at a temperature different from 50◦ and 25◦ with a probability of

0.05/98 = 0.510204× 10−3. In this case we have: P
(0.3,0.7)
Ent (t) = 0.632533× 10−6 and P

(0.3,0.7)
Bonf (t) =

0.539747× 10−5. But since the transformation of the coin into biased one at temperatures different
from 50◦ and 25◦ happen with a very low probability, the average performance of the entropic
correction is less affected by the low probability of confirming the hypothesis at such a parameter.

(ii) The observation in (i) shows that in our example the entropic correction performs better than the
Bonferroni correction at parameters t for which ρ(t) is higher. This indicates a general feature
of the entropic correction: if ρ is a probability measure that reflects some objective chances (e.g.
frequencies) with which T ′ is true at the parameter values, then the T -CS confirmation using the
entropic correction is more likely to confirm the hypothesis as true at parameters at which the
hypothesis are objectively more likely true than is the T -CS confirmation using the Bonferroni
correction.

One also can raise the question of how the entropic correction performs in comparison with other
corrections available in the literature that are different from the Bonferroni correction. We do not have
any result in this direction.

6 Concluding comments

The entropic taming of the Look Elsewhere Effect allows one to introduce in a disciplined and technically
explicit manner a Bayesian component in the otherwise frequentist statistical theory testing. This is in
the spirit of Dawid: “... keeping in mind a Bayesian framework can help making the right choices in
framing data analysis.” [5][p. 378] But the kind of Bayesianism the entropic correction represents differs
significantly from the sort of Bayesianism present in [4] and [5]. Dawid’s analysis in both [4] and [5]
involves the subjective prior probabilities about the truth of the null hypothesis and of the theory to be
tested. Such subjective priors are completely absent in the entropic correction of the significance levels:
Degrees of beliefs enter the entropic correction of significance only through the prior-to-test probability
ρ representing expectations about where the confirming evidence might occur; no prior degree of belief
in the theory to be tested or in the null hypothesis is assumed. Also, Dawid’s analysis in [5] assumes
explicitly that “... the probability of the existence of a Higgs particle is uniformly distributed over the
allowed mass region...” [5][p. 387]. Using our terminology, this amounts to assuming that ρ is the uniform
probability – and the main point in the entropic correction is that ρ need not be uniform.
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That the entropic correction of the Look Elsewhere Effect does not involve the prior belief in the
theory under test has the advantage that it is applicable even when the prior belief in the new theory
T ′ is not very high: Even if one does not have a high degree of belief in the truth of T ′, one might have
a high probability that if T ′ is true, the conforming evidence obtains with higher probability at some
specific parameter values. This allows the taming of the Look Elsewhere Effect in the entropic way in
situations when the overall confidence in the truth of T ′ is low or moderate.

“Uncertainty” is not a uniquely determined notion and there are measures different from entropy
that express how uncertain or “peaked” a probability measure is. So there seems to exist in principle
an avenue for different types of Bayesian taming of the Look Elsewhere Effect, where “type” refers to
the type of uncertainty one uses to measure the uncertainty of a Bayesian ρ. So no claim is made here
about the uniqueness of the suggested entropic correction as the only one that satisfies the desiderata
formulated in Section 1. But we do not have an example of a measure of uncertainty of a probability
measure and corrections of significance that differ from the entropic one and which satisfy the desiderata
in section. So we leave the question about the existence of such a correction as an open issue. One also
might consider further strengthening the demands (i)-(iii) on a correction formulated in section 1. We
also leave it for future analysis in which direction such strengthening are feasible or desirable.

Another possible topic for future investigation is the situation when the parameter space is not finite;
in particular when it is uncountably infinite. This situation presents several technical and conceptual
difficulties. In such a situation the Bonferroni correction is not applicable and it is unclear to us how one
could tame the Look Elsewhere Effect along the lines suggested in this paper.

The entropic taming of the Look Elsewhere Effect itself is neutral with respect to the source of the
probability measure ρ: One can interpret ρ entirely subjectively, as expressing a rather personal conviction
(degree of belief) of the experimenter (e.g. physicist) carrying out the test. But the probability measure
ρ can also be the prediction of (or informed by) a well-corroborated framework theory that provides a
probabilistic prediction regarding the chances of finding specific systems with certain parameter values.
In this latter case the entropic taming of the Look Elsewhere Effect is in the spirit of the advice of
the American Statistical Association [21], which emphasizes the importance of taking into account the
broader scientific context in which statistical analysis using p-values takes place.

Appendix

6.1 Calculation of the global p-value when the probabilities of events at dif-
ferent parameter values are independent

As an explicit illustration of the Look Elsewhere Effect and the global p-value, we recall here the well-
known calculation of the global p-value of xt0 in the case when the probabilities of events at different
parameter values are independent. The calculations (especially in lines (46)-(49)) below use the assump-
tions (I)-(III).

Let (×Ni=1Xti ,×Ni=1Sti) be the measurable space that describes the possible outcomes of tests carried
out at parameter values in R. Then

Et0 = {yto ∈ Xt0 : ft0(yt0) ≥ ft0(xt0)} (44)

is the event in St0 that the result of the empirical test xt0 has value ft0(xt0) or a larger value. The
complement E⊥t0 of Et0 in Xt0 is the event in St that Et0 does not happen at parameter value t0. The

event (ht
−1 ◦ ht0)(E⊥t0) is the event that the event Et0 does not happen at parameter value t, and the

event that Et0 does not happen at any parameter value is represented by E0, where

E0
.
= ×Ni=1

[
(hti

−1 ◦ ht0)(E⊥t0)
]
∈ ×Ni=1Sti (45)

So if one takes the product probability measure ×Ni=1pti on ×Ni=1Sti , then the probability that Et0 does
not happen at any value of the parameter is

×Ni=1pti(E0) = Πipti((hti
−1 ◦ ht0)(E⊥t0)) (46)

= Πip((ht0)(E⊥t0)) = Πip(X \ ht0(Et0)) (47)

= Πi[1− p(ht0(Et0))] = [1− p(ht0(Et0))]N (48)

= [1− p+f (xt0)]N (49)
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So the probability that Et0 does happen at some value of the parameter is

1−×Ni=1pti(E0) = 1− [1− p+f (xt0)]N (50)

6.2 Numerical calculations

We show here how to calculate the performance indicators IEntρ;(α,β) and IBonfρ;(α,β) defined in section 5, in the

case of ρ specified by eqs. (37)-(39) in our example in section 4.1, for the significance levels α = 0.3 and
β = 0.7. We show the steps in the calculations in the testing scenario in which the testing is in terms of
M = 15 flips of the coin.

Table 1. below shows the numerical results in case of testing biasedness of the coin at 50◦ degrees. The
entropic corrections of the significance levels α = 0.3 and β = 0.7 at this temperature are: 0.026110449
and 0.738895514. Table 1. has the following data:

1. The first column in Table 1. below shows the possible numbers of Heads in 15 flips.

2. The second column shows the positive side p-values p+(n) of the events of obtaining n Heads in 15
flips with the unbiased coin. The formula used to calculate this number is:

p+(n) = 1−
n−1∑
i=0

B(i, 15, 0.5) (51)

Here, and in what follows, B(j, k, r) is the Binomial distribution with parameter r ∈ [0, 1]:

B(j, k, r) =

(
k

j

)
rj(1− r)k−j (52)

3. The third column shows the negative side p-values p−(n) of the events of obtaining n Heads in 15
flips with the biased coin. The formula used to calculate this number is:

p−(n) =

n∑
i=0

B(i, 15, 0.8) (53)

4. The fourth column E-conf.? contains

� 1 in row with n Heads if n Heads in a sequence of 15 flips T -CS confirms T ′ (= the coin turns
biased at temperature 50◦ degrees) after the significance has been corrected in an entropic
manner;

� 0 otherwise.

5. The fifth column B-conf.? contains

� 1 in row with n Heads if n Heads in a sequence of 15 flips T -CS confirms T ′ (= the coin turns
biased at temperature 50◦ degrees) after the significance has been Bonferroni corrected;

� 0 otherwise.
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# of Heads p+(n) p−(n) E-conf.? B-conf.?
0 1 0.32768× 10−10 0 0
1 0.999542236 0.199885× 10−8 0 0
2 0.999511719 0.570491× 10−7 0 0
3 0.996307373 0.101125× 10−5 0 0
4 0.982421875 0.124617× 10−4 0 0
5 0.940765381 0.113226× 10−3 0 0
6 0.849121094 0.784985× 10−3 0 0
7 0.696380615 0.423975× 10−2 0 0
8 0.5 0.18058807× 10−1 0 0
9 0.303619385 0.6105143× 10−1 0 0
10 0.150878906 0.164233724 0 0
11 0.59234619× 10−1 0.351837895 0 0
12 0.17578125× 10−1 0.601976791 0 0
13 0.3692627× 10−2 0.832874233 1 0
14 0.488281× 10−3 0.964815628 1 0
15 0.305176× 10−4 1 1 1

Table 1.

Let gE be the function that assigns to the number n of Heads in the table the corresponding value
1 or 0 in column 4 (indicating whether T ′ is T -CS confirmed by n Heads in 15 flips, after the entropic
correction of significance); and, let gB the similarly defined function for the confirmation using the
Bonferroni correction.

Let p50 be the probability measure that gives the probability p50(n) that n Heads occur in 15 flips at
temperature 50◦. Since the probability that the coin turns into the biased one at 50◦ degrees is 0.9, we
have:

p50(n) = 0.9 ·B(n, 15, 0.8) + 0.1 ·B(n, 15, 0.5) (54)

Then the expectation value of gE with respect to p50 yields the probability P
(0.3,0.7)
Ent (50◦) with which

T ′ is confirmed when T -CS-tested at parameter 50◦ using the entropic correction:

P
(0.3,0.7)
Ent (50◦) =

15∑
i=0

p50(i)gE(i) (55)

= p50(13)gE(13) + p50(14)gE(14) + p50(15)gE(15) (56)

= 0.358590151 (57)

Exactly the same type of calculation can be used to obtain the probability P
(0.3,0.7)
Ent (25◦) with which

T ′ is confirmed when T -CS-tested at parameter 25◦, and the probability P
(0.3,0.7)
Ent (t′) with which T ′ is

confirmed when T -CS-tested at parameters t′ 6= 50◦, 25◦, using the entropic correction. The results of
the calculation are:

P
(0.3,0.7)
Ent (25◦) = 0.8820156× 10−2 (58)

P
(0.3,0.7)
Ent (t′) = 0.484532× 10−4 (59)

The entropic performance indicator IEntρ;(0.3,0.7) can now be calculated:

IEntρ;(0.3,0.7)
.
=

∑
t

ρ(t)|P (0.3,0.7)
Ent (t)− ρ(t)| (60)

= 0.9
∣∣P (0.3,0.7)
Ent (50◦)− 0.9

∣∣+ 0.05
∣∣P (0.3,0.7)
Ent (25◦)− 0.05

∣∣ (61)

+ 98 · 0.05/98
∣∣P (0.3,0.7)
Ent (t′)− 0.05/98

∣∣ (62)

= 0.489350944 (63)

An entirely analogous calculation yields the performance indicator of the Bonferroni correction:

IBonfρ;(0.3,0.7) = 0.783931589 (64)

The calculation of the performance indicators in case of 10, 20, 25 and 30 flips proceeds exactly along
the above lines. The results are:
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number of flips IEntρ;(0.3,0.7) IBonfρ;(0.3,0.7)

10 0.506838084 0.81252551
15 0.489350944 0.783931589
20 0.301453498 0.80315755
25 0.312234809 0.790270514
30 0.465918806 0.803975713

Table 2.
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