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Feynman diagrams

From complexity to simplicity and back
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Abstract The way from the path integral to Feynman diagrams is sketched.
The emphasis is put on the decrease of complexity in this process, from infinite-
dimensional integrals down to the apparent simplicity of child’s play. On the
other hand, also the subsequent increase in complexity when using Feynman
diagrams to make realistic physical predictions is described, thus illustrating
the dialectic between the simplicity and clarity of Feynman diagrams, and the
complexity in their practical applications.
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1 Introduction

Feynman diagrams are part of the theoretical toolbox of quantum field the-
ory (QFT) which, loosely speaking, is the relativistic generalization of quantum
mechanics. The intricacies of the latter have been a subject of the philosophical
debate since its very conception at the beginning of the twentieth century [1].
With QFT, a number of additional conceptual problems arise, mostly related
to mathematical consistency (see Ref. [2] for details). In this article though, we
will leave most of these issues aside and focus on a very specific topic, related
to the complexity of QFT when it is used to compare a specific particle model
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2 1 INTRODUCTION

seagull sunrise/sunset

water melon tennis court

penguin

Fig. 1 A number of Feynman diagrams that have been given names by physicists.
The origin of the “penguin” may be obscure; for the reader’s amusement, we rec-
ommend to research the story behind it.

to experimental data.1 But neither do we aim at evaluating the complexity of
QFT as a theory itself, for example by comparing it to possible rival theories.
Rather, we take QFT as given, and follow the steps it takes to bring it into
quantitative contact with observation. This will illustrate the enormous simpli-
fication induced by Feynman diagrams when extracting physical information
from a particle model. It culminates in the crystallization of Feynman dia-
grams as a stand-alone theoretical device which is no longer applied to QFT,
but encodes it, albeit only in the perturbative limit. In the end, we will see
how complexity creeps in again though, through the quest for precision.

Feynman diagrams have been indispensable for particle physics for about
half a century now. Their historical development and dissemination as well
as their diverse fields of application (calculation, communication, education,
intuition, etc.) have been subject of study also in the reflective sciences [4–10].
And their multifaceted forms have inspired physicists even in non-scientific
aspects, as exemplified by the creative names that they have given to specific
diagrams, some of which are shown in Fig. 1.

In order to be able to appreciate the degree of simplification effectuated
by Feynman diagrams, it will be helpful to first discuss the path integral for-
mulation of QFT in Section 2. It helps to illustrate the intrinsic complexity of
this theory, both from a pragmatic and an epistemic point of view (we adopt
these notions from Ref. [11] throughout this paper). In Sections 3 and 4, we
will see how Feynman diagrams facilitate the actual application of QFT to
the calculation of physical quantities like cross sections. One of their main
virtues, however, is that they largely detach this task from the original for-
malism. First and foremost, this implicates a drastic reduction in pragmatic

1 Without alluding to the model/theory debate [3], we will adopt the term particle model
for a specific, QFT-based model (or theory) of particle interactions, such as the Standard
Model or its supersymmetric generalizations.
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complexity when applying QFT. A large fraction of the operations required to
get from the Lagrangian of a particular particle model to a cross section be-
comes algorithmic, meaning that they can be performed by a computer. Given
the appropriate software, the calculation thus reduces to “pressing a button”,
which is arguably the highest level of simplification that can be achieved. In
fact, throughout most of this article, complexity (or simplicity) will be de-
fined from this algorithmic point of view: A problem is considered simple if it
requires little intellectual efforts to solve it [11].

Applying QFT in this purely algorithmic way reduces it to a black box
at the cost of losing insight into the underlying physics. On the other hand,
we suggest in Section 5 that the visual aspect of Feynman diagrams implies
a significant epistemic simplification, since they lift the QFT description of
a scattering to the level of a visual “experience”. After all, visualizability
contributes to the virtues of a good scientific theory (see Ref. [12] for a recent
review of theoretical virtues). Similar to Ref. [13], we will argue that it is
irrelevant in this respect whether the image of a Feynman diagram truthfully
represents the details of a physical process or not.

This article cannot provide a comprehensive introduction to path integrals
or Feynman diagrams. We restrict ourselves to a rather schematic presentation
of those aspects which are necessary to illustrate the main concern of this
article pointed out above: How starting with a tremendously complex picture
of the world, where the simple movement of a particle from one point in space
to the other depends on the conditions at any other point in the universe, one
arrives at stand-alone rules whose simplicity is close to that of child’s play,
and whose representativeness can be both useful and deceiving [14].

Once this “metamorphosis” from quantum fields to Feynman diagrams
is complete, we will look in Section 6 at the price that we have to pay for
it, and what we need to do in order to settle the debts this has incurred.
Feynman diagrams are based on perturbation theory, which is an approxima-
tion to the original path integral. Comparison to experimental results at high
precision requires calculations at higher orders in perturbation theory, which
re-introduces complexity in the Feynman diagrammatic approach. So far, it
has paid off though: Particle physics has been enormously successful over the
past few decades, and there is no question that Feynman diagrams played a
major role in this.

Present-day perturbative calculations are computationally very intensive
due to the sheer number of Feynman diagrams involved, leading to a large
number of integrals, and the complexity of each of these integrals. In Section 7,
we briefly sketch the workflow for a modern calculation in perturbation theory,
with a particular focus on the current role of the visual aspect of Feynman
diagrams.

We close our discussion with a few thoughts on the future of Feynman
diagrams in Section 8.
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(a) (b)
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Fig. 2 (a) Double slit; (b) triple slit; (c) two triple slit apertures.

2 The path integral

There are essentially two ways to derive Feynman diagrams. In a typical
physics curriculum, it is common to follow canonical quantization by default,
which corresponds to generalizing the canonical quantum mechanical commu-
tation relation [x, p] = i~ to field theory. Here, however, we will consider the
historically more appropriate and also more elegant approach via the path
integral [15–17] (historical investigations on Feynman’s lines of reasoning can
be found in Refs. [9, 14], for example). This may seem very ambitious; after
all, as opposed to the canonical commutation relation, the path integral is not
necessarily a part of a regular quantum mechanics course. Nevertheless, once
one engages with it, it provides a very helpful view on quantum mechanics,
and allows for an enlightening transition to classical mechanics.

2.1 Definition of the path integral

In order to understand what the path integral is, let us recall the double
slit experiment, see Fig. 2 (a). It consists of a source of particles (electrons, for
example), a screen which detects them (like the screen of an old tube TV), and
in between a double slit aperture. Classically, the electrons that traverse the
aperture either pass through one slit or the other; their impacts on the screen
will form two clusters, corresponding to the images of the two slits. In quantum
mechanics, given suitable geometric dimensions of the aperture, the impacts on
the screen form a more complex pattern. It resembles the interference pattern
which would be caused by a laser beam of wavelength λ = E/h traversing the
aperture, where E is the energy of the electrons (including their relativistic
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rest energy E0 = mc2), and h is Planck’s quantum of action. Usually, this
behavior of the electrons is interpreted as them having wave character, and the
interference pattern can be calculated accordingly, using the classical laws of
optics. The calculated interference pattern reflects the probability distribution
for a single electron to end up at a particular position on the screen.

The same probability distribution follows from the path integral formalism,
however. It is proportional to the square of the probability amplitude,

A ∼
∑
~x

exp

(
i

~
S[~x]

)
, (1)

where exp(x) ≡ ex, the reduced Planck constant is ~ = h/(2π), and S[~x] is
the action for a path ~x that leads from the particle source to a particular
position on the screen. The sum runs over all paths. In the case of the double
slit experiment, to a good approximation one may take into account only the
two paths which form a straight line from the source to one of the two slits,
and from there to some point on the screen, see Fig. 2.

Let us now use a triple-slit aperture: clearly, the number of relevant paths
increases to three in this case, see Fig. 2 (b). Of course, with every slit we add
to the aperture, the number of paths increases. Similarly, we could include
additional apertures, each of which has a certain number of slits, see e.g.
Fig. 2 (c). So in the limit of infinitely many slits and apertures, we have to
take into account infinitely many paths—but at some point, all the apertures
will only consist of slits. The actual apertures are gone, but we still need to take
into account infinitely many paths [18]! The collection of these paths densely
fills all of space. Since each infinitesimal deformation of one path leads to
another path, these paths cannot even be enumerated—they are uncountably
infinitely many. In regular analysis, when going from discrete to continuous
sets, we replace sums by integrals, and we do the same here:∑

~x

exp

(
i

~
S[~x]

)
→
∫
D~x exp

(
i

~
S[~x]

)
. (2)

Using the symbol D~x instead of d~x reminds us that the “integration variable”
~x is not a single point, but a whole path in space.2

Of course, if we consider several particles, the number of integration vari-
ables increases accordingly—which is not really a true complication, because
this number is already infinite:∫

D~x1 · · ·
∫
D~xN exp

(
i

~
S[~x1, . . . , ~xN ]

)
. (3)

2 Let us briefly mention the bridge to classical physics at this point. It can be shown
that, in the limit ~ → 0, the path integral is exhausted by the path which pertains to the
minimum of the action. This is exactly the postulate of the least-action principle which
determines the classical path of the particle. Note that, from this point of view, classical
physics appears to have quite a singular character, since it singles out one path from an
infinite, densely distributed set.
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Fig. 3 Transition from discrete point mechanics to field theory in the one- and
two-dimensional case.

Even the thermodynamic limit of infinitely many particles follows as a rather
straightforward generalization of the N -particle case, formally obtained by
adding a “limN→∞” in front of Eq. (3).

The transition to field theory, however, truly brings in another level of
complexity, because it replaces a discrete set of point particles by a contin-
uous system. It is the same situation as replacing a chain of discrete masses
connected to each other by massless springs by a continuous string, see Fig. 3.
In the former case, one may label the displacement qi of each mass from its
equilibrium position by discrete indices i = 1, 2, 3, . . .. For the string, however,
we need a field q(x), where x ∈ [0, L] indicates a particular point along the
string. So in the transition to field theory, the product of discrete path vari-
able differentials D~xi should be replaced by the product over the elements of
a continuous set. Since there is not even a proper mathematical notation for
this,3 one simply writes

∫
Dq exp

(
i

~
S[q]

)
, (4)

which looks identical to the path integral for a point particle of Eq. (3). How-
ever, it involves uncountably many times more integration variables, namely
the value of the field q at each space-time point x.

3 Just like there is no symbol for multiplying all real numbers within, say, the inter-
val (0, 1).
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2.2 Solving the path integral

At first, this expression may look hopeless: how can we ever perform a liter-
ally uncountable (times uncountable!) number of integrals? But then again: in
mathematics, dealing with infinite sets, infinite sums, or infinities in general is
quite common. For example, it is a well-defined operation to add up infinitely
many, albeit countable terms in a series such as 1+1/4+1/9+1/16+· · · = π2/6.
Summing up an uncountable number of terms is what we call an integral:∫ 1

0
dxx = 1/2. In a similar way, one can make sense out of the path integral.

The situation is analogous to the historical development of calculus or distri-
bution theory, where requirements from physics laid the foundation for new
mathematical concepts.

One way to evaluate the path integral is through Gauß’ integral:∫ ∞
−∞

dx exp

(
−1

2
ax2

)
=

√
2π

a
, (5)

for arbitrary complex-valued a. Taking the derivative w.r.t. a on both sides,
one finds ∫ ∞

−∞
dxx2 exp

(
−1

2
ax2

)
= a−1

√
2π

a
,∫ ∞

−∞
dxx4 exp

(
−1

2
ax2

)
= 3 a−2

√
2π

a
.

(6)

Higher (even) powers of x in the integrand on the l.h.s. lead to higher inverse
powers of a on the r.h.s.; integrals with odd powers of x vanish due to the
x→ −x asymmetry of the integrand.

The crucial point now is that these formulas can be generalized to arbitrary
dimensions in a straightforward way. With a bit of basic linear algebra and
some standard integration rules, one may show:∫

dn~x exp

(
−1

2
~xTA~x

)
=

√
(2π)n

detA
≡ N ,∫

dn~x xixj exp

(
−1

2
~xTA~x

)
= N A−1

ij ,∫
dn~x xixjxkxl exp

(
−1

2
~xTA~x

)
= N

[
A−1

ij A
−1
kl +A−1

ik A
−1
jl +A−1

il A
−1
jk

]
,

(7)

where ~x is an n-dimensional vector (not yet a path!) with elements x1, . . . , xn,
~xT is its transposed, A is an n × n matrix with elements A11, A12, . . . , Ann,
detA is its determinant, and A−1 its inverse. The mathematics behind it is
material of undergraduate physics. Note that Eqs. (5) and (6) follow for the
special case n = 1, where we can set x1 = x and A = a.

But even readers who are not familiar with the underlying mathematics
may recognize that the right-hand sides of Eq. (7) can be pictured as in Fig. 4.
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Fig. 4 Graphical representation of the terms in the last line of Eq. (7).

Each line in that figure corresponds to a factor A−1, with the end points of
that line matching the indices. Thus, each term in the last line of Eq. (7) is
represented by one of the three diagrams in Fig. 4.

We have seen that these formulas are valid for arbitrary dimensions n.
For the path integral, we need to consider the case of an infinite number of
dimensions. One problem here is that (

√
2π)n → ∞ for n → ∞, so this limit

cannot be taken in Eq. (7). Note, however, that in quantum physics we want
to evaluate probabilities, and they are always normalized to one. This means
that the integrals should be normalized as

〈xixj · · · 〉 ≡
1

N

∫
dn~x xixj · · · exp

(
−1

2
~xTA~x

)
, (8)

where the n-dependent factor N drops out, and the limit n→∞ can be taken,
provided that the matrix A is invertible.4

All of these considerations are based on the fact that the argument of
exp(. . .) is quadratic in the integration variables. How is this helpful for a
general action S[ϕ]? It so happens that any free action of relevance in our
description of nature is indeed quadratic in the fields. “Free” here means that
it describes fields/particles which do not interact with anything. Physically
speaking, this is a completely academic case, because anything that does not
interact does not leave a trace anywhere. From the point of view of a physicist,
it may equally well not exist at all. Nevertheless, sometimes it is good to study
academic cases, because it may help to bridge the gap to the real world. We
will see how this happens in a bit.

The action for a free field ϕ(x) may be written schematically as

Sfree[ϕ] = −1

2

∫
d4xϕ(x)Dxϕ(x) , (9)

where Dx is a differential operator whose specific form depends on the mass
and spin of the particle under consideration. The only important thing at this
point though is that we can consider Dx as an infinite-dimensional invertible

4 Which it is, albeit only after “gauge fixing” in theories like quantum electrodynamics
or the Standard Model.
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matrix. For example, for a spin-0 field of mass m, it is

D−1
x ≡ D−1(x) =

∫
d4p

(2π)4
eip·xD̃−1(p) , D̃−1(p) =

i

p2 −m2
. (10)

Here and in the following, we adopt natural units, i.e. we set ~ = c = 1. The
function D−1 and its Fourier transform D̃−1 are called the propagator of the
field ϕ in position and in momentum space, respectively.5

3 Scattering amplitudes and perturbation theory

The probability amplitude for two particles ϕ starting at space-time points x1

and x2 to evolve to x3 and x4 is given by the so-called four-point function

〈ϕ1ϕ2ϕ3ϕ4〉 ≡
1

N

∫
Dϕϕ1ϕ2ϕ3ϕ4 exp (iS[ϕ])

S=Sfree= D−1
12 D

−1
34 +D−1

13 D
−1
24 +D−1

14 D
−1
23 ,

(11)

where we used the short-hand notation ϕi ≡ ϕ(xi) and D−1
ij ≡ D−1(xi − xj),

see Eq. (10). In the last step, we inserted the free action of Eq. (9) and the
field-theory generalization of Eq. (7). Also in this case, we can visualize the
r.h.s. of Eq. (11) by the diagrams shown in Fig. 4, for i, j, k, l = 1, 2, 3, 4.

Now this is not really a “scattering” amplitude; after all, we have free fields
which cannot scatter. Real scattering requires interaction, and it is only at this
point where we need to make an approximation. Namely, we assume that the
interaction is “small”. But small w.r.t. what? The answer to this question can,
strictly speaking, only be given pragmatically and in retrospect: sufficiently
small for the approximation to work. The approximation is systematic, in the
sense that it formally identifies parametrically suppressed terms. If, in the
final result, these turn out to be small w.r.t. to the leading terms, we have an
indication that the approach works.

We know cases where this approximation, called perturbation theory, works
extremely well. The anomalous magnetic moment of the electron is the prime
example: the perturbative calculation agrees perfectly with the measurement,
which is known with an accuracy of one part in a trillion (see, e.g., Ref. [20]).
In other cases, such as low-energy quantum chromodynamics (QCD), pertur-
bation theory is known to fail. And there are intermediate cases, of course.

Interaction terms are represented by monomials in the action which are
higher than quadratic in the fields. Again schematically:

S[ϕ] = −
∫

d4x

[
1

2
ϕ(x)Dxϕ(x)− λ

3!
ϕ3(x)

]
. (12)

5 The expert reader will notice that we neglect the “iε prescription” in the propagators;
it is irrelevant for our discussion. For details, see Ref. [19], for example.
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Fig. 5 Diagrams of order λ2 for the four-point function.

∫
Dϕϕϕ · · ·ϕ exp (iS[ϕ]) ⇒ D−1D−1 · · · ⇔ + · · ·

Fig. 6 From path integrals to propagators to Feynman diagrams, and back to propagators.

Assuming that λ is “sufficiently small”, we may expand the exponential in the
path integral and obtain the perturbative series∫

Dϕ exp

[
− i

2

∫
d4x

(
1

2
ϕ(x)Dxϕ(x)− λ

3!
ϕ3(x)

)]
=

=

∫
Dϕ exp

(
− i

2

∫
d4xϕ(x)Dxϕ(x)

)[
1 +

λ

3!

∫
d4y ϕ3(y)

+
1

2

(
λ

3!

)2 ∫
d4y ϕ3(y)

∫
d4z ϕ3(z) +O(λ3)

]
.

(13)

Let us evaluate the four-point function with this action. The term of order
λ0 reproduces the result of Eq. (11) for the free theory, as one would expect.
The order-λ term leads to a path integral with an odd number of fields ϕ,
which vanishes due to the asymmetry of the integrand, see the discussion after
Eq. (6). So the next non-zero term is of order λ2. We can represent it again
graphically, see Fig. 5. The vertices labeled y and z arise from the interaction.
They involve three lines, corresponding to the three factors of ϕ(y) and ϕ(z)
in the last line of Eq. (13). While x1, . . . , x4 denote fixed physical space-time
points, the location of the interaction points y and z is integrated over all space-
time. Note that interchanging y and z thus does not lead to new diagrams,
because it is merely a change of integration variables.6

4 Feynman diagrams

Applying perturbation theory was a crucial step in evaluating the path inte-
gral. It turns all occurring integrals into the Gaussian form, thus making their

6 Aside from Fig. 12, one can also draw disconnected diagrams. It turns out that they can
be disregarded though [19]).
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Fig. 7 Leading-order diagram for the three-point function.

evaluation trivial by applying well-known formulas (see Eq. (7)). The individ-
ual terms in the perturbative expansion can be represented diagrammatically.
But this level of simplification is nothing special, because perturbation theory
is a well-known approximation also in other contexts, which expresses physical
quantities of a general interacting theory on the basis of the free theory.

But the considerations above lead us to a much more powerful conclusion,
which is one of the central messages that we are trying to convey with this
article (see also Fig. 6):

Diagrams like those of Fig. 5 not only visualize the individual terms of the
perturbation series; one can actually construct the series from these diagrams,
without ever having to use to path integral anymore.

For example, let us consider the three-point function,

〈ϕ(x1)ϕ(x2)ϕ(x3)〉 . (14)

At O(λ0), there is no way we can connect three arbitrary points by a single
line, which is consistent with the fact that the path integral over the free action
with an odd power of integration variables vanishes by symmetry arguments.
However, at O(λ), we need to incorporate one vertex, and we actually find
the diagram shown in Fig. 7, which we may immediately translate into the
expression

λ

∫
d4y D−1(x1 − y)D−1(x2 − y)D−1(x3 − y) , (15)

using the Feynman rules listed in the first and second column of Table 1.7 No
reference to the path integral is required to obtain this expression. In fact,
not even the Lagrangian is needed: all the relevant information is contained
in the Feynman rules. We see that the underlying particle model, including
the intricacies of its QFT framework, is encoded in the Feynman diagrams
and the associated Feynman rules of Table 1. Carrying it to the extreme, one
might say that there is no more need for a practitioner to learn the concepts of
QFT. Adopting the rules of Feynman diagrams is sufficient to make arbitrarily
precise predictions for processes at particle colliders.

Recall, however, that one of the crucial ingredients to derive Feynman di-
agrams was perturbation theory. Therefore, they strictly apply only to cases

7 The factor 1/3! in Eq. (13) cancels against the possibilities to connect the tree lines of
the vertex with x1, x2 and x3.
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Table 1 Feynman rules for the spin-0 ϕ3-theory in position (x) and momentum (p) space.

topology x-space p-space

D−1(x, y)
i

p2 −m2

λ

∫
d4x λ

∫
d4p3δ

(4)(p1 + p2 + p3)

where the perturbative series converges (or is at least asymptotic). Neverthe-
less, the apparent conceptual distance between Feynman diagrams and the
original quantum theory, as well as their theoretical autonomy may indicate
that there is more behind Feynman diagrams than their derivation from QFT

suggests. Most famously, such ideas gave rise to the so-called S-matrix pro-
gram in the 1960s, by which it was argued that Feynman diagrams actually
signal the existence of a theory that goes beyond QFT (see Ref. [8]).

Let us come back to the expression in Eq. (15) and insert Eq. (10) for the
D−1. One finds that the integration over y can be carried out immediately:∫

d4y exp [ip1 · (x1 − y)] exp [ip2 · (x2 − y)] exp [ip3 · (x3 − y)]

= (2π)4 exp [ip1 · x1] exp [ip2 · x2] exp [ip3 · x3] δ(4)(p1 + p2 + p3) .

(16)

Therefore, the mathematical expressions simplify considerably if we express
them in momentum space. All that amounts to is to associate each line with
a factor D̃−1 instead of D−1, see Eq. (10), and to enforce momentum conser-
vation at each vertex, as implied by the δ-function in Eq. (16). This leads to
the third column of Table 1. Thus, the diagram of Fig. 7 gives

λ · i

p2
1 −m2

· i

p2
2 −m2

· i

(p1 + p2)2 −m2
. (17)

If we insert numerical values for the coupling λ, the momenta p1 and p2, and
the mass m, all we get is a single complex number. We have come down the
road from field operators and infinite-dimensional integrals, and arrived at
a single number. Once the Feynman rules had been established, it was no
longer necessary to refer to the path integral. The result was obtained by
drawing a diagram and associating mathematical factors with each of its lines
and vertices. These are arguably simple operations compared to the general
evaluation of a multi-dimensional integral. But it is not even the full story.
After all, the procedure is algorithmic, which means that by following a strict
recipe, one arrives at the correct result. All intellectual effort has been absorbed
by the algorithm which can be implemented in a computer program. At this
level, the result can be obtained by “pressing a button”. It is hard to imagine
any simpler action than that.
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Fig. 8 Diagrams of order λ2 for the 2→ 2 scattering amplitude. Note the differ-
ences to Fig. 5: while there the diagrams are understood in position space, here they
are in momentum space. Also, the external propagators are removed, indicated by
removing the dots at the ends. The diagrams are in one-to-one correspondence to
the three terms of Eq. (18), which is why one refers to them as s-, t-, and u-channel,
respectively.

Remember that the expression in Eq. (17) arose from particles associated
with well-defined space-time points x1, x2, x3. The quantities to be measured
in experiment are scattering cross sections though, describing the probabil-
ity for the transition of a quasi-free initial state at t = −∞, to another, also
quasi-free final state at t = +∞. The interaction happens during a finite time
interval in between. The theory for turning the initial and final states to such
quasi-free states at t = ±∞ is quite involved and goes by the name of the LSZ-
theorem [21,22]. The upshot is just to remove the respective propagator D̃−1

for each external particle and to replace it by its momentum-space wave func-
tion ψ(p); for a spin-0 particle, this is just a constant ψ(p) ∼ 1, for example.
This provides one with the scattering amplitude A, sometimes also referred
to as the Feynman amplitude. It is the analogue of the probability amplitude
introduced in Eq. (1), but rather than describing the transition between two
space-time points, it relates the initial and final state of the scattering process
to one another. The square of the Feynman amplitude can be interpreted as
the probability density for the transition of a set of initial-state into a set
of final-state particles, all with well-defined momenta. All that is left to turn
this into a cross section are operations on the kinematical parameters: inte-
gration over the final-state phase space, and normalization by the initial flux
(for details, see Ref. [19], for example).

Let us derive the Feynman amplitude for the elastic scattering of two par-
ticles with momenta p1 and p2 into p3 and p4. The relevant leading-order
Feynman diagrams are shown in Fig. 5. In momentum space, and with the
external propagators removed, one would draw them as in Fig. 8 though. The
Feynman amplitude is given by the sum of the three diagrams:

Aϕϕ→ϕϕ ∼
1

s−m2
+

1

t−m2
+

1

u−m2
, (18)

where (t is not to be confused with the time variable here)

s = q2
1 = (p1 + p2)2 , t = q2

2 = (p1 − p3)2 , u = q2
3 = (p1 − p4)2 . (19)

If we consider the process in the center-of-mass frame, then the four-momenta
of the incoming particles take the values

p1 = (E/2, ~p) , p2 = (E/2,−~p) , (20)
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Fig. 9 A subset of the Feynman rules for the Standard Model. f denotes any
charged fermion (lepton or quark), while q could be any quark. g is a gluon, and H
the Higgs boson. Only the topological part (which particles couple to one another)
of the Feynman rules is shown; the full set including the mathematical expressions
can be found in Ref. [23], for example.

where E = 2
√
m2 + ~p2. Therefore s = E2, which means that if we adjust

the center-of-mass energy to E = m, then the first term in the amplitude
of Eq. (18) is divergent! While the actual divergence is cured by including
higher orders of the perturbative series, it still leaves a significant enhancement
around s = m2, or in other words: a peak. We will see its implications in the
next section.

5 Comparison to experiment

The preceding section was concerned with the reduction of the pragmatic com-
plexity by introducing Feynman diagrams when deriving a physical quantity
from the Lagrangian. In this section, we will argue that the correspondence
between the structure of Feynman diagrams and experimental observation also
introduces a remarkable epistemic simplification of QFT. This is because cer-
tain characteristics of experimental data, for example peaks in kinematical
distributions, are directly related to specific features of Feynman diagrams,
such as intermediate (virtual) particles.

So far, we have considered one of the simplest field theories, consisting of
a single, uncharged particle ϕ. Nevertheless, the basic principles remain the
same also in more realistic theories. The main difference is that we must intro-
duce a separate field for each of the known particles: electron, photon, muon,
neutrinos, quarks, gluons, etc. In Feynman diagrams, the lines associated with
these particles need to be distinguished, for example by labeling them by the
particle name, or a suitable short-hand notation (e for electron, µ for muon, γ
for photon, etc.). In addition, one typically introduces different line styles for
fermions, gauge bosons, and scalar particles.

What makes a theory, however, are not just the particles it contains, but
also the interactions among them. Recall that interactions are encoded in the
Lagrangian by products of three or more fields, cf. Eq. (12). For the simple
theory above, we found that we can evaluate scattering amplitudes from the
knowledge of the Feynman rules, without ever referring to the path integral
or the Lagrangian. This is also the case for the Standard Model or any other
particle model. All we need to do is to define the Feynman rules in analogy to
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Fig. 10 (a) Feynman diagrams contributing to the amplitude for the process of
electron-positron annihilation into a quark/anti-quark pair, e+e− → qq̄, at leading
order in perturbation theory. (b) Measured cross section [25].

Table 1: which particles couple to one another, and what is the corresponding
mathematical term. As stated before: Feynman diagrams and the associated
Feynman rules not only serve as a tool to do calculations within a particle
model. They actually encode the particle model, including its QFT character.

A selection of the Standard Model Feynman rules is shown in Fig. 9; the
full set is implemented in the program FeynGame [24].8

Note that not all fields of the Standard Model couple to one another in
the Feynman rules. For example, while there are interaction terms involving
two electrons and one photon in the Standard Model Lagrangian, products
of three photons or three electrons are absent. Which terms are allowed and
which are not is determined by the symmetries of the theory. Aside from
Lorentz invariance (or, more general, Poincaré symmetry), the Standard Model
is based on so-called gauge symmetries that go by the name of SU(3), SU(2),
and U(1). Their precise meaning goes beyond the scope of this article though.

Given these rules, constructing the Feynman diagrams that lead to the
amplitude for a realistic process is as easy as playing with LEGO®. We rec-
ommend the readers to try it out themselves: download FeynGame on your
computer and start playing!

The graphical character of the Feynman diagrams thus implies an enormous
pragmatic simplification when calculating particle reactions. All the terms of
the perturbative expansion can be written down by following a set of graphical
rules. But the simplification also has a significant epistemic character. To see
this, let us consider the process e+e− → qq̄, which was one of the most impor-
tant reactions at LEP, the predecessor of the Large Hadron Collider (LHC)
at CERN. At leading order, using the ffγ and ffZ vertices of Fig. 9 with
f = e and f = q, one arrives at the diagrams shown in Fig. 10 (a). Note
that only s-channel diagrams contribute here (cf. Fig. 8), and the amplitude

8 FeynGame was also used to draw all the diagrams in this article. It can be downloaded
from http://www.robert-harlander.de/software/feyngame.

http://www.robert-harlander.de/software/feyngame


16 5 COMPARISON TO EXPERIMENT
CMS Collaboration / Physics Letters B 716 (2012) 30–61 35

Fig. 2. The local p-value as a function of mH in the γ γ decay mode for the com-
bined 7 and 8 TeV data sets. The additional lines show the values for the two data
sets taken individually. The dashed line shows the expected local p-value for the
combined data sets, should a SM Higgs boson exist with mass mH.

presence of a significant excess at mH = 125 GeV in both the 7 and
8 TeV data. The features of the observed limit are confirmed by the
independent sideband-background-model and cross-check analy-
ses. The local p-value is shown as a function of mH in Fig. 2 for
the 7 and 8 TeV data, and for their combination. The expected (ob-
served) local p-value for a SM Higgs boson of mass 125 GeV corre-
sponds to 2.8(4.1)σ . In the sideband-background-model and cross-
check analyses, the observed local p-values for mH = 125 GeV cor-
respond to 4.6 and 3.7σ , respectively. The best-fit signal strength
for a SM Higgs boson mass hypothesis of 125 GeV is σ /σSM =
1.6 ± 0.4.

In order to illustrate, in the mγ γ distribution, the significance
given by the statistical methods, it is necessary to take into ac-
count the large differences in the expected signal-to-background
ratios of the event categories shown in Table 2. The events are
weighted according to the category in which they fall. A weight
proportional to S/(S + B) is used, as suggested in Ref. [121], where
S and B are the number of signal and background events, respec-
tively, calculated from the simultaneous signal-plus-background fit
to all categories (with varying overall signal strength) and inte-
grating over a 2σeff wide window, in each category, centred on
125 GeV. Fig. 3 shows the data, the signal model, and the back-
ground model, all weighted. The weights are normalised such that
the integral of the weighted signal model matches the number of
signal events given by the best fit. The unweighted distribution,
using the same binning but in a more restricted mass range, is
shown as an inset. The excess at 125 GeV is evident in both the
weighted and unweighted distributions.

5.2. H → ZZ

In the H → ZZ → 4# decay mode a search is made for a narrow
four-lepton mass peak in the presence of a small continuum back-
ground. Early detailed studies outlined the promise of this mode
over a wide range of Higgs boson masses [122]. Only the search
in the range 110–160 GeV is reported here. Since there are dif-
ferences in the reducible background rates and mass resolutions
between the subchannels 4e, 4µ, and 2e2µ, they are analysed sep-
arately. The background sources include an irreducible four-lepton
contribution from direct ZZ production via qq and gluon–gluon
processes. Reducible contributions arise from Z+bb and tt̄ produc-
tion where the final states contain two isolated leptons and two
b-quark jets producing secondary leptons. Additional background

Fig. 3. The diphoton invariant mass distribution with each event weighted by the
S/(S + B) value of its category. The lines represent the fitted background and signal,
and the coloured bands represent the ±1 and ±2 standard deviation uncertainties
in the background estimate. The inset shows the central part of the unweighted
invariant mass distribution. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this Letter.)

arises from Z + jets and WZ + jets events where jets are misidenti-
fied as leptons. Compared to the analysis reported in Ref. [25], the
present analysis employs improved muon reconstruction, improved
lepton identification and isolation, and a kinematic discriminant
exploiting the decay kinematics expected for the signal events. An
algorithm to recover final-state radiation (FSR) photons has also
been deployed.

Electrons are required to have pT > 7 GeV and |η| < 2.5.
The corresponding requirements for muons are pT > 5 GeV and
|η| < 2.4. Electrons are selected using a multivariate identifier
trained using a sample of W + jets events, and the working point
is optimized using Z + jets events. Both muons and electrons are
required to be isolated. The combined reconstruction and selection
efficiency is measured using electrons and muons in Z boson de-
cays. Muon reconstruction and identification efficiency for muons
with pT < 15 GeV is measured using J/ψ decays.

The electron or muon pairs from Z boson decays are required to
originate from the same primary vertex. This is ensured by requir-
ing that the significance of the impact parameter with respect to
the event vertex satisfy |S IP| < 4 for each lepton, where S IP = I/σI ,
I is the three-dimensional lepton impact parameter at the point of
closest approach to the vertex, and σI its uncertainty.

Final-state radiation from the leptons is recovered and included
in the computation of the lepton-pair invariant mass. The FSR re-
covery is tuned using simulated samples of ZZ → 4# and tested
on data samples of Z boson decays to electrons and muons. Pho-
tons reconstructed within |η| < 2.4 are considered as possibly due
to FSR. The photons must satisfy the following requirements. They
must be within &R < 0.07 of a muon and have pγ

T > 2 GeV (most
photon showers within this distance of an electron having already
been automatically clustered with the electron shower); or if their
distance from a lepton is in the range 0.07 < &R < 0.5, they must
satisfy pγ

T > 4 GeV, and be isolated within &R = 0.3. Such photon
candidates are combined with the lepton if the resulting three-
body invariant mass is less than 100 GeV and closer to the Z boson
mass than the mass before the addition of the photon.

The event selection requires two pairs of same-flavour, oppo-
sitely charged leptons. The pair with invariant mass closest to the
Z boson mass is required to have a mass in the range 40–120 GeV

Fig. 11 The first observation of the Higgs boson by the CMS collaboration [26].

is proportional to

Ae+e−→qq̄ ∼
i

s
+ C

i

s−M2
Z

, (21)

where C is a constant. The cross section should thus exhibit peaks around√
s = 0 (the photon mass) and

√
s ∼ MZ (the Z boson mass). Indeed this

is what is observed experimentally, see Fig. 10 (b). Recall that the Feynman
diagrams arose as graphical representations of the perturbative expansion,
and that the diagrams shown in Fig. 10 (a) only represent the leading term of
this series. Nevertheless, this peculiar behavior of the cross section somewhat
suggests that the Z boson (and the photon, or their respective quantum fields)
does play a special role in this process. Even though it leaves no physical track
in the detector, the peak signals the existence of the Z boson. In fact, the
“discovery” of the Higgs boson was actually the discovery of exactly such a
peak in the cross section—albeit a much fainter one, see Fig. 11.

As if the enormous facilitation when calculating cross sections was not
enough for praising Feynman diagrams, we now see that they even suggest
an extremely intuitive picture(!) for what “actually” happens in a scatter-
ing reaction—so intuitive indeed that one easily runs the danger of over-
interpretation. The question to what extent Feynman diagrams represent a
physical process is clearly very interesting from a philosophical as well as a
historical perspective. Feynman himself, for example, very much supported
their positive ontological reading, while Dyson seemed to be more skeptical
about this. Today, philosophers are still divided about this question (for two
examples from opposite camps, see Refs. [27] and [28]).

Physicists, on the other hand, are typically quite pragmatic in this respect.
A priori, Feynman diagrams are graphical representations of mathematical ex-
pressions. Their form is obviously very suggestive for reading them in terms of
“(virtual) particle exchange”, possibly even in a space-time picture (as Feyn-
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man does in his original paper [16]). With some experience, such language
is very helpful in certain situations, as illustrated by the example of the Z
boson “exchange” and the related peak in the cross section. Similarly, experts
can associate certain divergences in scattering amplitudes to some line of a
Feynman diagram “splitting collinearly into two”, or “getting close to its mass
shell” (i.e., the 4-momentum p approaches p2 = m2, with m the mass of the
associated particle).

The possibility of reading Feynman diagrams in this way means a signifi-
cant epistemic simplification, since the ostensiveness helps to understand the
interrelations of QFT, as also argued in Ref. [13]. For this to work, it is not
necessary to assign any reality status to the lines of the diagram. We strictly
associate the Z-line in Fig. 10 (a) only with the occurrence of the peak at√
s ≈ MZ , not with the presence of a physical particle at any point in time.

After all, quantum physics is quite clear about what one can know about a
system, and what not. And the question of whether a particle is exchanged
or not in a scattering reaction is of the same quality as the question about
which slit the particle traversed in the double-slit experiment of Fig. 2: it sim-
ply has no answer in quantum mechanics—not even a probabilistic one.9 But
in the same way as it is helpful to think in terms of a particle traversing the
slits of Fig. 2 (a) along the classical paths in order to compute the probability
distribution, it is helpful to adopt this quasi-classical way of thinking about
Feynman diagrams.

6 Higher orders in perturbation theory

Now that we have learned about all the virtues of Feynman diagrams, it is
time to bring ourselves back down to earth. Remember once again that the
Feynman diagrams shown in Fig. 8 and Fig. 10 represent but the very first
term in the perturbative series. Basing our theoretical prediction entirely on
this leading-order term may be quite inaccurate. In fact, if we only know
this term, we do not even have a good idea about the theoretical uncertainty
induced by dropping all the higher order terms in the perturbative series.

Let us thus try to improve our prediction and supplement the O(λ2) dia-
grams of Fig. 8 by those of order λ4. Since each vertex contributes one power
of λ, these diagrams must have four vertices, while the number of external legs
remains the same as in Fig. 8, i.e. also four. The only way to achieve this is to
introduce closed loops, and we arrive at the diagrams show in Fig. 12. Obvi-
ously, there are quite a bit more of them than at O(λ2). And this is already
the first complication when going to higher orders: the number of diagrams
roughly increases factorially with the order of perturbation theory. In current
calculations it is no exception that the number of diagrams to be evaluated is
of the order of a million.

9 That is to say that an answer to this question requires a certain level of interpretation
of quantum mechanics which is a subject that we are not going to address here (see, e.g.,
Ref. [1]).
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2× 4×

Fig. 12 One-loop diagrams contributing to 2→ 2 scattering at O(λ4). The factors
in front of some diagrams indicate the number of similar diagrams which are not
shown. For each of the diagrams in the upper row, there are two more analogous
ones derived from the leading-order diagrams, see Fig. 8. So in total, there are
3(1 + 2 + 4) + 3 = 24 one-loop diagrams. The momentum k is not determined by
the external momenta p1, . . . , p4. It is the so-called loop-momentum and needs to
be integrated over. Only exemplary momentum assignments are shown.

But, as we outlined above, the generation of Feynman diagrams is a strictly
algorithmic task to all orders in perturbation theory. It can thus be handed
over to a computer and considered as solved for all practical purposes. Note
that at this point we have switched from “drawing” the diagrams to their
“generation”. The actual images of the diagrams are skipped over in modern
perturbative calculations. We will come back to this aspect in Section 7.

The number of diagrams is only one aspect though. A second problem of
higher-order calculations becomes clear when assigning momenta to the lines
of a loop diagram: momentum conservation at the vertices is not sufficient to
uniquely express the momenta of loop lines in terms of the external momenta.
In Fig. 12, the “loop momentum” is denoted by k; the reader may verify that
momentum conservation at the vertices holds for any value of k.

This implies that each closed loop introduces a four-dimensional momen-
tum integration

∫
d4k. Since integration is not an algorithmic process in gen-

eral, higher-order calculations typically require additional intellectual efforts.
Nevertheless, the integrals which occur in perturbative calculations of QFT

are of a very particular form, so one may try to develop further algorithms
for their evaluation. Indeed, in the one-loop case, the problem is solved in full
generality. Starting from two loops, however, only specific kinematical config-
urations can be calculated with current technology. For very special cases, one
has reached the five-loop level, but that is currently about as good as it gets.

Still, the calculation of loop integrals is a field of continuous progress.
Most efforts go into the construction of algorithms which map integrals of a
certain class to a relatively small set of so-called master integrals. The most
important algorithms in this respect are tensor reduction [29] and integration-
by-parts [30], with a number of significant refinements and additions (see, e.g.,
Refs. [31, 32]).
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But at some point, one needs to face the facts and evaluate the master in-
tegrals. One of the main difficulties here is that the loop integrals are divergent
in general, i.e., strictly speaking: undefined. The way how one can still make
physical sense of this is beyond the scope of this article; it was recognized by a
Nobel prize to Feynman, Schwinger, and Tomonaga in 1965. But even leaving
the physical interpretation aside, one has the problem of making mathemati-
cal sense of these divergent integrals. One of the early breakthroughs in this
respect was the development of dimensional regularization [33], where one con-
tinues the four-dimensional integration volume to d = 4− 2ε dimensions. This
isolates the divergences as poles at ε→ 0. Obviously, dealing with non-integer
(actually complex-valued!) dimensions leads to other technical challenges, and
also here physicists have made continuous progress in order to keep up with
the ever increasing experimental precision (see Ref. [34], for example).

Finally, it turns out that the loop integrals often cannot be expressed in
terms of known mathematical functions. Physicists have thus come up with
whole new classes of functions, such as Harmonic Polylogarithms [35]. In this
way, physics remains one of the driving fields for applied mathematics.

7 Feynman diagrams in present-day calculations

The various uses of Feynman diagrams in everyday and professional commu-
nication by physicists has been discussed in Refs. [8, 10], for example. In this
respect, it is obviously crucial that they allow to convey a lot of information
by simply drawing a few lines on a piece of paper or a blackboard. Historically,
the visual aspect certainly also played an important role in the actual calcula-
tion of scattering and decay processes. After some practice, it becomes rather
intuitive to generate all terms that contribute to, say, the leading or maybe
next-to-leading order in perturbation theory by simply drawing the relevant
diagrams. This is the pragmatic aspect of simplification due to the graphical
nature of the diagrams discussed in Section 5.

In present-day calculations, however, we have long arrived at a point where
the visual aspect of the diagrams in perturbative calculations has moved to the
background. In the ideal case, no human ever needs to look at the diagrams
any more, as we will describe in the following. It will be useful in this section
to follow the mathematical custom and distinguish a graph, which contains
the abstract topological information (i.e. which line, or edge, is connected to
which of the vertices), from a diagram, which is the visual representation of
a graph. In other words, if one literally draws all the lines and vertices of a
graph, one obtains a diagram.

Let us now consider a typical modern setup for the calculation of a process
at higher orders in perturbation theory. The particle model (recall footnote 1)
is encoded in terms of the Feynman rules, as given by the left and the right col-
umn in Table 1. We will refer to the left column of this table as the topological
part of a Feynman rule (which particles are connected by a vertex), and to the
right column as the mathematical part (what is the mathematical expression
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Fig. 13 The two tree-level diagrams for the process e+e− → e+e− in QED. Their
qgraf encoding is shown in Listing 2.

corresponding to the specific vertex or propagator). Adopting the notation of
qgraf [36, 37] which is one of the most efficient Feynman graph generators,
the topological part of the Feynman rules for quantum electrodynamics (QED)
can be defined as

1 [fq ,fQ ,-]

2 [a,a,+]

3 [fQ ,fq,a]

Listing 1 QED in qgraf notation.

where the first two lines encode the relevant properties of the electron and
the photon, respectively. The first entry inside the square bracket denotes the
particle (fq=̂e−, a=̂γ), the second one its anti-particle (fQ=̂e+; the photon
and its anti-particle are identical), and the third entry indicates whether the
particle obeys fermionic or bosonic statistics (- or +). The third line in List-
ing 1 defines the interaction term of the left-most vertex in Fig. 9 (taking only
into account the photon γ). This information is sufficient to generate all Feyn-
man graphs for any given initial and final state up to arbitrary10 loop order,
including the relevant signs and symmetry factors.

At tree-level, the output of qgraf for the process e+e− → e+e− reads:

1 *--#[ d1:

2 *

3 1

4 *vx(fQ(-3),fq(-1),a(1))

5 *vx(fQ(-2),fq(-4),a(1))

6 *

7 *--#] d1:

8 *--#[ d2:

9 *

10 -1

11 *vx(fQ(-2),fq(-1),a(1))

12 *vx(fQ(-3),fq(-4),a(1))

13 *

14 *--#] d2:

Listing 2 The graphs of Fig. 13 in qgraf notation.

10 Limitations are set only due to the available hardware resources.
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Here, vx(...) denotes a vertex, and the integers label lines of the Feynman
graph. Negative integers label incoming (odd) and outgoing (even) particles.
The corresponding Feynman diagrams, i.e. the visual representation of these
graphs, is shown in Fig. 13. Now one can simply ask qgraf to generate higher-
order graphs for this process. At one-, two-, three-, and four-loop level, this
leads to 18, 186, 2264, and 31860 graphs, respectively. It takes qgraf less
than two seconds to produce this output. Below is an example for a three-loop
graph:

1 *--#[ d1437:

2 *

3 1

4 *vx(fQ(-3),fq(2),a(1))

5 *vx(fQ(3),fq(-4),a(1))

6 *vx(fQ(-2),fq(5),a(4))

7 *vx(fQ(7),fq(-1),a(6))

8 *vx(fQ(2),fq(8),a(4))

9 *vx(fQ(9),fq(3),a(6))

10 *vx(fQ(5),fq(9),a(10))

11 *vx(fQ(8),fq(7),a(10))

12 *

13 *--#] d1437:

Listing 3 A three-loop graph for the process e+e− → e+e− in QED in qgraf notation.

Obviously, it is quite an effort for a human to visualize this expression in terms
of a diagram (the reader is encouraged to try this; FeynGame can be very helpful
here). Of course, it is possible to automate also the visualization,11 but who
would want to look at (hundreds of) thousands of diagrams, and what would
that be good for anyway? Despite the suggestive character of these questions,
the answer is not plainly “nobody” and “nothing”, as we will see further below.

The computer simply uses the topological information above to route the
external and the loop momenta through the graph, taking into account momen-
tum conservation at each vertex. For example, while the momentum of line 1
in the left diagram of Fig. 13 is p1 = p−1 + p−3, it is p1 = p−2 − p−1 in the
right diagram. With this information, it generates a mathematical expression
by using the mathematical part of the Feynman rule for each of the lines and
vertices (i.e., inserting expressions like those in the right column of Table 1).
At this point, the graphs have done their duty, and the problem has turned
into a purely mathematical one. And it is from this step onward where most
of the current efforts in perturbative calculations go, see Section 6. Ideally, the
computer will now apply further algorithms to perform the required algebraic
or numerical operations until it arrives at the bare result for the scattering or
decay amplitude under consideration. The next step is renormalization, which
in principle can be automated as well.

It is important to note that what we have just described is the ideal case for
this kind of perturbation calculations. In the development phase of a particular

11 See Ref. [38], for example. While such kind of visualization is straightforward in principle,
it turns out to be incomparably more difficult to turn the diagram into a form which is most
pleasing to the human eye.
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Fig. 14 Schematic representation of the ups and downs of complexity on the way
from classical physics to quantitative predictions in particle physics.

software tool or calculation, the workflow will usually break down or get stuck
at some point. It is in this debugging or trimming phase where the visual aspect
of Feynman diagrams still plays a role in present-day calculations. Every so
often, the automatic setup will work up to, say, graph number 23612, where
suddenly the automated calculation either terminates or stalls (e.g., no further
output is logged while the CPU is fully loaded). One of the first items on the
action list in this case is to look at that diagram, i.e. to reconstruct the visual
representation from the topological code of the graph as the one in Listing 3.
Quite often, this will immediately reveal the source of the problems: Does
it contain a particle or vertex whose Feynman rule we missed to implement?
Does the structure of the diagram reveal a potential singularity which prevents
the convergence of the numerical integration? It may also happen that the
calculation runs through, but the result is obviously wrong: it is not finite
after renormalization, or it is gauge dependent, etc. Then it may help to skim
through the whole catalog of diagrams by eye, to see if one notices something
like a whole missing class of diagrams (no four-gluon vertices, no ghosts, etc.).
Or one searches for two diagrams which are topologically related by, say, a
mirror symmetry, and for which one knows that they must yield the same
result. If they do not, this will also help to hunt down the bug.

Let us add that this pragmatic aspect is just one example for uses of (the
visual dimension of) Feynman diagrams in today’s calculations. Another one is
related to the epistemic aspect discussed in Section 5, namely the identification
of the analytic structure of a particular perturbative quantity: where are the
kinematic singularities, where are branch cuts, etc.? An exhaustive collection
and characterization of such applications is beyond the scope of this paper and
shall be left for future investigation.
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8 Conclusions

I have tried to sketch the central steps from the path integral to Feynman di-
agrams. Of course, this has been a rather ambitious endeavor, considering the
fact that this required to summarize several years of material of academic stud-
ies of physics in a few pages. On the other hand, the purpose of this article has
not been to provide a comprehensive pedagogical treatment. Rather, I wanted
to show the dialectics behind Feynman diagrams. How, on the one hand, they
manage to boil down the incredibly complex structure of QFT by destilling
and transforming the relevant information into an algorithmic, stand-alone set
of rules. One way to appreciate this even more is to consider the enormous
technical efforts that are required in some alternative approaches to solving
the path integral, above all lattice gauge theory. And yet, on the other hand,
the quest for ever higher precision has led to an increase in complexity in prac-
tical applications, necessitating the need to develop further algorithms, mostly
for the evaluation of the occurring integrals. Fig. 14 is meant to qualitatively
illustrate this up-and-down in complexity.

Nevertheless, in my personal opinion, we may be approaching a point where
Feynman diagrams (or graphs) have done their bit, in particular if evidence
for physics beyond the Standard Model continues to elude the LHC. Sooner
or later, we will come up with a new way to compare theory and experiment
without the need for calculating millions of Feynman diagrams. This may
then lead to the next valley in Fig. 14. Every now and then, a new idea in this
direction pops up, but so far none of them has managed to significantly reduce
the use of Feynman diagrams. Among the more use-oriented approaches are
recursive techniques which cover whole groups of Feynman diagrams. Early
works in this direction were simply aimed for a more efficient calculation of
such amplitudes [39,40], while later research led to a deeper understanding of
the underlying relations among amplitudes (see, e.g., Refs. [41–43]). A more
radical attempt is the amplituhedron [44], for example, but it still seems rather
detached from an application to calculations within the Standard Model. So
far, most of the results within this method have been restricted to academic
theories with a large number of symmetries (N = 4 super-Yang-Mills). Another
observation is that machine learning, which has become abound in almost all
fields of academic, commercial, and everyday life, has also found its way into
the field of perturbative calculations. One could imagine that a break-through
will be achieved from this direction as well.

Either way, I am sure that the era of Feynman diagrams will be remembered
as a successful one for the development of fundamental physics.
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