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Abstract

In the last hundred years, Classical Mechanics has been dwarfed by the development of Relativity and
Quantum Mechanics. However, significant mathematical developments have been made to Classical Mechan-
ics in the same time frame and this essay aims to explore some of the recent advances. The purpose of this
essay is to understand Hamiltonian dynamics, Noether’s theorem and symmetry in a geometric framework
using Poisson geometry. In particular, we want to analyse the case when the natural configuration space of
a system is a Lie group G and transformations on the space correspond to the Lie group acting on itself.
In this case, the Lie-Poisson reduction theorem will say that the reduced phase space T ∗G/G is a Poisson
manifold diffeomorphic to g∗. We will begin Chapter 1 by outlining the core concepts required to understand
symmetry, in particular, we will discuss the notion of a Lie group, its Lie algebra and how each of these
objects acts on certain manifolds. In Chapter 2 we will define Poisson and Symplectic manifolds and use
them to derive equations of motion and dynamics. Chapter 3 will discuss the geometric understanding of
Noether’s theorem by looking at momentum maps. Finally, Chapter 4 will discuss the Lie-Poisson reduction
theorem. Throughout the essay, we will aim to illustrate the concepts using the physically relevant cases
which arise when the configuration space G is a three-dimensional Lie group over the reals.
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Chapter 1

Introduction

1.1 Motivation for Poisson Geometry

In courses on Classical Mechanics such as V.I. Arnold’s excellent book [6], we learn that the evolution of a
mechanical system with n degrees of freedom can be described in phase space coordinates

(q1(t), ..., qn(t), p1(t), ..., pn(t)), (1.1)

where qi(t), pi(t) are called the configuration and momentum coordinates respectively, via Hamilton’s equa-
tions

q̇i(t) =
∂H

∂pi
, ṗi(t) =

∂H

∂qi
, (1.2)

for a Hamiltonian H of the mechanical system. From here, one can generalise the notion of phase space and
Hamilton’s equations in terms of symplectic manifolds; however in this essay we will generalise Hamiltonian
systems in terms of the more general Poisson manifolds.

To motivate this we recall that we can introduce the idea of a Poisson bracket for the phase space
geometry, namely

{f, g} :=

n∑
i=1

(
∂f

∂pi

∂g

∂qi
− ∂f

∂qi
∂g

∂pi
); (1.3)

using this we can reformulate Hamilton’s equations as

ẋi(t) = {H,xi(t)}, (1.4)

for xi one of the phase space coordinates and H a Hamiltonian. Moreover we can introduce the idea of a
Hamiltonian vector field by defining

XH :=

n∑
i=1

(
∂H

∂pi

∂

∂qi
− ∂H

∂qi
∂

∂pi
); (1.5)

and so Equation (1.4) can be written in the form

ẋi(t) = XH [xi(t)]. (1.6)

We call the above development a canonical Hamiltonian system.

Our usual first step in creating an abstract framework for Hamiltonian dynamics begins by globally
describing the dynamics in terms of a closed, nondegenerate two-form; which is embodied in the theory of
Symplectic geometry, where locally the dynamics will look like a canonical Hamiltonian system. However
often we are concerned with non-canonical Hamiltonian system, which can’t be described by Symplectic
geometry; and thus Poisson manifolds were introduced to further generalize Hamiltonian dynamics to these
systems.
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1.2 Motivation for Bianchi Lie Groups

In Chapter 2 we will classify the three-dimensional real Lie algebras and in Chapter 3 we define a Poisson
structure on the dual to these Lie algebras g∗. The problem of classifying three-dimensional real Lie algebras
is equivalent to classifying homogeneous and anisotropic 1+3 dimensional cosmologies on spatial slices since
the isotropy group is generated by these Lie algebras.

One can show these problems are equivalent by considering a time-slice of spacetime and letting ḡab be
the three-space metric on the time slice. Each time-slice being homogeneous means there exist three Killing
vector fields ξi, i = 1, 2, 3, which are linearly independent at each point. The Killing vector property means
that the three-metric is transported under the Lie derivative as

Lξi(ḡab) = ξci ∂cḡab + ḡcb∂aξ
c
i + ḡac∂bξ

c
i = 0; (1.7)

in other words, the three-metric is unchanged under transformations along integral curves of the Killing
vector fields.

The Killing fields describe how the metric changes from one point in space to another and so we want to
consider the relationship between these vector fields. We do this by considering an infinitesimal closed loop
by pushing along integral curves of two different vector fields and then returning in the opposite way; this is
embodied in the commutator bracket of our Killing vector fields

[ξi, ξj ] = fkijξk, (1.8)

giving a Lie algebra structure to the Killing fields. Further details can be found in [7].

We will define the unique connected and simply connected Lie group associated with a three-dimensional
Lie algebra as being a Bianchi group, from here we will analyse the dynamics on the dual to its Lie algebra
g∗, a space which is diffeomorphic to the reduced phase space T ∗G/G as Poisson manifolds.

For the Bianchi Lie groups, the configuration space g∗ will be three dimensional therefore Symplectic ge-
ometry couldn’t be used to globally describe the dynamics, since Symplectic manifolds are even-dimensional.
Hence we use the theory of Poisson geometry to define Hamiltonian dynamics on this system, illustrating
the power and generality of Poisson manifolds.
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Chapter 2

Lie Groups and Lie Algebras

In Classical Mechanics, symmetry can be understood as a transformation that leaves the equations of motion
for the system invariant. We know from the classical version of Noether’s theorem that symmetries imply the
existence of conserved quantities; which are of paramount importance to physicists. Lie groups and their Lie
algebras will prove to be a useful tool in understanding symmetries arising in a classical mechanical system.
We will define how Lie groups act on a manifold and how Lie algebra actions will act as an infinitesimal
analogue. We will conclude this chapter by classifying three-dimensional spaces which admit a continuous
group of motions. For we will illustrate many of the concepts introduced throughout this essay with these
examples in mind.

2.1 Lie Groups

We begin by stating a few definitions about Lie groups and Lie algebras.

Definition 2.1. A Lie group G is a group that is also a smooth manifold, such that the map G×G→ G,
(x, y) 7→ x ∗ y−1 is smooth. In other words, the multiplication map and inversion are smooth maps on G.

Example 2.2. An example of a Lie group which plays an important role in describing one-dimensional
quantum mechanical systems is the Heisenberg Group H, the set of matrices1 a c

0 1 b
0 0 1


where a, b, c ∈ R, together with matrix multiplication as the group operation. We will consider the physical
implications of H when talking about the Heisenberg Lie algebra.

Lie groups in typical cases have an action on a manifold M , representing states of the physical system.
This provides us with a framework to understand the symmetries of a physical system. The infinitesimal
analogue of these actions is understood via Lie algebras.

Definition 2.3. A Lie algebra L is a vector space over a field K, equipped with a Lie bracket. That is,
bilinear map L× L→ L, (x, y) 7→ [x, y], ∀x, y ∈ L, such that:

1. [x, y] = −[y, x];

2. [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 (Jacobi identity).

Throughout this essay we will always take K = R.

Example 2.4. Consider the real vector space with basis:

X =

0 1 0
0 0 0
0 0 0

 , Y =

0 0 0
0 0 1
0 0 0

 , Z =

0 0 1
0 0 0
0 0 0


3



which is a Lie algebra when equipped with the commutator [A,B] = AB − BA, as the Lie bracket. The
commutator relations can readily be seen to be [X,Y ] = Z, [X,Z] = 0 and [Y,Z] = 0. We will see
later that this Lie algebra is Bianchi II. This Lie algebra has an important physical interpretation when
considering one-dimensional quantum mechanical systems. Let H be the Hilbert space corresponding to
such a system, p, q be the momentum and position respectively, and let f be a wavefunction in the Hilbert
space. Moreover consider the position operator Q(f(q)) = qf(q) and the momentum operator P (f) = i~∂f∂q ,
then the commutator of these operators is

[P,Q](f) = i~
∂

∂q
(Qf)−Q(i~

∂f

∂q
) = i~f,

[P, i~] = [Q, i~] = 0. (2.1)

Thus the Heisenberg Lie algebra is isomorphic to the Lie algebra consisting of the span of {P,Q, i~} with
the commutator Lie bracket.

As we alluded to before, the Lie algebra is the infinitesimal analogue of Lie group actions; in fact, to
each Lie group we can define a corresponding Lie algebra. To motivate this, we consider a Lie group G
and a vector field ξ on G. We say that ξ is a left-invariant vector field if its push-forward under the left
multiplication map, defined by g 7→ gh, Lg of G, leaves it invariant, i.e.,

(Lg)∗ξ = ξ, ∀g ∈ G. (2.2)

It can be shown that any left-invariant vector field can be written as ξg := (Lg)∗eX for some vector X ∈ TeG.
So we use ξX to denote this left-invariant vector field. This allows us to define the Lie algebra of a Lie group.

Definition 2.5. The Lie algebra of a Lie group G, denoted g, is the tangent space at the identity TeG
equipped with the Lie bracket

[X,Y ] := [ξX , ξY ]e, (2.3)

where the Lie bracket on the right-hand side (on left-invariant vector fields) is the usual Lie bracket on vector
fields restricted to evaluation at the identity, e.

We note that the mapping
f : XL(G)→ g = TeG, X 7→ X(e), (2.4)

is a linear isomorphism of vector spaces, where XL(G) denotes the left-invariant vector fields on G. For com-
pleteness, we mention without further comment that there is an equivalent formulation of the Lie algebra of
a Lie group using right-invariant vector fields.

If e1, ..., en is a basis for a Lie algebra g then we can write the commutator relations of the basis in the
form

[ei, ej ] =

n∑
k=1

fkijek, fkij ∈ K; (2.5)

and we call fkij the structure constants of g.
We have seen that given a Lie group we can define its Lie algebra. Conversely, there is also an operation to
take us from the Lie algebra to the Lie group, called the exponential map.

Definition 2.6. Let φξ be the integral curve of the left invariant vector field ξX associated with X ∈ g = TeG
such that φξ(0) = e ∈ G. The exponential map is defined as

exp : g→ G, X 7→ φξ(1). (2.6)

For matrix Lie groups (closed subgroups of GLn(K)) the exponential map is the usual matrix exponential.

Let us return to the Heisenberg Lie algebra and see that it exponentiates to give the Heisenberg Lie
group.
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Example 2.7. We show that the Lie algebra defined in Example 2.4 is the Lie algebra of the Heisenberg
group, H. Indeed if we assume that exp(tX) ∈ H for all t ∈ R, X ∈ g then:

exp(tX) =

1 x1(t) x3(t)
0 1 x2(t)
0 0 1


where each xi : R→ R are smooth functions. Then

X =
d

dt
exp(tX)

∣∣
t=0

=

0 d
dtx1(t) d

dtx3(t)
0 0 d

dtx2(t)
0 0 0


t=0

(2.7)

where d
dtxi(t)

∣∣
t=0

, i = 1, 2, 3 is just a real number. Indeed, if x1(t) = eat, x2(t) = ebt, x3(t) = ect then
Equation (2.7) reduces to aX + bY + cZ, with X,Y, Z as in Example 2.4. Thus the vectors X are the span
of the basis of the Lie algebra we defined before.
There was an element of cheating involved when defining the Heisenberg Lie group and its Lie algebra and
then showing their correspondence. While we can define the group independently as we have done above, in
physics we tend to define it as the exponential of the Heisenberg Lie algebra.

It is natural to ask how much information the Lie algebra contains about the Lie group via the exponential
map. When we care about connected and simply connected Lie groups, the answer is quite a lot. This can
be summarised in the following theorem due to Lie.

Theorem 2.8. For every finite-dimensional Lie algebra g over R, there exists a unique connected and simply
connected real Lie group G such that g = TeG.

This theorem, known as Lie’s third theorem, has important consequences for this essay: it will allow us
to study the action of the Lie group via the Lie algebra, which is a much simpler structure to analyse.
The proof of Theorem 2.8 is lengthy and requires a lot of Lie algebra theory and powerful theorems. A
(very) rough sketch of the proof is as follows: by Ado’s theorem, the Lie algebra g is isomorphic to a matrix
Lie algebra. From here the exponential of the Lie algebra exp(g) can be shown to be a connected Lie group
which can be lifted to a unique maximal simply connected covering group. A proof of Ado’s theorem can be
found in the original paper [9] and a proof of Theorem 2.8 using Ado’s theorem can be found in [1, p. 153].

2.2 Representations and Actions

We have now defined the objects used to understand symmetries of a physical system, especially the idea of
a Lie group. To understand how symmetries arise, we want to consider how a Lie group will transform the
state of a physical system and subsequently inspect the invariants of this operation. A Lie group will act on
a manifold M via its action.

Definition 2.9. Let G be a Lie group and M be a manifold. A (left) action of G on M is a smooth map
Φ : G×M →M such that the following two conditions hold:

1. Φ(e, x) = x, ∀x ∈M .

2. Φ(g1,Φ(g2, x)) = Φ(g1g2, x), ∀g1, g2 ∈ G and x ∈M .

We note that a right action can be defined similarly. Throughout this essay, the action we consider
will be a left action and we will often use the notation gx := Φ(g, x). Moreover, if g ∈ G then the map
Φg : M → M , x 7→ Φ(g, x), unless we specify otherwise, is a smooth map. If M is a vector space and Φg
is a linear transformation for each g ∈ G, then we call Φ a representation of G on M . Next, we consider
representations of the Lie algebra.

Definition 2.10. A Lie algebra representation of a Lie algebra g over a vector space V is a Lie algebra
homomorphism φ : g→ End(V ), where End(V ) is the set of endomorphisms on V .
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Similarly to before, we will often omit the explicit form of the representation and write the corresponding
action as ξv := φ(ξ)v

We know that there is a Lie algebra-Lie group correspondence in some sense. This correspondence carries
over to representations. If we begin by considering an action of a Lie group G on a vector space V , then we
can construct an action (representation) on the Lie algebra via

ξ̄v =
d

dt
exp(tξ)v

∣∣∣∣
t=0

, (2.8)

where ξ ∈ g, v ∈ V . This leads us to define the following.

Definition 2.11. Let G be a Lie group and (g, x) 7→ gx a smooth action on a manifold M . Then the
infinitesimal action or infinitesimal generator of the action corresponding to an element ξ ∈ g is the vector
field defined by

(ξ̄)x :=
d

dt
exp(tξ)x

∣∣∣∣
t=0

(2.9)

In general, not all representations of g can be obtained this way. However, in the case of a simply
connected, connected real Lie group, it can be shown that all representations of the Lie algebra will be of
this form. In this essay, we will restrict ourselves to this case.

A specific action which we will consider deeply throughout this essay is the action of a Lie group on the
dual space of its Lie algebra via the coadjoint action. To motivate this we define the adjoint action on g,
written Ad, of a Lie group G on its Lie algebra, as the derivative at the identity of the conjugation map.
More explicitly, with ξ ∈ g

Ad : G× g→ g, Adg(ξ) = Te(Rg−1 ◦ Lg)ξ. (2.10)

The corresponding Lie algebra representation is

adξ(X) =
d

dt
Adexp(tξ)(X)

∣∣∣∣
t=0

= [ξ,X]. (2.11)

Because g is a real vector space, the adjoint action Ad : G → GL(g), g 7→ Adg is a representation and
therefore we can define a dual representation.

Definition 2.12. The coadjoint representation of a Lie group G on the dual of its Lie algebra g∗ is defined
as follows. Let Ad∗g : g∗ → g∗ be the map such that 〈Ad∗gf,X〉 = 〈f,AdgX〉 for g ∈ G, X ∈ g, f ∈ g∗, then
the coadjoint action is the map

G× g∗ → g∗, (g, f) 7→ Ad∗g−1f, (2.12)

Ad∗g−1 = (Te(Rg ◦ Lg−1))∗,

where the right hand side asterisks denotes the usual dual operator on a linear function.
The corresponding Lie algebra representation is

ad∗ξ(f) =
d

dt
Ad∗exp(tξ)(f)

∣∣∣∣
t=0

= −f ◦ adξ. (2.13)

For a Lie group action Φ on a manifold M it can be shown that the orbit of an element x ∈ M ,
Ox = {Φg(x) : g ∈ G} is an immersed submanifold. We finish this section by looking at our familiar case of
the Heisenberg Group.

Example 2.13. For all matrix Lie subgroups of GLn(R) the adjoint representation takes the form

Adg(X) = gXg−1

In particular, returning to the Heisenberg group, let

g =

1 a c
0 1 b
0 0 1

 ∈ H, ξ =

0 x y
0 0 z
0 0 0

 ∈ h,
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where h is the Lie algebra of H. We have:

Adg(ξ) = gξg−1 =

0 x ax+ y − bx
0 0 z
0 0 0

 .
To find the coadjoint action note that

Adg−1ξ =

0 x z − ay + bx
0 0 y
0 0 0

 .
Letting 〈X,Y 〉 = X(Y ) and X1, X2, X3 be a basis of g∗ with respect to the evaluation, and f = αiX

i ∈ g∗,
we have

Ad∗gf = βiX
i

where
β1 = α1 + bα3, β2 = α2 − aα3, β3 = α3.

We will return later to analyzing the coadjoint orbits of this group.

2.3 Classification of Three-Dimensional Lie Algebras over the Re-
als

In cosmology, a Bianchi Universe is a cosmological model which assumes homogeneity of space and no ad-
ditional symmetry. By considering the metric at a given time slice, homogeneity means the metric will be
the same under change of coordinates; such a transformation we call a motion. The set of motions forms a
group and we say that a space is homogeneous if it admits a continuous group of motions, that is the group
of motions is a finite-dimensional Lie group. Any continuous group of motions of a finite-dimensional space
will be generated by infinitesimal transformations corresponding to elements of the Lie algebra. From this
starting point, in [3], Luigi Bianchi classified all three-dimensional spaces which admit a continuous group
of motions by classifying three-dimensional Lie algebras over R.

We aim to provide a different classification of all three-dimensional Lie algebras over R up to an isomor-
phism. Einstein summation convention will be assumed and repeated indices will sum from 1 to 3.
We begin by fixing a basis (e1, e2, e3) of g. In this basis the commutator relations are:

[ei, ej ] = fkijek, fkij ∈ R; (2.14)

where any other basis will be related to {ei} by an isomorphism of the Lie algebra. In particular, consider
a change of basis:

xi = Ajiej . (2.15)

We want to see how the structure constants in the {xi} basis are related to those in the original basis. Let

[xi, xj ] = Ckijxk, Ckij ∈ R. (2.16)

Then using (2.15) this becomes:
[Anien, A

m
jem] = CkijA

l
kel (2.17)

By the bilinearity of the commutator bracket and (2.14) the left-hand side becomes:

AniA
m
j [en, em] = AniA

m
jf
l
nmel. (2.18)

Using this and the right hand side of (2.17) we find that, under the change of basis, the structure constants
transform as:

(A−1)klA
n
iA

m
jf
l
nm = Ckij , k = 1, 2, 3; (2.19)

7



where A−1 exists because the change of basis is an isomorphism. In particular, the structure constants
transform as a (1, 2) tensor.

A priori, there are 3 × 3 × 3 = 27 components of the tensor fkij . Not all of these components are

independent: using the antisymmetry of the Lie bracket, we find that for each k we have fkij + fkji = 0,
this reduces the number of independent components of the tensor by 3 × (3 + 2 + 1) = 18, leaving us with
9 independent components of the tensor fkij . We note that we can represent fkij with a 3× 3 matrix F lk

via the identification:
fkij = εijlF

lk; (2.20)

where εijl is the totally antisymmetric three-dimensional Levi-Civita symbol with ε123 = 1. From standard
linear algebra, we can split the matric F lk into a symmetric and antisymmetric part. We call ηlk the symmet-
ric part and αlk the antisymmetric part. Similar to the above identification, we can write the antisymmetric
matrix as αkl = εklnan.

The above decomposition shows us that:

fkij = εijlF
lk

= εijl(η
lk + εklnan)

= εijlη
lk + εijlε

klnan

= εijlη
lk − δknij an

(2.21)

where δknij = δki δ
n
j − δni δkj is called the generalised Kronecker delta.

Thus far, we have only used the antisymmetry and the bilinearity of the Lie bracket. But the Lie bracket
has one more important property, namely, the Jacobi identity. The Jacobi identity says: [ei, [ej , ek]] +
[ek, [ei, ej ]] + [ej , [ek, ei]] = 0. So, using (2.14) this becomes:

f ljkf
m
il + f lijf

m
kl + f lkif

m
jl = 0. (2.22)

Combining this with (2.21) we see that the Jacobi equation reduces to:

ηabab = 0. (2.23)

We note that (2.21) and (2.23) are tensor equations, so that they are true in any basis. This has an impor-
tant consequence: namely that ηlk is a symmetric matrix over R and thus there is a basis of g such that ηkl

is a diagonal matrix with eigenvalues n1, n2, n3 taking up values 0, 1,−1. Moreover, (2.23) implies that the
vector ab lies in the direction of one of the eigenvectors and, without loss of generality (we could just permute
the basis), we can assume ab = (a, 0, 0) implying that (2.23) reduces to an1 = 0. Thus, either a = 0 or n1 = 0.

We can thus find a basis X1, X2, X3 of g such that the commutator relations are:

[X1, X2] = aX2 + n3X3

[X2, X3] = n1X1 (2.24)

[X3, X1] = n2X2 − aX3.

To finish the classification we need only consider the possibilities for a, n1, n2, n3, noting that permuting
n1, n2, n3 or multiplying them by a constant will give isomorphic Lie algebras. Firstly, an1 = 0 implies
we either have a = 0 or n1 = 0. If a = 0 then n1, n2, n3 can take up any values in 0, 1,−1, giving us six
non-isomorphic Lie algebras. On the other hand, if n1 = 0, we have either a = 1 or a ∈ R − {1, 0} and
considering the possibilities for n2, n3 we get five further non-isomorphic Lie algebras, two with a continuous
parameter.

We call this the Bianchi Classification, summarized in the table below.
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Type a n1 n2 n3

I 0 0 0 0
II 0 1 0 0

VII0 0 1 1 0
VI0 0 1 -1 0
IX 0 1 1 1

VIII 0 1 1 -1
V 1 0 0 0
IV 1 0 0 1

VIIa a 0 1 1
III 1 0 1 -1
VIa a 0 1 -1
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Chapter 3

Poisson Geometry and Dynamics

Our next goal is to provide a geometric framework for understanding Hamiltonian mechanics in terms of
symplectic and Poisson manifolds. In particular, we will use these objects to study geometric analogues of
Dynamics and Equations of Motions; an interpretation of Noether’s theorem using momentum mappings will
be developed in the next chapter. In this essay, we will explore symplectic manifolds as a complementary
structure to the Poisson manifold. Not only will we see that Poisson geometry will allow us to generalise
further the idea of Hamiltonian dynamics on a symplectic, but we will also see that a Symplectic structure will
induce a Poisson structure which will be of paramount importance since we can define a natural symplectic
structure on the cotangent bundle T ∗G of a Lie group G. In Chapter 4 we will use the induced Poisson
structure to show that the reduced phase space T ∗G/G is isomorphic as a Poisson manifold to the Lie-Poisson
structure on g∗.

3.1 Symplectic Manifolds

Definition 3.1. A symplectic manifold (M,Ω) is a manifold M equipped with a closed nondegenerate
two-form Ω on M .

The non-degeneracy of Ω means that symplectic manifolds are necessarily even-dimensional; this makes
sense why we traditionally use symplectic manifolds to generalise Hamiltonian systems as Hamiltonians nec-
essarily operate on even dimensional phase space. Presenting dynamics in terms of symplectic manifolds
is the first step of generalising Hamiltonian systems and presents dynamics in terms of the two-form Ω;
however, in this essay, we will develop dynamics in terms of Poisson manifolds.

Given two symplectic manifolds (M1,Ω1), (M2,Ω2) we say that a smooth mapping f : M1 → M2 is
symplectic if

f∗Ω2 = Ω1, (3.1)

and if f is also a diffeomorphism we call it a symplectomorphism.

Example 3.2 (Cotangent Bundle). We now wish to show that the cotangent bundle of a manifold naturally
inherits a symplectic structure. Let M be a manifold, then we can define a one-form Φ on the cotangent
bundle T ∗M as

Φα(f) := 〈α, dπMx〉, (3.2)

where α ∈ T ∗M , x ∈ Tα(T ∗M), πM : T ∗M → M is the natural projection and dπM : T (T ∗M) → TM is
the tangent map of πM . After some algebra one can verify that (T ∗M,Ω := −dΦ) is a symplectic manifold.
If we treat our manifold M as the configuration space of a mechanical system then the cotangent bundle
can be thought of as the phase space of the system, on which we expect to be able to define Hamiltonian
dynamics, and so it makes sense for it to inherit a symplectic structure.
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We conclude this brief section by stating a powerful theorem (Darboux’s) for symplectic manifolds, the
proof of which can be found in [2, p.149]. Darboux’s theorem tells us that there is a coordinate system for
a symplectic manifold in which locally the manifold looks like the phase space of a mechanical system.

Theorem 3.3 (Darboux’s Theorem). If (M,Ω) is a finite-dimensional symplectic manifold then M nec-
essarily has dimension dimM = 2n for n ∈ N. Moreover, for each x ∈ M there exist local coordinates
(q1, ..., qn, p1, ..., pn) such that the symplectic form in these coordinates is

Ω = dqi ∧ dpi. (3.3)

3.2 Poisson Manifolds

Poisson manifolds will generalise Symplectic geometry and the Poisson bracket for a classical mechanical
system; accordingly will provide us with a more generalised understanding of dynamics.

Definition 3.4. A Poisson manifold is a manifold M equipped with a Poisson bracket (also called Poisson
structure), namely a bilinear map {, } on C∞(M) such that:

• (C∞(M), {, }) is a Lie algebra.

• For each f, g, h ∈ C∞(M) we have the derivation property in the first factor: {fg, h} = {f, h}g+f{g, h}
and similarly with the second factor.

Similarly to the symplectic case, given two Poisson manifolds (M1, {, }1), (M2, {, }2), we say that a smooth
mapping f : M1 →M2 is a Poisson map if

f∗{F,G}2 = {F,G}1, (3.4)

for any F,G ∈ C∞(M).

We can express the Poisson bracket in local coordinates (x1, ..., xn) as

{F,G} =

n∑
i,j=1

xij
∂F

∂xi

∂G

∂xj
, (3.5)

where xij := {xi, xj} is called the Poisson matrix in these coordinates.

Consider a Poisson manifold M and the map G 7→ {G,H} for H,G ∈ C∞(M). By the derivation
properties of the Poisson bracket on M it is clear this map is a derivation on C∞(M). It is a well-known
result of differential geometry that such derivations are in one to one correspondence with vector fields on
M . Thus for H ∈ C∞(M) we can define a unique vector field

XH(G) := {G,H}, (3.6)

called the Hamiltonian vector field associated with H.

Example 3.5 (Poisson Structure from Symplectic). If (M,Ω) be a symplectic manifold then it is also a
Poisson manifold when equipped with the bracket

{F,G}(x) := Ω(XF [x], XG[x]), (3.7)

where F,G : M → R are smooth functions and x ∈M . Indeed the bilinearity follows from the bilinearity of
two-forms. Moreover we have

XFG = FXG +GXF , (3.8)

giving us the derivation property:

{FG,H} = XH [FG] = FXH [G] +GXH [F ] = F{G,H}+G{F,H}. (3.9)

11



In this essay we will analyse the Lie-Poisson Structure. Let g be a Lie algebra; then we can define a
Poisson structure on its dual g∗ as follows. Let e1, ..., en be a basis for g and recall that we can write the
commutator relations as

[ei, ej ] = fkijek, fkij ∈ R. (3.10)

Let e1, ..., en be the basis of g∗ dual to e1, ..., en, defined as ei := e∗i , where for X = αie
i ∈ g we have

e∗i (X) = 〈X, ei〉 := αi. Throughout let µ = xie
i, we claim that, for F,G ∈ C∞(g∗), the bilinear map

{F,G}(µ) = xij
∂F

∂xi

∂G

∂xj
, (3.11)

is a Poisson structure on C∞(g∗), where xij = [ei, ej ]
∗ is the Poisson matrix. Unless confusion arises we will

usually drop the µ dependence in {F,G}(µ). The bilinearity and derivation property of the Poisson bracket
arises from the linearity and derivation properties of partial derivatives. The Jacobi identity and derivation
property follow after observing {e∗k, e∗l } = xij∂ie

∗
k∂je

∗
l = [ek, el]

∗ and by the bilinearity of the bracket this
implies {ξ∗, γ∗} = [ξ, γ]∗ for γ, ξ ∈ g. From here it is obvious that

{{xi, xj}, xk} = [[ei, ej ], ek]∗.

Thus the Jacobi identity follows immediately from that of the Lie bracket.

To find a coordinate-free expression of (3.11), given µ ∈ g∗ and F ∈ C∞(g∗); the push forward F∗ :
Tµ(g∗) → R can be regarded as an element of g. Indeed g∗ as a vector space is naturally isomorphic to
its tangent space Tµ(g∗), thus the push forward can be considered as an element of (g∗)∗, which itself is
naturally isomorphic to g. Hence we identify the push forward at µ ∈ g∗ with an element dµF ∈ g. We can
write this in terms of the basis as dµF =

∑n
i=1

∂F
∂xi

(µ)ei.
Finally, we state our definition:

Definition 3.6. Let g be a finite-dimensional Lie algebra. The Lie-Poisson bracket (or Lie-Poisson structure)
is the Poisson bracket on C∞(g∗):

{F,G}(µ) :=
〈
µ, [dµF, dµG]

〉
, F,G ∈ C∞(g∗), µ ∈ g∗ (3.12)

equipping g∗ with a Poisson manifold structure. Here dµF, dµG are elements of g as just explained.

In the coordinate expression (3.11) we can find xij explicitly:

xij = {xi, xj} = [ei, ej ]
∗,

[ei, ej ]
∗ = (fkijek)∗ = fkije

∗
k = fkijxk.

Thus Equation (3.11) reduces to:

{F,G} =

n∑
i,j=1

fkijxk
∂F

∂xi

∂G

∂xj
. (3.13)

Example 3.7. When g is one of the Bianchi Lie algebras from Equations (2.24) we have that the only
nonzero structure constants are:

f212 = a, f312 = n3,

f123 = n1, (3.14)

f231 = n2, f331 = −a.

For this case Equation (3.11) becomes:

{F,G} = x1(f123(∂2F∂3G− ∂3F∂2G))

+x2(f212(∂1F∂2G− ∂2F∂1G) + f231(∂3F∂1G− ∂1F∂3G)) (3.15)

+x3(f312(∂1F∂2G− ∂2F∂1G) + f331(∂3F∂1G− ∂1F∂3G)),
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and substituting (3.14) gives us:

{F,G} = x1(n1(∂2F∂3G− ∂3F∂2G))

+x2(a(∂1F∂2G− ∂2F∂1G) + n2(∂3F∂1G− ∂1F∂3G)) (3.16)

+x3(n3(∂1F∂2G− ∂2F∂1G)− a(∂3F∂1G− ∂1F∂3G)),

for any F,G ∈ C∞(g∗).

3.3 Poisson Dynamics

As we alluded to before, Poisson geometry will generalise the idea of Hamiltonian dynamics for a classical
mechanical system. We now aim to further this by analysing the equations of motion in terms of the Poisson
bracket and consider invariants of motion.

Before looking at dynamics we show one important property of Hamiltonian vector fields.

Lemma 3.8. Let M be a Poisson manifold and H,G ∈ C∞(M). We have:

[XH , XG] = −X{H,G}. (3.17)

Proof.

[XH , XG][F ] = XH [XG[F ]]−XG[XH [F ]]

= {{F,G}, H} − {{F,H}, G}
= −{F, {G,H}} (Jacobi)

= −X{H,G}[F ].

(3.18)

We now look at the main theorem about equations of motion on a Poisson manifold.

Theorem 3.9. Let φt be the flow on a Poisson manifold M of a Hamiltonian vector field XH , where
H : M → R be a smooth function.

1. For F ∈ C∞(U), where U ⊂M is open, we have

d

dt
(F ◦ φt) = {F,H} ◦ φt = {F ◦ φt, H}. (3.19)

Or in other words, Ḟ = {F,H} for all F ∈ C∞(U) iff φt is the flow of XH .

2. If φt is the flow of XH then H ◦ φt = H.

Proof. Let x ∈M .

1. By the chain rule the left hand side becomes:

d

dt
F (φt(x)) = dF

∣∣
φt(x)

d

dt
φt(x).

The right hand side is:
{F,H}

∣∣
φt(x)

= dF
∣∣
φt(x)

XH [φt(x)]

and it follows from the Hahn Banach theorem [12, Theorem 1.1.2, pp. 4-7] that these are equal in an
open set U ⊂M for any F ∈ C∞(M) iff XH [φt(x)] = d

dtφt(x) i.e φt is the flow of XH with initial point
x. Conversely if φt is a flow so that

XH [φt(x)] = (φt)∗(XH [x]),
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using the chain rule again we see:

d

dt
F (φt(x)) = dF

∣∣
φt(x)

XH [φt(x)]

= dF
∣∣
φt(x)

(φt)∗(XH [x])

= d((F ◦ φt)(x)XH [x]

= {F ◦ φt, H}(x).

(3.20)

2. Follows from 1. using H = F .

We want to compare the local dynamical equations of due to both Symplectic and Poisson geometry. In
the Symplectic case, we have local coordinates (by Darboux’s theorem) x := (q1, ..., qn, p1, ..., pn) and the
Hamiltonian equations of motion will read

~̇x = J∇H, (3.21)

where J:= [
0 In
−In 0

]
. (3.22)

We compare this to the local Poisson manifold equations of motion. Let (x1, ..., xn) be local coordinates,
where n can be either even or odd (as opposed to the symplectic case). If we let Λ be the Poisson matrix in
these coordinates, the dynamical equations ẋi = {H,xi} become

~̇x = Λ∇H. (3.23)

Thus we can see the similarities between the two formulations. However, we stress that the Poisson structure
allows for dynamics on a space of arbitrary dimension.

Definition 3.10. Let C ∈ C∞(U) for some open subset, U ⊂M , of a Poisson manifold M. We say that C
is a Casimir function of the Poisson structure if for all H ∈ C∞(M) we have

{H,C} = 0. (3.24)

An important Corollary of Theorem 3.9 is that if G,H ∈ C∞(M), then G is constant along the integral
curves of XH iff {G,H} = 0. The Casimir functions are those which have trivial dynamics, that is C will be
constant along the flow of all Hamiltonian vector fields. We note that functions G which are constant along
integral curves of XH will be the central focus of Chapter 4.

We finish by showing that for any choice in Hamiltonian, the dynamics of the system will live on a level
set of the Casimir function C. Indeed, by the skew-symmetry of the Poisson bracket, we have {C,C} = 0
and so C is constant along the integral curves of XC . Let f, g ∈ C∞(M), using the Jacobi equation we see

{C, {f, g}} = {f, {C, g}} − {g, {H, f}} = 0, (3.25)

where the terms on the right-hand side are zero by definition of a Casimir function; and so {C, {f, g}} = 0
and the dynamics are restricted to level sets of C.

”Thus for any choice of a Hamiltonian, the resulting dynamics will be constrained to live on a set on
which L is constant.”
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3.4 Equations of Motion for g∗

We want to now consider what the equations of motion and Hamiltonian vector fields for a Hamiltonian
H ∈ C∞(g∗) look like in terms of the Lie-Poisson bracket. Recall the definition of the Lie-Poisson bracket
in Equation (3.12) and let F ∈ C∞(g∗). We have

{F,H}(µ) = 〈µ, [dµF, dµH]〉
= 〈µ,−addµHdµF 〉
= −〈ad∗dµHµ, dµF 〉.

(3.26)

Moreover by the chain rule we have

dF

dt
= dF (µ)

dµ

dt
= 〈dµ

dt
, dµF 〉 (3.27)

and non-degeneracy of the pairing implies that the equations of motion are

dµ

dt
= −ad∗dµHµ. (3.28)

Thus we have that the Hamiltonian vector fields of the Lie-Poisson structure are of the form

XH [µ] = −ad∗dµHµ, (3.29)

for a Hamiltonian H.

Using Equation (3.13) we can write a coordinate expression for the equations of motion:

dF

dt
=

n∑
i,j=1

fkijxk
∂F

∂xi

∂H

∂xj
. (3.30)

The problem is too general to solve for any sort of dynamics other than the trivial dynamics in this essay.
So we will turn our attention to finding Casimir functions of the Lie-Poisson structure. A Casimir function

of the Lie Poisson structure will satisfy:

XC [F ] =

n∑
i,j=1

fkijxk
∂F

∂xi

∂C

∂xj
= 0, ∀F ∈ C∞(M). (3.31)

In particular for F = xl, l = 1, ..., n we must still have {xl, C} = 0. This gives us

XC [xl] =

n∑
i,j=1

fkijxkδ
l
i

∂C

∂xj
= 0, (3.32)

=⇒ XC [xl] =

n∑
j=1

fkljxkδ
l
i

∂C

∂xj
= 0, l = 1, ..., n. (3.33)

This will give us a system of n partial differential equations which we hope to solve for a Casimir function
C on some open set U ⊂M . We now look at the specific case of the Bianchi Lie algebras.

Example 3.11. For the Bianchi Lie algebras, using Equation (3.16) we deduce that if C is a Casimir
function we must have:

(ax2 + n3x3)
∂C

∂x2
+ (ax3 − n2x2)

∂C

∂x3
= 0,

−(ax2 + n3x3)
∂C

∂x1
+ n1x1

∂C

∂x3
= 0, (3.34)

−(ax3 − n2x2)
∂C

∂x1
− n1x1

∂C

∂x2
= 0.

Identifying g∗ ≡ R3 with basis (x2, x2, x3) I found in [8] open sets and Casimir functions for each Bianchi
Lie group as outlined in Table 3.1.
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Table 3.1: Casimir/Coadjoint Invariant Functions of the Bianchi Groups.

Type Invariant Open Set 0-D Orbits

I 0 R3 Everywhere
II x1 R3 − {x1 = 0} x1 = 0

VII0 x21 + x22 R3 − {x3 axis} x3 axis
VI0 x21 − x22 R3 − {x3 axis} x3 axis
IX x21 + x22 + x23 R3 − {(0, 0, 0)} The origin

VIII x21 + x22 − x23 R3 − {(0, 0, 0)} The origin
V x2/x3 R3 − {x3 = 0} x1 axis

x3/x2 R3 − {x2 = 0}
IV x3 exp(−x2

x3
) R3 − {x3 = 0} x1 axis

VIIa (x22 + x23) exp(−2a(arctan(x2

x3
))) Cylindrical Coordinates: R3 − {(x1, 0, 0)} x1 axis

III x2 + x3 R∗ − {x2 = x3} x2 = x3

VIa>1 (x2 − x3)(x2 + x3)
1+a
1−a R3 − {x2 + x3 = 0} x1 axis

VIa<1 (x2 − x3)(x2 + x3)
1+a
1−a R3 − {x2 = x3 = 0} x1 axis

For Bianchi g∗, it was completely necessary to use Poisson geometry to describe the mechanics since the
configuration space (which is isomorphic to R3) is three-dimensional and thus symplectic geometry cannot
be applied.

In the next section, we will see that Poisson manifolds decompose into symplectic manifolds called sym-
plectic leaves. For the Lie-Poisson bracket the symplectic leaves are coadjoint orbits. Moreover, I showed
in [8] that under certain conditions the level sets of the Casimir functions on an open subset of g∗ are the
symplectic leaves themselves. The above table gives a partially complete classification for the coadjoint
orbits of each Bianchi group.

While dynamics on our manifold cannot be described by Symplectic geometry, it does foliate into sym-
plectic manifolds which can be described by level sets of the Casimir functions which are invariant under all
Hamiltonian vector fields. In fact, our Poisson structure restricted to a leaf is exactly the symplectic form;
a proof of this fact can be found in [4]. By our reasoning at the end of the previous section, the dynamics
are restricted to the level sets of the Casimir functions, which are symplectic leaves and thus symplectic
manifolds.

3.5 Symplectic Foliation

We have mentioned how Poisson manifolds will decompose into symplectic manifolds called ’symplectic
leaves’ and we next want to give a brief overview of the Theorems used to show this and apply them to the
Lie-Poisson structure.

At the end of the previous section, we discussed how the dynamics on the Poisson manifold will be re-
stricted to the level sets of the Casimir functions. We will see that under certain conditions the level sets of
Casimir functions are exactly the symplectic leaves, and so the Poisson manifold will decompose into level
sets of its Casimir functions.

To motivate this we state without proof the following theorems on the symplectic foliation of a Poisson
manifold, the proofs of which can be found in [4, Section 5.3].

Theorem 3.12. Let M be a Poisson manifold. Then M is the disjoint union of immersed submanifolds

16



whose tangent spaces are spanned by its Hamiltonian vector fields. These submanifolds are symplectic man-
ifolds called symplectic leaves. We call the decomposition the symplectic foliation of M .

Theorem 3.13. A function on a Poisson manifold M is a Casimir function if and only if F is constant on
each symplectic leaf.

These two theorems tell us that given a Poisson manifold M , it decomposes into the union of symplectic
manifolds where the Poisson structure restricted to a symplectic leaf is the symplectic form. In fact, Theorem
3.13 goes further, which is explained in the following theorem, the proof of which can also be found in [5,
Ch. 3].

Theorem 3.14. Let M be a Poisson manifold of dimension n and let U be a nonempty open subset. Let
F1, ..., Fr ∈ C∞(U) be such that:

1. The rank of the Poisson matrix is constant of U and equal to n− r.

2. The functions F1, ..., Fr are Casimir functions of the restriction of the Poisson structure to U .

3. For each point ξ of U the differentials (dFi)ξ are independent.

Then the symplectic leaves on U are the level sets of the map (F1, ..., Fr) : U → Rr.

Symplectic foliation thus provides a beautiful connection between the two types of manifolds we have
discussed in this essay. Now we wish to show that for the Lie-Poisson bracket the symplectic leaves are
exactly the coadjoint orbits and the Casimir functions are the coadjoint invariant functions.

Let G be a connected Lie group (hence why we defined the Bianchi groups as being connected) whose
Lie algebra is g. We show that the set of infinitesimal generators of the coadjoint action coincides with the
set of Hamiltonian vector fields on g∗, so that we can apply Theorem 3.12. In Equation (3.29) we showed
that the Hamiltonian vector fields were

XH [µ] = −ad∗dµHµ, (3.35)

for µ ∈ g∗ and a Hamiltonian H. Now for ξ ∈ g we have dµξ
∗ = ξ∗ where ξ∗ := 〈µ, ξ〉. Thus it follows that

the set of Hamiltonian vector fields at µ ∈ g∗ is

{ad∗dµFµ : F ∈ C∞(g∗)} = {ad∗ξµ : ξ ∈ g}, (3.36)

which gives us our result after realising that G being connected means the coadjoint orbits are connected
and so the symplectic leaves are coadjoint orbits by Theorem 3.12.
Moreover, it follows from Theorem 3.13 that the Casimir functions of the Lie-Poisson bracket are those
that are constant on symplectic leaves, i.e. Ad∗ invariant functions. In [8] I showed that for the Bianchi
Lie groups; we could apply Theorem 3.14to show that the symplectic leaves were level sets of the Casimir
functions we found.
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Chapter 4

Momentum Maps and Noether’s
Theorem

We now aim to use the theory of Poisson geometry as developed in the previous chapter to provide a
geometric understanding of Noether’s theorem. A usual first course in the Lagrangian and Hamiltonian
formulation of Classical Mechanics will introduce aspiring physicists to the notion of how symmetries give
rise to conserved quantities via Noether’s theorem. First examples are usually symmetry of time translation,
which implies conservation of energy; symmetry under rotation gives conservation of angular momentum;
translational symmetry implies conservation of momentum; a reference for these derivations can be found in
[6]. Our geometric generalisation of conserved quantities arising from symmetries will be realised through
the momentum map.

4.1 Momentum Maps

We begin by recalling that if Φg is a left action of a Lie group G on a manifold M then for each g ∈ G the
map Φg : M →M is a smooth map. Furthermore, if M is a Poisson manifold and if for each g ∈ G we have
that Φg is a Poisson map, i.e.

Φ∗g{F,G} = {Φ∗gF,Φ∗gG}, (4.1)

for any F,G ∈ C∞(M): then we say that the action is a Poisson action. Let ξ ∈ g; then differentiating (4.1)
in the direction of ξ we get:

d

dt
(exp(tξ){F,G})

∣∣
t=0

= { d
dt

(exp(tξ)F )
∣∣
t=0

, G}+ {F, d
dt

(exp(tξ)G)
∣∣
t=0
}. (4.2)

Recalling from Equation (2.8) the definition of the infinitesimal action we have:

ξ̄{F,G} = {ξ̄F,G}+ {F, ξ̄G}; (4.3)

in this case, we say that the action is an infinitesimal Poisson automorphism.

However we are interested in a slightly stronger condition: namely, that there exists a global Hamiltonian
J(ξ) ∈ C∞(M) for the infinitesimal action ξ̄, i.e:

XJ(ξ) = ξ̄. (4.4)

We will say that a Lie algebra acts canonically on a Poisson manifold if (4.4) is satisfied. We are now ready
to define a momentum map.

Definition 4.1. Let g be a Lie algebra which acts canonically on a Poisson manifold M . Suppose that there
is a linear map J : g→ C∞(M) such that J satisfies (4.4) for all ξ ∈ g. The map

J : M → g∗
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〈J(x), ξ〉 := J(ξ)(x), (4.5)

for ξ ∈ g and x ∈M is called a momentum map of the action.

As we alluded to before; if we have symmetries arising from the action of our Lie group we hope to be
able to mirror Noether’s theorem by finding such a momentum map that will correspond to a conserved
quantity of the symmetry.

Returning to the Lie-Poisson structure, we want a map J : g→ C∞(g∗) such that J satisfies (4.4) for all
ξ ∈ g. We first show that the coadjoint action is a Poisson action. Indeed given F,G ∈ C∞(g∗) and letting
α = Ad∗g−1 we have

{F,G}(αµ) = 〈αµ, [dαµF, dαµG]〉
= 〈αµ, [Adgdµ(F ◦ α), Adgdµ(G ◦ α)]〉
= 〈µ, [dµ(F ◦ α), dµ(G ◦ α)]〉
= {F ◦ α,G ◦ α}(µ);

(4.6)

where in the second line we used the identity:

dαF = Adgdµ(F ◦ α). (4.7)

Now for the coadjoint action the infinitesimal acition is

ξ̄ =
d

dt
(exp(tξ)µ)

∣∣
t=0

= −ad∗ξµ, (4.8)

for µ ∈ g∗ and ξ ∈ g. Thus (4.4) in this case becomes:

ad∗dµJ(ξ)µ = ad∗ξµ. (4.9)

Hence the momentum map is the identity on g∗, which we see after realising

J(ξ)(µ) = 〈µ, ξ〉. (4.10)

While in some sense this result is trivial, it will allow us to later classify the allowable Hamiltonians for the
Lie-Poisson bracket and show that the dynamics must be generated by Casimir functions.

4.2 Noether’s Theorem

As promised, we are now going to provide a geometric interpretation of Noether’s theorem for Poisson
manifolds. Let g act canonically on a Poisson manifold M and assume there exists a momentum map
J : M → g∗. Let H ∈ C∞(M) be a g− invariant Hamiltonian, that is

ξ̄(H) = 0, ∀ξ ∈ g, (4.11)

which tells us that {J(ξ), H} = 0. Thus for any ξ ∈ g it follows that J(ξ) is conserved along the flow of
XH , the Hamiltonian vector field associated with H. Thus J is conserved. We have proved the following
Theorem:

Theorem 4.2 (Noether’s Theorem). Let g act canonically on the Poisson manifold M and assume there
exists a momentum map J : M → g∗. If H ∈ C∞(M) is g−invariant for all ξ ∈ g then

J ◦ φt = J, (4.12)

where φt is the flow of XH . I.e. J is a constant of motion. If the Lie algebra action comes from a Poisson
action Φg of G then the invariance hypothesis of H is automatically satisfied.
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As we hoped, we have a version of Noether’s theorem which tells us that if an action preserves the Poisson
structure on a Poisson manifold, then if there exists a momentum map it is a constant of motion. From
Classical Mechanics courses, we know that translation invariance should imply that linear momentum is
conserved; so we hope that our version of Noether’s theorem will describe the same result.
Indeed, let us consider an n particle system and let R3n act on T ∗R3n ∼= R6n via the action

~x(̇~qi, ~p
i) := (~qi + ~x, ~pi). (4.13)

For Noether’s theorem to be applied we need this to be a canonical action, i.e. Equation (4.4) must be
satisfied. First we note that if ξ ∈ g then differentiating the action tells us our infinitesimal action is

ξ̄(~qi, ~p
i) = (ξ, ..., ξ, 0, ..., 0); (4.14)

and so applying Equation (4.4) we find

XJ(ξ)(~qi, ~p
i) = (

∂J(ξ)

∂~pi
,−∂J(ξ)

∂~qi
) = (ξ, ..., ξ, 0, ..., 0). (4.15)

Thus, it follows that

J(ξ)(~qi, ~p
i) = (

n∑
i=1

~pi)ξ̇, (4.16)

and so the momentum map is exactly the linear momentum

J(~qi, ~p
i) = (

n∑
i=1

~pi), (4.17)

which will be a constant of motion along any g−invariant Hamiltonian, as we expect.

4.3 Noether’s Theorem on g∗

We will now apply Noether’s theorem to the Lie-Poisson structure of the dual Lie algebras g∗, to find the
possible Hamiltonians on g∗. In some sense the resulting dynamics will be trivial, however, it will allow us
to express the tools we have developed thus far in this essay. We will then be able to classify the possible
Hamiltonians in the Bianchi case and show that they are the Casimir functions we found before — recalling
from Section 3.4 that the dynamics are restricted to level sets of these Casimir functions.

From Equation (4.10) we recall that J = Idg∗ is a momentum map for the Lie-Poisson bracket on g∗.
Moreover the derivation in Equations (4.6) showed us that the coadjoint action of G was Poisson. It follows
that for any g−invariant Hamiltonian H ∈ C∞(g∗) we must have, by Equation (4.12), that

Idg∗ ◦ φt = Idg∗ , (4.18)

where φt is the flow of XH . In other words the flow of the Hamiltonian vector field must be the identity.
Equation (4.18) tells us that

d

dt
φt(x) = XH(φt(x)) = 0, (4.19)

and recalling from Equation 3.31 the form of the Hamiltonian vector fields of the Lie-Poisson bracket in our
usual basis for g∗:

XH [φt(x1, ..., xn)] =

n∑
i,j=1

fkijxk
∂(x1, ..., xn)

∂xi

∂H

∂xj
=

n∑
i,j=1

fkijxk
∂H

∂xj
= 0; (4.20)

and so we must have
n∑

i,j=1

fkijxk
∂H

∂xj
= 0. (4.21)
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Example 4.3. Specializing to the Bianchi Lie groups, we stated in Equation (3.14) the structure constants
of the Bianchi Lie algebras; from here it follows that a Hamiltonian on a Bianchi g∗, HB , must satisfy

∂HB

∂x1
(−ax2 − n3x3 + n2x2 − ax3) +

∂HB

∂x2
(ax2 + n3x3 − n1x1) +

∂HB

∂x3
(n1x1 + ax3 − n2x2) = 0. (4.22)

It is easy to check that the Casimir functions we defined in Table 3.1 solve this.

Returning to the general case of the Lie-Poisson bracket take our coadjoint invariant functions (Casimir
functions) and analyse which ones solve (4.21). If we recall from Section 2.3, Casimir functions generate
trivial dynamics on g∗, that is they are constant along the flow of all Hamiltonian vector fields; in fact, we
will show that the only dynamics on g∗ are trivial.

To classify the dynamics on g∗ and show that the only allowable Hamiltonians applicable to Noether’s
theorem are the Casimir functions, we recall from Section 3.4 that the Ad∗ invariant functions are the
Casimir functions and so that to apply Noether’s theorem we must have that the Hamiltonian is a Casimir
function. Theorem 3.13 tells us for the Lie-Poisson bracket the Hamiltonians which can be applied to
Noether’s Theorem are exactly the Casimir functions, provided the Lie group G is connected. Thus the
dynamics on g∗ must be trivial.

Example 4.4. For the Bianchi Lie groups, which we defined as being simply connected and connected,
we were able to provide a classification of the Casimir functions on open subsets of g∗, thus we have been
able to entirely classify the trivial dynamics of the Lie-Poisson structure of the Bianchi Lie-groups and
so we have classified the dynamics of the reduced phase space T ∗G/G for a three-dimensional space which
admits a continuous group of motions. Thus we have classified Hamiltonian dynamics on a three-dimensional
configuration space, a task that Poisson geometry was necessary to do.
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Chapter 5

Reduction

Our final chapter is a technical one to show that the canonical Poisson bracket on the cotangent space T ∗G
is related to the Lie-Poisson bracket we defined on g∗. Some of the technical aspects of the theory we develop
will be based on bundle theory and the proofs shall be omitted but may be found in [2]. Our proof of the
Lie-Poisson Reduction theorem will use the fact that we have derived the Lie-Poisson bracket on g∗ already;
a more constructive proof without assuming this can be found in [4].

5.1 Lie-Poisson Reduction

We now aim to prove the following theorem, which states that the reduced phase space of a Lie group T ∗G/G
is a Poisson manifold diffeomorphic to the Lie algebra g = TeG. Throughout the section, the subscript on
the bracket indicates the space in which the bracket is defined.

We first introduce some notation, namely for αg ∈ T ∗gG define O(αg) to be the set

O(αg) := {β ∈ T ∗G : β = T ∗Rg−1(α), for some g ∈ G}. (5.1)

Theorem 5.1 (Lie-Poisson Reduction Theorem). Suppose αg ∈ T ∗G, the map

f : T ∗G/G→ g∗ (5.2)

O(αg) 7→ T ∗eRg(α),

is both a diffeomorphism and a Poisson map.

The proof that f : T ∗G/G → g∗ is a diffeomorphism requires bundle theory so we will provide only a
brief overview of the proof. We can see this by considering the map

λ : T ∗gG→ G× g∗, (5.3)

λ(αg) := (g, T ∗eRg(αg)),

which transforms the cotangent lift of the right action on G into the action of G on G× g∗ given by

g(h, ξ) ≡ Φg(h, ξ) := (gh, ξ), (5.4)

and so we have the following diffeomorphisms:

T ∗G/G ∼= (G× g∗)/G ∼= g∗. (5.5)

Thus we have the desired diffeomorphism T ∗G/G ∼= g∗.
Now the map f : T ∗G/G→ g∗ provides us with the commutative triangle:

T ∗G/G

T ∗G g∗

fπ

JL
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where π is the canonical projection and JL := T ∗e Lg is the momentum map of the cotangent lift of right
translation on G; so that JL = f ◦ π. We note that because Rg : G→ G is a diffeomorphism then it can be
shown that its cotangent lift is a symplectic map.

We claim that if Φg is a Poisson action (cf. Equation (4.1)) of G on a Poisson manifold M then, assuming
M/G is well defined and π : M →M/G is a smooth submersion, there exists a unique Poisson structure on
M/G such that π is a Poisson map. Indeed, let α : M/G→ R be a smooth real valued function and consider
its pull back ᾱ := π∗α under π, then ᾱ([x]) = π∗α([x]) is well defined as it is constant on G−orbits. Thus
for β, γ : M/G→ R we have

{β, γ}M/G ◦ π = {β ◦ π, β ◦ π}M ≡ {β̄, γ̄}M , (5.6)

because π is a Poisson map. Moreover the surjectivity of π tells us that {β, γ} is determined uniquely. Now
recalling that Φg is a Poisson action and the pull backs of β and γ under π are constant on G−orbits we
have

{β̄, γ̄}(Φg(x)) = ({β̄, γ̄} ◦ Φg(x)

= {β̄ ◦ Φg, γ̄ ◦ Φg}(x) (Poisson Action)

= {β̄, γ̄}(x), (Constant on G−orbits)

(5.7)

an so {β̄, γ̄} is also constant on G−orbits; therefore the bracket is well-defined. Moreover, the derivation
properties, bilinearity and Jacobi identity all follow from the bracket on M .

Using this claim it follows that there is a unique Poisson structure on T ∗G/G such that π is a Poisson
map. The map JL = T ∗eRg is a Poisson map because of equivariance (show); it follows the map f is Poisson,
meaning

({F,G}g∗ ◦ f)(x) = {F ◦ f,H ◦ f}T∗G/G(x), (5.8)

for F,G ∈ C∞(g∗) and x ∈ T ∗G/G.

To finish the proof, we note that because π is surjective, there exists an αg ∈ T ∗G for each x ∈ T ∗G/G
such that x = π(αg). Moreover recall that JL = f ◦ π is a Poisson map. It follows that

({F,H}g∗ ◦ f)(x) = {F ◦ f,H ◦ f}g∗(f ◦ π)(αg)

= {F,H}g∗ ◦ JL(αg)

= {F ◦ JL, H ◦ JL}T∗G(αg)

= {F ◦ f,H ◦ f}T∗G/G(π(αg))

= {F ◦ f,H ◦ f}T∗G/G(x).

(5.9)
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Chapter 6

Conclusion

6.1 Concluding Remarks

Throughout this essay, we aimed to show the power of Poisson geometry by defining dynamics on a manifold
of arbitrary dimension and readily applying it to the case of the Lie-Poisson structure. We found that the
dynamics of Poisson geometry were constrained to live on the level sets of the Casimir functions and proved a
geometric version of Noether’s theorem. Our development of the theory allowed us to understand symmetries
of Hamiltonian systems and we applied this to the case of the Bianchi g∗, a three-dimensional Poisson
manifold and showed that the Hamiltonian dynamics were trivial. Moreover, we related the symplectic
foliation of g∗ to the coadjoint orbits of the corresponding Bianchi group G. We concluded the essay with a
proof showing that the reduced phase space T ∗G/G was a Poisson manifold diffeomorphic to g∗.

As a final glimpse into the richness of this subject, Section 6.2 will very briefly discuss its relation to
quantum theory.

6.2 Glimpsping Further Developments: Geometric Quantization
and the Orbit Method

Quantization refers to the process of taking a classical mechanical system and translating it into a quantum
analogue by mapping classical observables to quantum operators. When considering a classical system whose
phase space is described by a symplectic manifold (M,Ω), geometric quantization aims to quantize M by
constructing a map sending observables f ∈ C∞(M) to operators on a Hilbert space H:

Q : C∞(M)→ Op(H). (6.1)

Dirac proposed certain conditions which such a map should obey; perhaps unsurprisingly, these are known
as the Dirac quantization conditions:

1. The map Q must be linear on C∞(M).

2. The map must relate commutators to Poisson brackets in the following sense:

[Q(f), Q(g)] = −i~Q({f, g}). (6.2)

3. Constant observables must get mapped to constant operators:

Q(f) = fI, (6.3)

for f constant.

4. Completeness: if {fi} form a complete set of observables for the classical system then {Q(fi)} form a
complete set of operators for the quantum system.
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The exact formulation of geometric quantization is described in [10]. However, the theory of geometric
quantization involves understanding line bundles, this would provide content enough for another Part III
essay in itself.

In summary: geometric quantization amounts to a two-step process known as pre-quantization and
polarization. A pre-quantization on a symplectic manifold (M,Ω) is a complex line bundle B over M
together with a connection ∇ and a Hilbert structure H on the line bundle. Here the quantization map is
defined as

Q(f) := −i∇Xf + f. (6.4)

Pre-quantization does a good job at mapping observables to operators. However, we must reduce this to
a smaller space so that Condition 4. of the Dirac conditions is met. The process of polarization allows us
to do exactly this. We stress that this is an extremely brief overview and invite the reader to explore the
theory of geometric quantization in [10].

In essence, quantization is concerned with finding unitary representations of the structure of the classical
phase space. The Orbit Method, described extensively in [11], concerns itself with finding unitary represen-
tations of Lie groups. If we have a Lie group G and know its coadjoint orbits, finding unitary representations
of G amounts to performing geometric quantization on quantizable orbits. Indeed, we know from our work
in the previous chapters that coadjoint orbits are symplectic manifolds; so quantization can be well defined
on them. The orbit method identifies unitary representations of a Lie group G with the action of G on the
state space of the geometric quantization.

25



Bibliography

[1] Jean-Pierre Serre. Lie Algebras and Lie Groups. Part of the Lecture Notes in Mathematics book series
(LNM, volume 1500), Springer, 1992.

[2] Marsden, J.E., Ratiu, Tudor. Introduction to Mechanics and Symmetry. A Basic Exposition of Classical
Mechanical Systems, Springer, 1999.

[3] Bianchi, L. Sugli spazi a tre dimensioni che ammettono un gruppo continuo di movimenti [On three-
dimensional spaces which admit a continuous group of motions].
Relativity and Gravitation 33, 2171–2253 (2001).
https://doi.org/10.1023/A:1015357132699

[4] J. Butterfield On Symplectic Reduction in Classical Mechanics, in J. Earman and J. Butterfield (eds.)
The Handbook of Philosophy of Physics, North Holland (2006); 1 - 131. Available at: http://arxiv.org/
abs/physics/0507194.

[5] Camille Laurent-Gengoux, Anne Pichereau and Pol Vanhaecke
Poisson Structures.
Springer, 2013.

[6] Arnold, V.I.
Mathematical Methods of Classical Mechanics.
Springer, 1978.

[7] L.D. Landau and E.M. Lifshitz
Classical Theory of Fields.
Butterworth-Heinemann, 1980.

[8] O’Callaghan, M.
Coadjoint Orbits Calculations, Undergrad Research Project, Trinity College, Dublin 2020.

[9] Ado, Igor D. (1935), ”Note on the representation of finite continuous groups by means of linear substi-
tutions”, Izv. Fiz.-Mat. Obsch. (Kazan’), 7: 1–43. (Russian language)

[10] Carosso, A
Geometric Quantization
Department of Physics, University of Colorado, Boulder, Colorado 80309, United States

[11] Kirillov, A
Lectures on the Orbit Method
American Mathematical Society, 2004.

[12] Kadison, R.V. and Ringrose J.R.
Fundamentals of the Theory of Operator Algebras. Volume I: Elementary Theory
American Mathematical Society 1991.

26


