
When do Gibbsian Phase Averages and

Boltzmannian Equilibrium Values Agree?

Abstract

This paper aims to shed light on the relation between Boltzmannian statistical mechanics and
Gibbsian statistical mechanics by studying the Mechanical Averaging Principle, which says
that, under certain conditions, Boltzmannian equilibrium values and Gibbsian phase averages
are approximately equal. What are these conditions? We identify three conditions each of
which is individually sufficient (but not necessary) for Boltzmannian equilibrium values to be
approximately equal to Gibbsian phase averages: the Khinchin condition, and two conditions
that result from two new theorems, the Average Equivalence Theorem and the Cancelling Out
Theorem. These conditions are not trivially satisfied, and there are core models of statistical
mechanics, the six-vertex model and the Ising model, in which they fail.
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1 Introduction

Characterising equilibrium and determining properties of systems in equilibrium are central issues
in statistical mechanics (SM). These tasks are, however, complicated by the fact that there are two
competing theoretical approaches in SM, one associated with Boltzmann and the other with Gibbs.
This would not be a problem if the two formalisms were equivalent, or at least inter-translatable (for
instance in a similar way as the Schrödinger and the Heisenberg pictures in quantum mechanics).
But they are not. Boltzmannian SM (BSM) and Gibbsian SM (GSM) offer different characterisa-
tions of equilibrium and distinct procedures for determining equilibrium properties.

The relation between BSM and GSM is a somewhat understudied topic. The aim of this paper is to
shed light on the relation between BSM and GSM by exploring the so-called Mechanical Averaging
Principle (MAP). The principle says that, under certain conditions, Boltzmannian equilibrium val-
ues and Gibbsian phase averages are approximately equal. What are these conditions? We identify
three conditions, each individually sufficient (but not necessary) for Boltzmannian equilibrium values
to be approximately equal to Gibbsian phase averages: the Khinchin condition (which comes in two
different versions), and two conditions that result from two new theorems, the Average Equivalence
Theorem and the Cancelling Out Theorem. These theorems cover some paradigmatic models such
as the dilute gas and provide a rationale for why Boltzmannian equilibrium values and Gibbsian
phase averages agree in these cases. An important insight is that agreement depends both on the
model and the macro-variables, and it can happen that in the same model there is agreement for
one macro-variable and disagreement for another macro-variable.

These conditions are, however, not trivially satisfied. We provide several examples in which Boltz-
mannian equilibrium values and Gibbsian phase averages come apart. We also show that Boltz-
mannian and Gibbsian equilibria do not exist under the same conditions: there are systems with
a Gibbsian equilibrium that fail to have a Boltzmannian equilibrium. Some of our examples, in
particular the Ising model and the six-vertex model, are core models of SM. Discrepancies between
Boltzmannian equilibrium values and Gibbsian phase averages therefore cannot be dismissed as
‘mathematical contrivances’ that are irrelevant to the practice of the discipline.

The paper is organised as follows. In Section 2 we define deterministic and stochastic models, and
we introduce the Boltzmannian and the Gibbsian characterisations of equilibrium. In Section 3 we
articulate the Mechanical Averaging Principle and explain how this principle relates to the averaging
principle usually appealed to in GSM. In Section 4 we identify and discuss in some detail three
conditions under which Boltzmannian equilibrium values and Gibbsian phase averages coincide. In
Section 5 we turn to examples where these conditions fail and, as a result, Boltzmannian equilibrium
values and Gibbsian phase averages come apart. We also show that equilibria exist under different
conditions in the two frameworks. Section 6 concludes.

2 Defining Equilibrium

In this section we first introduce deterministic and stochastic models, and we then discuss the Boltz-
mannian and the Gibbsian characterisations of equilibrium.
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2.1 Deterministic and Stochastic Models

From a mathematical point of view, SM studies models that are equipped with a measure that is
invariant over time. The dynamics of such a model can be either deterministic or stochastic, and so
we speak of deterministic models and stochastic models respectively; we speak of models (without
qualifications) if it does not matter whether the dynamics is deterministic or stochastic.1 The formal
treatment of these models is different and for this reason we introduce them one at a time. We do
not take a stance on the question whether deterministic or stochastic models are more important
or fundamental and stick with scientific practice where both types are used side by side.

A deterministic model has a state space X, which contains all possible micro-states the model can
be in. In a typical mechanical N -particle model the state space has 6N dimensions, three dimen-
sions for the position of each particle and three dimensions for the corresponding momenta, but the
notion of a state space is in no way restricted to such cases and any set of relevant micro-variables
can form a state space. This space is equipped with a σ-algebra ΣX of subsets of X and a measure
µX on (X,ΣX). The dynamics of the model is given by an evolution function Tt : X → X, where
t ∈ R if time is continuous and t ∈ Z if time is discrete. Tt is assumed to be measurable in (t, x)
and to satisfy the requirement Tt1+t2(x) = Tt2(Tt1(x)) for all x ∈ X and all t1, t2 ∈ R or Z. If the
model is Hamiltonian, Tt is given by the solution of Hamilton’s equation of motion. However, SM
is not restricted to Hamiltonian models and, as we shall see, there are cases where Tt is specified
directly (without first formulating an equation of motion). The measure µX is required to be in-
variant under the dynamics, meaning that µX(T−1

t (A)) = µX(A) for all A ∈ ΣX and all t.2 The
solution (or trajectory) through a point x in X is the function sx : R → X, sx(t) = Tt(x) (and
mutatis mutandis for discrete time). Gathering the various elements together, we can now define
a deterministic model as the quadruple (X,ΣX , µX , Tt) (cf. Berger 2001). In the foundations of
statistical mechanics the dynamical condition of ergodicity is important. Intuitively speaking, a
deterministic model is ergodic if a system eventually visits all regions of state space (of nonzero
measure). Formally, (X,ΣX , µX , Tt) is ergodic iff (if and only if) for any A ∈ ΣX with T−1

t (A) = A
for all t, it follows that µX(A) = 0 or µX(A) = 1.

To define a stochastic model, we first have to introduce the notion of a random variable. Consider
a set X̄, which consists of all possible outcomes of a probabilistic experiment. X̄ is equipped with
a σ-algebra ΣX̄ of subsets of X̄. The tuple (X̄,ΣX̄) is known as the outcome space. Intuitively, a
random variable R gives the outcome of a probabilistic experiment, where the distribution p{R ∈ A}
specifies the probability that the outcome will be in A. Formally, a random variable is a measurable
function R : Ω→ X̄, where (X̄,ΣX) is the outcome space. (Ω,ΣΩ, ν) is a probability space, i.e. Ω is
a set that encodes the outcomes of the probabilistic experiment, ΣΩ is a σ-algebra on Ω and ν is a
probability measure that defines the probability distribution p{R ∈ A} := ν(R−1(A)) for all A ∈ ΣX̄ .

A stochastic model consists of a string of the kind of probabilistic experiments that are described
by a random variable. Formally, a stochastic model {Rt} (in mathematical parlance a ‘stochastic
process’), t ∈ R for continuous time or t ∈ Z for discrete time, is a family of random variables, which

1We talk about ‘models’ rather than ‘systems’ because we reserve the term ‘system’ for the parts or aspects of
the physical world that are represented by mathematical structures, and we refer to the structures themselves as
‘models’. We note, however, that terminology varies. The mathematics and physics literature speaks of ‘dynamical
systems’ rather than ‘models’. A similar issue arises in connection with the term ‘process’, where the mathematical
literature refers to models with a stochastic dynamics as ‘stochastic processes’. We avoid ‘processes’ talk altogether
because outside mathematics a process is usually taken to be a part of the world represented by a model rather than
a mathematical object. For a discussion of how models represent systems see Frigg and Nguyen (2017).

2At this point there is no requirement that the measure be normalised.
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are defined on the same probability space (Ω,ΣΩ, ν) and take values in the same measurable space
(X̄,ΣX̄) such that R(t, ω) := Rt(ω) is jointly measurable in (t, ω). The crucial difference between a
stochastic model and a ‘mere’ random variable is that a random variable describes the outcome of
one experiment and a stochastic model describes the outcome of a sequence of experiments. This
is reflected in Ω. While in the case of a ‘mere’ random variable Ω only encodes the outcome of one
experiment, in the case of a stochastic model Ω is defined so that it encodes the outcomes of the
sequence of experiments and thus encodes all possible histories of the entire process. In the example
of an infinite sequence of coin tosses, for instance, Ω could consist of all the bi-infinite sequences
ω = (..., ω−1, ω0, ω1, ...) where ωi encodes the outcome of the probabilistic experiment at time t = i.
An example of such a sequence is (..., 0, 1, 1, 0...) (where ‘1’ encodes the outcome Heads and ‘0’
encodes the outcome Tails). Ri then picks the element of a sequence at t = i and maps onto an
element of X̄ = {Heads, Tails} (namely, ‘1’ to Heads and ‘0’ to Tails). Hence Ri gives the outcome
of the coin toss at time t = i. A realisation is a possible path of the model. That is, it is a function
rω : R → X̄, rω(t) = R(t, ω), for ω ∈ Ω. The difference between ω and rω is simply that while rω
gives a possible path of the model in terms of sequences of elements of X̄, ω encodes such a possible
history (cf. Doob 1953, 4-46).

The probability of outcome A at time t is given by P{Rt ∈ A} := R−1
t (A). But how is this

probability determined by (Ω,ΣΩ, ν)? Ω contains bi-infinite sequences and ν, as a measure on Ω,
assigns probabilities to such sequences, yet R−1

t (A) is the probability of a particular outcome A at
a particular time t. The point to realise is that probabilities on sequences determine probabilities
of outcomes at time t in a straightforward manner. Take again the example of the coin toss. To
determine the probability of Tails at time t = 5 we group the sequences in Ω into two sets. The first
set, B, contains all sequences that do not have 0 at t = 5; the second set, G, contains sequences
that do have a 0 at position t = 0. The probability of Tails at t = 5 then is ν(G).

If the stochastic model does not depend explicitly on time (if, for instance, the outcome does not
depend on when you toss a coin), then we have a stationary stochastic model, and in what follows
all stochastic models we will be working with are assumed to be stationary. In formal terms, a
stochastic model {Rt} is stationary iff the distributions of the multi-dimensional random variable
(Rt1+h, . . . , Rtn+h) is the same as the one of (Rt1 , . . . , Rtn) for all t1, . . . , tn ∈ R or Z, n ∈ N, and
all h ∈ Z or R.

In what follows Markov models play a crucial role (in the mathematical literature they are referred
to as ‘Markov chains’). Intuitively, a Markov model describes probabilistic laws where the proba-
bility distribution of the next state of the model only depends on the previous state of the model
and no other past states. Formally, {Rt; t ∈ Z} is a Markov model iff the following three conditions
are satisfied: (i) The model’s outcome space consists of a finite number of states X̄ := {s1, . . . , sN},
N ∈ N, and ΣX̄ = P(M̄); (ii) P{Rt+1 = sj |Rt, Rt−1 . . . , Rk} = P{Rt+1 = sj |Rt} for any t, any
k ∈ Z, k ≤ t, and any sj ∈ M̄ ; and (iii) P{Rt+1 = sj |Rt = si} for any si, sj ∈ M̄ is independent
of t, t ∈ Z. Clearly, such a model is stationary. Define P k(si, sj) := P{Rn+k = si |Rn = sj} for
k ∈ Z. The Markov model is irreducible iff it cannot be split into two models because each state can
be reached from all other states, i.e. for any si, sj ∈ M̄ there is a k ∈ N such that P k(si, sj) > 0.
Since in an irreducible Markov model any state is accessible from any other state, irreducibility can
be seen as the stochastic equivalent to ergodicity (Berger 2001).

It is illustrative to compare deterministic and stochastic models. There are some obvious corre-
spondences: the state space X of a deterministic model corresponds to the outcome space X̄ of a
stochastic model; the sigma algebra ΣX corresponds to ΣX̄ ; the measure µX corresponds to the
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distribution p{R ∈ A}; and a solution sx corresponds to a realisation rω. But what corresponds
to the evolution function Tt? The not entirely obvious answer is: the measure ν. Ω contains all
possible histories and ν assigns probabilities to them. By making some of these histories more likely
than others, ν in effect provides dynamical information. Take again the example of coin tosses
and consider two finite strings of outcomes ω′1 = (0, 1, 0, 1, 0, 1, 0, 1) and ω′2 = (0, 0, 1, 1, 0, 0, 1, 1).
These are not themselves elements of Ω (which is a space of bi-infinite sequences), but they are the
middle segments of great many sequences in Ω. Let M(ω′1) be the set of all bi-infinite sequences
with the middle segment ω′1, and likewise for M(ω′2). If the coin is fair and the dynamics is such
that the outcome at time t is independent from the outcome at any earlier (or future) time, then
ν(M(ω′1)) = ν(M(ω′2)). If however, the process is such that successive results anticorrelate (i.e.
if the outcome at t is unlikely to be H if the outcome at t − 1 was H, and likewise for T ), then
ν(M(ω′1)) > ν(M(ω′2)). In this way the measure ν enshrines the dynamics of the model.

2.2 Boltzmannian Statistical Mechanics

Presentations of the conception of equilibrium in Boltzmannian statistical mechanics (BSM) often
begin with what is now known as the combinatorial argument, and then present the result of these
combinatorial considerations as a definition of equilibrium. However, it is now recognised that
combinatorial considerations do not provide a general definition of equilibrium (see Uffink, 2007,
and Werndl and Frigg, 2015a, for discussions). We therefore work with the time-average concep-
tion of equilibrium, which has recently been proposed by Werndl and Frigg (2015a, 2015b, 2017b,
forthcoming-a). This conception is free of the restriction faced by the combinatorial argument and
provides a fully general definition of equilibrium.

Consider a physical system S like a gas, a magnet or a crystal. At the micro-level such a system
is described either by a deterministic or a stochastic model of the kind introduced in Subsection
2.1. At the macro-level S is characterised by a set of macro-variables {v1, . . . , vl} (l ∈ N). The
choice of macro-variables depends on a number of factors, including the purpose and aim of an
investigation and the availability of certain measurement procedures that are eventually used to
perform observations on the system. These macro-variables are measurable functions vi : X → Vi
in the deterministic case and vi : X̄ → Vi in the stochastic case, associating a value with each point
in state space or outcome space. We use capital letters Vi to denote the values of vi. These values
can now be used to define macro-states. The standard case is when a macro-state is defined by a
particular set of values {V1, . . . , Vl}: the model is in macro-state MV1,...,Vl iff v1 = V1, . . . , vl = Vl.
This definition formalises the intuitive idea behind the notion of a macro-state: all models that are
macroscopically indistinguishable are in the same macro-state. Central to BSM is that macro-states
supervene on micro-states, implying that a system’s micro-state uniquely determines its macro-state.
This determination relation usually is many-to-one, and therefore every macro-state M is associated
with a macro-region consisting of all micro-states for which the system is in M .

An important yet often neglected issue is on what space macro-regions are defined. The obvious
option would be X (or X̄), but often this is not what happens. In general, macro-regions are defined
on a subset Z ⊂ X (or Z̄ ⊂ X̄). Intuitively speaking, Z (or Z̄) is a subset whose states have the
same equilibrium macro-state (share the same equilibrium properties). In the case of the dilute gas
with N particles, for instance, X is the 6N -dimensional space of all position and momenta while
Z is the 6N − 1 dimensional hypersurface of constant energy E. This is because the equilibrium
state is dependent on the energy E. We refer to X (or X̄) as the full state space and to Z (or
Z̄) as the effective state space of the system. The macro-region ZM (or Z̄M ) corresponding to
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macro-state M can then be defined as the set of all x ∈ Z (or Z̄) for which M supervenes on x.
The macro-regions on Z (or Z̄) form a partition of Z (or Z̄), meaning that they do not overlap
and jointly cover Z (or Z̄). The correct choice of Z (or Z̄) depends on the system, and has to be
determined on a case-by-case basis (cf. Werndl and Frigg 2015b). Since a system can never leave
the partition of macro-regions, Z must be mapped onto itself under the model’s time evolution.
The sigma algebra can then be restricted to Z and so that one ends up considering a measure on
Z which is both invariant under the dynamics and normalised (i.e. µZ(Z) = 1).3 In this way one
obtains what the dynamical systems literature refers to as a measure-preserving dynamical system
(Z,ΣZ , µZ , Tt) with a normalised measure µZ . We call (Z,ΣZ , µZ , Tt) the effective deterministic
model (as opposed to the full deterministic model (X,ΣX , µZ , Tt)). Similarly, for stochastic models
Z̄ is invariant under all R(t), and this gives rise to a stochastic model {St} consisting of a family of
random variables from (Ω̂,ΣΩ̂, ν̂) to (Z̄,ΣZ̄) where Ω̂ is the subset of Ω that encodes histories with
outcomes in Z̄, ΣΩ̂ is the sigma algebra ΣΩ restricted to Ω̄, and ν̂ is the measure ν restricted to

Ω̂, and the probability P̄{S(t) ∈ A} := S−1
t (A). We call {St} the effective stochastic model, which

contrasts with the the full stochastic model {Rt}.

Sometimes the standard macro-states (defined through exact values of the macro-variables) are too
fine. In such situations one can turn to macro-states that are defined by the macro-variables tak-
ing values in a certain range. One can then say, for instance, that the model is in macro-state
M[A1,B1],...,[Al,Bl] iff V1 ∈ [A1, B1], . . . , Vl ∈ [Al, Bl] for suitably chosen intervals. This can be a
useful move, for instance, if the vi are continuous variables and one wants to say that the model is
in a particular macro-state if the values of the vi lie within a certain range (which could be defined,
for instance, by the measurement precision of the available laboratory equipment).

To introduce the notion of an equilibrium macro-state, let us have a brief look at the notion of
equilibrium in thermodynamics. Recall that a system is part of the physical world. A system is
in thermal equilibrium ‘when none of its thermodynamic properties are changing with time’ (Reiss
1996, 3; cf. Fermi 2000, 4).4 This might suggest defining the equilibrium macro-state of a model as
the macro-state whose macro-region is such that every initial condition eventually moves into the
region and then stays there indefinitely. Unfortunately, this is unattainable in SM: due to Poincaré
recurrence and time-reversal invariance trajectories will not remain indefinitely in any macro-region,
and there may always be a few initial conditions that lie on trajectories that avoid equilibrium alto-
gether. To get around these problems while still saving the basic intuition of thermal equilibrium,
it is natural to postulate that the equilibrium state is the state in which the system spends most of
the time in the long run.

To make this notion precise, we need the concept of the long-run fraction of time LFA(x) (for the
deterministic case) and LFA(ω) (for the stochastic case) that a model spends in a subset A (of either

3The dynamics is given by the evolution equations restricted to Z, and we follow the dynamical systems literature
in denoting it again by Tt.

4Being in thermal equilibrium is an intrinsic property of the system, which offers a notion of ‘internal equilibrium’
(Guggenheim 1967, 7). It contrasts with ‘mutual equilibrium’ (ibid., 8), which is the relational property of being in
equilibrium with each other that two systems eventually reach after being put into thermal contact with each other.
Mutual equilibrium is often also referred to as ‘thermal equilibrium’. It is the notion that figures in the zeroth law of
thermodynamics, which effectively says that thermal equilibrium is an equivalence relation. In the current context,
we use the phrase ‘thermal equilibrium’ to refer to the internal notion of equilibrium.
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Z or Z̄):5

Deterministic model : LFA(x) = lim
t→∞

1

t

∫ t

0

1A(Tτ (x))dτ, (1)

Stochastic model : LFA(ω) = lim
t→∞

1

t

∫ t

0

1A(Sτ (ω))dτ, (2)

where 1A(x) is the characteristic function of A: 1A(x) = 1 for x ∈ A and 0 otherwise. Note that
long-run fractions depend on the initial condition in the deterministic case and on the history in
the stochastic case.

The notion of ‘most of the time’ can be read in two different ways, leading to two different notions
of equilibrium. The first introduces a lower bound of 1/2 for the fraction of time, and stipulates
that whenever a model spends more than half of the time in a particular macro-state, then that
state is the equilibrium state of the model. Formally, let α be a real number in the interval ( 1

2 , 1],
and let ε be a very small positive real number. If there is a macro-state MV ∗1 ,...,V

∗
l

satisfying the
following condition, then it is an α-ε-equilibrium state:

Deterministic model: There exists a set Y ⊆ Z such that µZ(Y ) ≥ 1− ε, and all initial
states x ∈ Y satisfy LFZMV ∗1 ,...,V ∗l

(x) ≥ α. xt (the state of the deterministic model at

time t) is then said to be in equilibrium iff xt ∈ ZMV ∗1 ,...,V
∗
l

.

Stochastic model: There exists a set Ω∗ ⊆ Ω̂ such that ν̂(Ω∗) ≥ 1 − ε, and all ω ∈ Ω∗

satisfy LFZ̄MV ∗1 ,...,V ∗k
(ω) ≥ α. S(t) (the state of the stochastic model at time t) is then

said to be in equilibrium iff S(t) ∈ Z̄MV ∗1 ,...,V
∗
l

.

The second reading takes ‘most of the time’ to refer to the fact that the model spends more time in
the equilibrium state than in any other state (allowing that this can be less than 50% of its time).
Formally, let γ be a real number in (0, 1] and let ε be a small positive real number. If there is a
macro-state MV ∗1 ,...,V

∗
l

satisfying the following condition, then it is a γ-ε-equilibrium state:

Deterministic model: There exists a set Y ⊆ Z such that µZ(Y ) ≥ 1−ε and for all initial
conditions x ∈ Y : LFZMV ∗1 ,...,V ∗l

(x) ≥ LFZM(x) + γ for all macro-states M 6= MV ∗1 ,...,V
∗
l

.

Again, xt is said to be in equilibrium iff xt ∈ ZMV ∗1 ,...,V
∗
l

.

Stochastic model: There exists a set Ω∗ ⊆ Ω̂ such that ν̂(Ω∗) ≥ 1 − ε, and all ω ∈ Ω∗

satisfy LFZ̄MV ∗1 ,...,V ∗k
(ω) ≥ LFZ̄M (ω) + γ for all M 6= MV ∗1 ,...,V

∗
k

. Again, S(t) is said to

be in equilibrium iff S(t) ∈ Z̄MV ∗1 ,...,V
∗
l

.

These two notions are not equivalent. In fact, an α-ε-equilibrium is strictly stronger than γ-ε-
equilibrium in the sense that the existence of the former implies the existence of the latter but
not vice versa. Recall that macro-states, and hence also equilibrium states, are defined in terms
of the values taken by macro-variables. For brevity we talk of ‘equilibrium values’, which should
be understood as meaning ‘the value of the relevant physical quantities when the system is in the
equilibrium state’. Note that the equilibrium state and equilibrium value depends on the measure
defined on the effective state space (in particular, different measures might lead to different equi-
librium states). One can speak of an observed equilibrium state at the macro-level if solutions end

5We state the definitions for continuous time. The corresponding definitions for discrete time are obtained simply
by replacing the integrals by sums.
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up spending most of their time in the same macro-state when the system is repeatedly prepared in
various initial states. This happens if repeated state preparation leaves the system in a micro-state
that is in Y , which one expects to happen.6

These definitions are about the time a model spends in the equilibrium state, and as such they remain
silent about the size of the equilibrium macro-regions. There is nothing in the above definitions that
would, in principle, preclude equilibrium macro-regions from being small. We call a macro-region
β-dominant if its measure is greater or equal to β for a particular β ∈ ( 1

2 , 1]. We say that a macro
region is δ-prevalent if its measure is larger than the measure of any other macro-region by a margin
of at least δ > 0. One can then prove the following theorems (Werndl and Frigg 2015b, 2017b).

Dominance Theorem: If Mα-ε-eq is an α-ε-equilibrium, then the following holds for
β = α(1 − ε): µZ(ZMα-ε-eq ) ≥ β (for deterministic models) and p{Z̄Mα-ε-eq} ≥ β (for
stochastic models).7

Prevalence Theorem: If Mγ-ε-eq is a γ-ε-equilibrium, then the following holds for δ =
γ−ε: µZ(ZMγ-ε-eq ) ≥ µZ(ZM )+δ (for deterministic models) and p{Z̄Mε-eq} ≥ p{Z̄M}+δ
(for stochastic models) for all macro-states M such that M 6= Mγ-ε-eq.

8

These theorems establish that equilibrium macro-regions are large in one of the two senses specified.

The Prevalence theorem shows that the equilibrium macro-region of γ-ε-equilibrium can take less
than 50% of the effective state space (the equilibrium macro-region just needs to be larger than any
other macro-region). Some may regard this as reductio of the notion of a γ-ε-equilibrium, because,
as matter of principle, an equilibrium state must take at least 50% (or even much more) of the state
space. We want to remain agnostic about this issue here, but note the following. First, γ-ε-equilibria
play a role in the practice of physics: for instance, the equilibrium of the widely discussed KAC-ring
model (Thompson 1972, 23; Lavis 2005) and the ideal gas with the macro-state structure given by
the combinatorial argument (Werndl and Frigg 2015b, 27-28; Swendsen 2012, 11) are γ-ε-equilibria
(and no α-ε-equilibria). Hence dismissing γ-ε-equilibria on conceptual grounds requires a certain
degree of revisionism. Second, the claims in this paper are conditional in that they explicate what
happens if one accepts γ-ε-equilibria. Those who do not recognise γ-ε-equilibria as bona fide equi-
libria will say that systems that have no α-ε-equilibrium in fact have no Boltzmannian equilibrium
at all. We discuss what happens in such cases in Subsection 5.4.

As we will see in Section 5 (when we discuss the polarisation of the six-vertex model and the mag-
netisation of the Ising model), there are models in which the relevant macro-variables fluctuate
between two values, assuming one or the other value most of the time. The values of the magnetisa-
tion m of a spin system, for instance, can jump back and forth between two extremal values C and
−C. How should one think about such a situation? A radical suggestion would be to say that such
a model has no equilibrium and leave it at that. Another possibility would be to further broaden
the definition of a macro-state and say that macro-states can not only be defined by intervals but
in fact by any set η of values. One could then take η = {C,−C} and define Mη, the macro-state
in which the magnetisation is either C or −C. Both proposals have their merits, but in the physics

6One way to motivate this assumption is to study the properties of the functions describing the preparation of
initial states. E.g. a common assumption is that such preparation functions are absolutely continuous w.r.t. Z,
which, if Y is of measure 1, immediately gives the desired result that when preparing the system one usually ends up
in Y (for further details, see Werndl 2013).

7We assume that ε is small enough so that α(1− ε) > 1
2

.
8We assume that ε < γ.
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literature this situation is usually dealt with in another way, namely by saying that the model has
two equilibria, one associated with m = C and one with m = −C.9 We adopt this point of view
and integrate it into our framework.10

However, having two equilibria is incompatible with the above definitions of equilibrium, and to
accommodate models with two equilibria these definitions need to be generalised. A natural way to
go is to require that nearly all initial states spend most of their time in either one or the other of
the two macro-states. If this is the case we speak of a dual equilibrium (and we call an equilibrium
of the kind we discussed so far a single equilibrium if there is any ambiguity about which type of
equilibrium it is referred to). As in the case of the single equilibrium, there are two versions. With
α and ε as above, we say that a model has a dual α-ε-equilibrium iff there are two macro-states
MV ∗1 ,...,V

∗
l

and MV +
1 ,...,V +

l
such that:

Deterministic model dual equilibrium condition: There is no γ-ε-equilibrium, and there
exists a set Y ⊆ Z such that µZ(Y ) ≥ 1 − ε and all initial states x ∈ Y satisfy
LFZMV ∗1 ,...,V ∗l

∪ZM
V

+
1 ,...,V

+
l

(x) ≥ α.11 Again, x(t) is then said to be in one of the equilib-

rium states iff x(t) ∈ ZMV ∗1 ,...,V
∗
l
∪ ZM

V
+
1 ,...,V

+
l

.

Stochastic model dual equilibrium condition: There is no γ-ε-equilibrium, and there ex-
ists a set Ω∗ ⊆ Ω̂ such that ν̂(Ω∗) ≥ 1−ε, and all ω ∈ Ω∗ satisfy LFZ̄MV ∗1 ,...,V ∗l

∪Z̄M
V

+
1 ,...,V

+
l

(x) ≥

α.12 Again, S(t) is then said to be in one of the equilibrium states iff S(t) ∈ Z̄MV ∗1 ,...,V
∗
l
∪

Z̄M
V

+
1 ,...,V

+
l

.

The requirement that there is no γ-ε-equilibrium is added to rule out that models can have single
and dual equilibria simultaneously.13 So either a system has just a single equilibrium, or it has just
a dual equilibrium. The γ-ε-equilibrium generalises in the same way. With γ and ε as above, we
say that a model has a dual γ-ε-equilibrium iff there are two macro-states MV ∗1 ,...,V

∗
l

and MV +
1 ,...,V +

l

such that:

Deterministic model: There exists no γ-ε-equilibrium, and there exists a set Y ⊆ Z such
that µZ(Y ) ≥ 1−ε and for all initial conditions x ∈ Y we have LFZMV ∗1 ,...,V ∗l

∪ZM
V

+
1 ,...,V

+
l

(x) ≥

LFZM∪ZM′(x) + γ for all macro-states M,M ′ 6= MV ∗1 ,...,V
∗
l

and M,M ′ 6= MV +
1 ,...,V +

l
.

Again, x(t) is said to be in one of the equilibrium states iff x(t) ∈ ZMV ∗1 ,...,V
∗
l
∪ZM

V
+
1 ,...,V

+
l

.

9See, for instance, Baxter (1982, Ch. 1), Cassandro et al. (1973, 153), Gonsalves (2007), Lavis and Bell (1999,
307), Levis (2012, Section IV.3), Sekular (Unpublished, 2), van Enter and van Hemmen (1984, 258), and Venaille and
Bouchet (2009, 1).

10In this paper we will only deal with cases where there are two equilibria. In principle the framework can be
extended to conceptualise what it means that a system has three or more equilibria.

11It is furthermore required that all macro-states that satisfy the dual equilibrium condition can be labelled as M1
and M2 such that M1 = MV ∗1 ,...,V ∗

l
and M2 = M

V +
1 ,...,V +

l
. This is to make sure that the dual equilibria are unique;

we thank an anonymous reviewer for making us aware of the necessity of this condition.
12Again, to make sure that the dual equilibria are unique, it is furthermore required that for all macro-states

that satisfy the dual equilibrium condition can be labelled as M1 and M2 that satisfy M1 = MV ∗1 ,...,V ∗
l

and

M2 = M
V +
1 ,...,V +

l
.

13If a model has no γ-ε-equilibrium, it does not have a α-ε-equilibrium either, so the clause in effect rules out
both kinds of single equilibria. This requirement also implies that the system spends an equal amount of time in
ZMV ∗1 ,...,V

∗
l

and ZM
V

+
1 ,...,V

+
l

. If it did not spend an equal amount of time in ZMV ∗1 ,...,V
∗
l

and ZM
V

+
1 ,...,V

+
l

, then a

γ-ε-equilibrium would exist.
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Stochastic model: There is no γ-ε-equilibrium, and there exists a set Ω∗ ⊆ Ω̂ such that
ν̂(Ω∗) ≥ 1− ε, and all ω ∈ Ω∗ satisfy LFZ̄MV ∗1 ,...,V ∗l

∪Z̄M
V

+
1 ,...,V

+
l

(x) ≥ LFZ̄M∪Z̄M′(x) + γ

for all macro-states M,M ′ 6= MV ∗1 ,...,V
∗
l

and M,M ′ 6= MV +
1 ,...,V +

l
. Again, S(t) is then

said to be in one of the equilibrium states iff S(t) ∈ Z̄MV ∗1 ,...,V
∗
l
∪ Z̄M

V
+
1 ,...,V

+
l

.

Analogues of the Dominance and Prevalence theorems also hold for dual equilibria. More specifi-
cally, the two macro-regions corresponding to a dual α-ε-equilibrium take up at least α(1 − ε) of
state space, and the two macro-regions corresponding to an dual γ-ε-equilibrium together are at
least γ− ε larger than the union of the macro-regions of any two macro-states other than MV ∗1 ,...,V

∗
l

and MV +
1 ,...,V +

l
.

2.3 Gibbsian Statistical Mechanics

In Gibbsian statistical mechanics (GSM) the object of study is an ensemble, an infinite collection of
independent models that are all governed by the same laws of motion but are in different states.14

The ensemble is described by a probability density ρ(x, t), x ∈ Z, over the effective state space
if the model is deterministic or a probability density ρ(x̄, t), x̄ ∈ Z̄ over the outcome space if the
model is stochastic (recall that, intuitively speaking, Z (or Z̄) is the subset of X (or X̄) whose
states share the same equilibrium properties.) For brevity we only state definitions and results for
the deterministic case; their stochastic cousins can be obtained simply by replacing x by x̄ and Z
by Z̄.

The probability density reflects the probability of finding the state of a model chosen at random
from the ensemble in a region R ⊆ Z at time t:

pt(R) =

∫
R

ρ(x, t)dx. (3)

The probability must be conserved over time, meaning that for every R(t) ⊆ Z that is moving
forward under the time evolution of the model the probability must be constant:

d

dt

∫
R(t)

ρ(x, t)dx = 0 (4)

It is a necessary and sufficient condition for this to hold that ρ satisfies the Liouville equation (Tol-
man 1938). For this reason equation 4 holds in all Hamiltonian systems.

In his discussion of ensembles Gibbs introduces what he calls the condition of statistical equilibrium
(1902, 8). An ensemble is in statistical equilibrium iff ρ is stationary. A distribution is stationary iff
it does not change over time, meaning that it is invariant under the dynamics: ρ(x, t) = ρ(x) for all t.

There will usually be a large number of stationary distributions for a certain dynamics,15 and so the
question arises which of these distributions should be chosen to characterise a given situation. Gibbs

14We follow Gibbs’ (1902) original presentation of GSM. Alternative presentations endeavour to avoid reference to
ensembles and regard GSM as probabilistic algorithm. For a discussion of different interpretations of GSM see Frigg
and Werndl (forthcoming-a).

15If a system is Hamiltonian, then every distribution of the form ρ(x) = ρ(H(x)) is stationary, where H(x) is the
system’s Hamiltonian. An interesting result in this context is also the theorem that if the system (X,ΣX , ρ, Tt) is
ergodic and a stationary distribution ξ is absolutely continuous w.r.t. ρ, then it follows that ρ = ξ.
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discusses this issue at length and proposes the so-called microcanonical distribution if the system
is completely isolated from its environment (and thus the number of particles and the energy are
both constant). The microcanonical distribution is defined on the hypersurface of constant energy
Z given by H(x) = E relative to a fixed energy value of E (where H is the Hamiltonian of the
model):

ρm(x) =
1

ω(E)
δ(H(x)− E), (5)

where ω(E) is the area of the surface of constant energy E (cf. Uffink 2007, equations (41) and (42)).
If the system is in contact with a heat bath of a certain temperature and the number of particles is
constant but the energy varies, Gibbs proposes as the equilibrium distribution the so-called canonical
distribution16 (here Z equals the full phase space X):

ρc(x) =
e−H(x)/kT

ζT
, (6)

where, again, H is the Hamiltonian, T is the temperature, k is the Boltzmann constant, and ζT is
the so-called partition function

ζT =

∫
X

e−H(x)/kT dx. (7)

The microcanonical and canonical distributions will be needed for the examples that will be dis-
cussed later in the paper. The justification of these distributions as the correct distributions for
certain situation can proceed along different lines, and a number of suggestions have been made (see
Myrvold, 2016, and Frigg and Werndl, forthcoming-b, for reviews). In connection with the canoni-
cal distribution for thermal systems, Szilard’s (1925) argument deserves note. The core idea of his
argument is that the canonical distribution can be derived from only two requirements, namely that
(i) if two systems in isolation are at the same temperature, then there can be no mean flow of energy
between them (‘no spontaneous flow of energy’) and that (ii) when two systems at the same tem-
perature are combined, the joint system is at the same temperature (‘composition’) (cf. Maroney
2008). We do not discuss the justification of the distributions in more detail here because nothing
in what follows depends on how the choice of a particular distribution is justified. The crucial point
to bear in mind is that statistical equilibrium pertains to an ensemble and hence provides a notion
of ensemble-equilibrium which is the standard view of Gibbsian equilibrium (see, for instance, Hill
1987, 8, Myrvold 2016, 588-589, and Tolman 1938, 63).

As we have seen previously, a system is in thermal equilibrium if none of its thermodynamic proper-
ties change over time, and we have seen that BSM captures this notion by defining the equilibrium
macro-state of the model as the macro-state in which the model spends most of its time. How does
GSM’s notion of statistical equilibrium relate to thermal equilibrium? A common way to relate the
two is to appeal to phase averages. Assume that the relevant physical variable is associated with a
real-valued function f : Z → R.17. Examples of such functions are the total magnetisation or the
total polarisation of the system (which we will discuss in Section 5). The phase average of f is

〈f〉 =

∫
Z

f(x)ρ(x, t)dx. (8)

16One might worry that the canonical distribution is dependent on the temperature T . We thank a referee to point
out a simple resolution to this. Take the canonical distribution to be specified not by temperature but by expected
energy, with T understood purely formally as the Lagrange multiplier obtained in extremising Gibbs entropy subject
to a fixed expected-energy. An analysis of thermodynamics in the Gibbsian framework would have to tell us why this
Lagrange multiplier is to be identified with thermodynamic temperature. Yet this is something that does not need
to be answered before one use the canonical ensemble.

17The variables we consider in this paper are not explicitly time-dependent. One can consider time-dependent
variables simply by replacing the above definition by f : X × t→ R.
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If the model is in statistical equilibrium, then 〈f〉 does not depend on time because ρ is stationary.
The practice of calculating phase averages is called Gibbsian phase averaging. It pays noting that
the results of Gibbsian phase averaging crucially depend on the measure chosen because different
measures can give different values for 〈f〉.

Assume that a system in thermal equilibrium is represented by a Gibbsian model in statistical equi-
librium. The Averaging Principle (AP) is then the proposition that, under certain conditions, when
measuring the quantity that is associated with f on the system, then the measured equilibrium
value of f is equal to the phase average 〈f〉 of the Gibbsian model. In other words: if conditions C
are true, then the outcome of a measurement of a property associated with function f on a system
in equilibrium is 〈f〉.

We will discuss this principle and the associated conditions in more detail in the next section. Be-
fore getting into this discussion it is worth mentioning that there is a question about what counts
as ‘measured’ or ‘observed’ value. There are two options. In BSM one considers instantaneous
measurements, which see a measurement as happening at a particular instant of time. Penrose de-
scribes a measurement of that kind as ‘an instantaneous act, like taking a snapshot’ (2005, 17-18).
This option is also available in GSM. If this notion is adopted, then AP is interpreted as making a
statement about a single and instantaneous measurements. AP then should be read as saying that
the outcome of a single measurement of property f on a system in system-equilibrium is 〈f〉. The
second option is to see observation and measurement as process that is carried out over an extended
period of time, and the outcome of a measurement as some sort of aggregate over instantaneous
values. In this vein Chandler considers the option that an observed value of quantity ‘is actually
the average over very many independent observations’ (1987, 58). Much can be said about these
options, but the question of the nature of observation need not occupy us here because, as we will
see in the next section, the problem we discuss in this paper does not depend on which notion of
measurement is adopted.

Finally, we note that Gibbsian statistical mechanics can be interpreted in various ways, and in this
paper we need not commit ourselves to any particular interpretation because the points we make
are independent of particular interpretations (for a review of various interpretations, see Frigg and
Werndl 2019). However, because of its prominence, we would like to briefly discuss the fluctuation
interpretation of GSM. The core idea here is to use the probabilities of GSM as given in equation (3)
to calculate the probability that a fluctuation of a certain magnitude away from the phase average
occurs. In more detail: the fluctuation for a micro-state x ∈ Z is the difference between between
the value f(x) (the true value if the model is in state x) and the Gibbsian phase average 〈f〉::

∆(t) = f(x(t))− 〈f〉. (9)

and likewise for a micro-state x̄ ∈ Z̄ if the system is stochastic.

Given an interval δ := [δ1, δ2], where δ1 and δ2 are real numbers such that 0 ≤ δ1 ≤ δ2, equation (3)
can then be used to arrive at the probability for a fluctuation of a magnitude between δ1 and δ2 to
occur:

p(δ) =

∫
D

ρ(x)dx, (10)

where D = {x ∈ X | δ1 ≤ |∆(t)| ≤ δ2}. This equation gives the probability that the system exhibits
fluctuations of a certain magnitude at a certain time. We will discuss such fluctuations and their
probabilities later in Section 5.
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It is important to interpret the scope of this equation correctly. Sometimes the probabilities in
equation (3) are interpreted as holding universally. That is, ρ is seen as providing the correct proba-
bilities for the state of a system to be in region R at time t for all R in Z and for any time t. Under
such an interpretation the fluctuation probabilities in equation (10) are then seen as universal in
the sense that for any magnitude and for any time t, p(δ) gives the probability for a fluctuation of
a certain magnitude to occur at t.

Yet universality of this kind is a very strong demand and fails in general. A careful study of
GSM reveals that at least one of two conditions have to be met in order for this universality
to hold (for more on those two conditions, see Frigg and Werndl 2019). First, suppose that the
probability of fluctuations describe observations on a single system when one traces the system’s
state over time. The masking condition requires either that the model has access to all parts of
state space, or, if that is not the case, that f must be such that the proportion of states for which
f assumes a particular value is the same in each invariant subset of Z. If the masking condition is
satisfied, then the probability of fluctuations describing observations on a single system are correctly
described by equation (10).Second, suppose that the ensemble is like an urn of balls in the sense
that the distribution ρ specifies the probability of finding that the state x of the system lies in a
certain part of the state space in much the same way in which the fraction of red balls in the urn
specifies the probability of drawing a red ball. The condition of f -independence then (roughly)
states that the dynamics of the model must be such that the probability of finding a specific value
of f in two consecutive yet sufficiently temporally distant measurements have to be (approximately)
independent of each other. If this is the case, then the probability of fluctuations, when probabilities
are interpreted like draws from an urn, are correctly described by equation (10). The Gibbsian ρ
can be used to calculate correct fluctuation probabilities only if at least one of these conditions is
satisfied. These conditions limit the scope of the fluctuation interpretation of GSM because both
conditions are strong requirements on the dynamics and the macro-variables and their satisfaction
cannot be taken for granted.

3 The Mechanical Averaging Principle

This paper is an investigation of the practice of averaging, but rather than investigating AP, we in-
vestigate a related principle that we call the Mechanical Averaging Principle (MAP). In this section
we derive MAP and explain how MAP relates to AP.

Consider a physical quantity that is associated with a real-valued function f . Let FT be the value
that the quantity assumes when the system is in thermal equilibrium (see Section 2.2). In our
context this an empirical value: FT is the outcome of a measurement of f on a system in thermal
equilibrium. Then let FB be the Boltzmannian equilibrium value for the same quantity in the same
system.18 The fundamental claim of BSM then is that FB = FT . Let us call this the Boltzmannian
Equilibrium Principle (BEP). We can then formulate what we call the Equilibrium Argument :

BEP: FB = FT

AP: 〈f〉 = FT under condition C

———————————————————

18In terms of the formalism introduced in Section 2.2, this means that f is one of the macro-variables vi and FB

is the value that vi assumes when the system is in state MV ∗1 ,...,V ∗
l

, i.e. V ∗i .
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Conclusion: FB = 〈f〉 under condition C

The conclusion of the Equilibrium Argument is what we call the Strict Mechanical Averaging Prin-
ciple. The principle is ‘strict’ because it postulates a strict identity between the two values. The
qualification ‘mechanical’ highlights that the principle equates two mechanical quantities, namely
the Boltzmannian equilibrium value and the Gibbsian phase average of f . This contrasts with AP,
which concerns the connection between a mechanical and an observational quantity.

The requirement of a strict identity between the two may be too stringent a requirement in practice
and so it is advisable to investigate a more permissive principle. Such a principle can be reached by
introducing an error term. Doing so leads us to the Mechanical Averaging Principle (MAP):

FB = 〈f〉 ± χf under conditions C, (11)

where χf is very small relative to 〈f〉 and FB . We call the equation in the principle, FB = 〈f〉±χf ,
the Mechanical Averaging Equation (MAE).

It is crucial to stress that χf depends on f . More specifically, given a macro-variable f it can then
be decided what a very small observational difference relative to values of f amounts to. We do not
believe that there are absolute criteria for what counts as very small. In addition to the dependence
on f , how large χf is allowed to be will depend on the problem at hand and on the context of the
discussion. So there is some flexibility concerning what ‘very small’ means. No harm is done to
our discussion by the absence of absolute standards because our arguments in what follows neither
depend on a particular choice of χf , nor on a particular understanding of ‘very small’. 19 Note
also that the conditions we formulate in Section 4 are either based on exact results that hold for
χf = 0 (AET and COT), or on results that resolve this issue by offering explicit bounds for χf
(Khinchin condition). In the examples in Section 5, the differences between FB and 〈f〉 are so large
that for any halfway reasonable understanding of ‘very small’ some of the examples would have to
count as counterexamples to the MAP. In Section 2.2 we noted that in some cases macro-states
are defined by macro-variables taking a value in a certain range or interval [a, b]. In such cases the
question whether the Gibbsian phase average is in agreement with the Boltzmannian equilibrium
value amounts to the question of whether the Gibbsian phase average is contained in the interval
[a− χf , b+ χf ].20

The question that this paper is concerned with now comes clearly into focus: what are the conditions
C for which MAE holds true? And let us be absolutely clear on what has to be the case for MAE to

19A referee pointed out that one might want to say that the difference between FB and 〈f〉 can be regared as small

just in case
|FB−〈f〉|
|〈f〉| is negligible. This is a possible view, and it is compatible with our account (because χf can

be estimated from the requirement that
|FB−〈f〉|
|〈f〉| has to be negligible). There remains a question, however, why

one would want to accept this as the only criterion. In fact, there are good reasons not to do so because whenever

FB is zero (which is the case for some of the examples discussed in this paper), then
|FB−〈f〉|
|〈f〉| is 1, and hence not

informative.
20In stating MAP, and indeed the Equilibrium Argument, we took f to play the role both of a Boltzmannian

macro-variable vi and of a Gibbsian functions fi. This is legitimate because in many cases the Boltzmannian and
the Gibbsian functions are indeed identical (as we will see in the examples in Section 5). If they are not identical,
they are very similar in the following way. To end up with a finite set of macro-states, BSM needs a coarse graining.
One way to get a coarse graining is, as we have noted in Section 2.2, to define macro-states through the requirement
that the values of f lie in a certain interval. An alternative option is to coarse-grain the variable itself, meaning that
it is changed to assume constant values on macro-regions of finite measure. If an originally continuous variable is
coarse grained in this way, it is still similar to the original variable, and it can still be used for a comparison between
BSM and GSM. One can of course also use the coarse-grained macro-variables in GSM, which facilitates a direct
comparison.
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hold. Implicit in the plea to find conditions C that make MAE true is that the conditions have to
be such that FB = 〈f〉±χf holds under C in the same model, where ‘model’ is used in the technical
sense defined in Section 2.1. We are not interested in situations in which FB in one model is equal
to 〈f〉 in another model. What we have to find are conditions that guarantee that FB = 〈f〉 ± χf
whenever FB and 〈f〉 are calculated in one and the same model. A fortiori this means that the we
have to compare values that are obtained for models that have the same measures (i.e. ρ = µZ
in the deterministic case and ρ = P̄{S ∈ A} in the stochastic case), because altering the measure
amounts to altering the model.21

It is important to bear in mind that enquiring into the truth of MAP is not tantamount to enquiring
into the truth of AP. The logical relation between the two principles is indirect. If MAP is false
for a certain C, this implies that the Strict Mechanical Averaging Principle is also false for that C.
This, in turn, implies that AP is false for C or BEP is false (or both). In Section 5 we will encounter
examples for which the conclusion of the Equilibrium Argument is false, which raises the interesting
question whether one sees the reason for this in the failure of AP or in the failure of BEP (or, indeed,
in the failure of both). We briefly discuss these alternatives in Section 6. Conversely one cannot
infer from the truth of MAP for a certain C to the truth of AP for the same C. In fact, such an
inference would be a fallacy of the affirmation of the consequent. It could, in principle, be the case
that BEP and AP are both false, but in a way that ‘cancels out’ and makes MAP come out true
even though both premises are false. In fact, MAP only provides ‘negative’ information about AP: if
MAP is false for conditions C and BEP is true, then it follows that AP is also false for conditions C.

The project for this paper is to investigate MAP by discussing various candidates for condition C.
That is, we are looking for Cs that make it that case that FB = 〈f〉 ± χf whenever FB and 〈f〉 are
calculated on the same model. Our strategy for this is to start with Cs that have been proposed for
AP and ask whether they work for MAP. This is a good heuristic because intuitively one expects
MAP to hold for conditions that make AP true. But, for the reasons discussed in the previous
paragraph, this is not more than a heuristic: neither does the truth of AP guarantee the truth of
MAP, not can we infer back from truth of MAP to the truth of AP.22

The structure of the two theories makes it clear that C will, to a large extent, be concerned with
the kinds of variables that one should consider. This choice is a subtle matter because there are
important differences between the Boltzmannian and the Gibbsian conceptions of equilibrium. The
existence of a Boltzmannian equilibrium (the largest macro-region relative to the values of certain
macro-variables) depends on the choice of macro-variables: there may be an equilibrium for one
variable but not for another variable. There is no such dependence in the Gibbsian conception of
equilibrium (a stationary distribution), even though the phase averages of course also depend on
the variables chosen. So agreement and disagreement between these two notions will depend on
what kind of macro-variables one focuses on, and much of the effort to articulate conditions will be
concerned with identifying the ‘right’ kind of variables.

We emphasise that an enquiry into MAP involves the comparison of phase averages with Boltz-

21On the face of it, P̄{S ∈ A} and ρ(x̄) seem to be different mathematical objects and so one may wonder how
they can be identical. But the difference is merely in the notation. Since P̄{S ∈ A} is the probability distribution
over Z̄ one could just as well write p(x̄), which makes the connection to ρ(x̄) obvious.

22Incidentally, this is also why it does not matter for our investigation which notion of measurement one adopts
in GSM (as we noted at the end of the previous section). We can consider candidate conditions C for both kinds of
measurement and ask whether MAP holds true under C without committing to C making AP true. If a particular
C would make AP true under, say, the time average notion of measurement but not under an instantaneous value
interpretation of measurement, we can remain agnostic about which notion of measurement is the correct one.
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mannian equilibrium; it does not involve a comparison of ‘Gibbsian equilibrium values’ with Boltz-
mannian equilibrium values. This is important because there is no agreement over what ‘Gibbsian
equilibrium values’ would be. In BSM the system can (and occasionally will) leave the equilibrium
macro-region, but still spend most of the time in the equilibrium region. Hence BSM characterises
equilibrium through a specific set of values (or intervals of values) and conceptualises fluctuations as
taking the system away from equilibrium. The situation is subtly but importantly different in GSM.
In GSM equilibrium is characterised by a stationary distribution. Under the fluctuation interpreta-
tion of GSM introduced in Section 2.3, this distribution provides the probabilities for fluctuations
away from 〈f〉, but such fluctuations appear within equilibrium. So under that interpretation, fluc-
tuations are inherent to equilibrium, and do not count as departures from equilibrium. The quantity
f can then assume a whole array of values in Gibbsian equilibrium, which makes it meaningless to
speak of a ‘Gibbsian equilibrium value’ (and hence there is simply nothing one could meaningfully
compare to the Boltzmannian equilibrium value). We avoid this difficulty here by not taking a stand
either on the interpretation of GSM or on the issue of what a Gibbsian equilibrium value might be.
Instead we focus on the phase average 〈f〉, which is a mathematically well-defined object no matter
what one’s interpretation of GSM.

Finally, we note that identifying such conditions is only a first step toward a better understanding of
the relation between BSM and GSM, and that these conditions by no means offer a full account of
the relation between BSM and GSM. Finding such an account is of course a much broader problem
and would also include the discussion of aspects other than equilibrium values, most notably how
BSM and GSM understand the approach to equilibrium and how the two understandings relate.
But such a discussion is beyond the scope of this paper.

4 Demarcating the Validity of the Mechanical Averaging
Equation

We now turn to the core question of this paper: for what conditions C is MAP true? In Subsection
4.1 we briefly comment on two common but unsuccessful attempts. In Subsection 4.2 we discuss
conditions that impose restrictions on the fluctuation of a variable. In Subsection 4.3 we discuss the
Average Equivalence Theorem, and in Subsection 4.4 we discuss and prove a new theorem, which
we call the Cancelling Out Theorem. All theorems offer sufficient (but not necessary) conditions for
the agreement of Boltzmannian equilibrium values and Gibbsian phase averages. In Subsection 4.5
we discuss the relations between these conditions and point out that they are independent of one
another.

4.1 Unsuccessful Attempts

SM is habitually introduced as theory of large systems. Commenting on the systems that fall within
the scope of SM Baxter, for instance, says that ‘[s]uch systems are made up of a huge number of
individual components (usually molecules)’ (1982, 1). This might be understood as suggesting that
AP holds for C that says that the system is large.23 Following the heuristic outlined in Section 3,
let us now ask whether MAP is true with C = {the system is large}. Unfortunately this is obviously
wrong because consisting of large number of molecules is neither necessary nor sufficient for it to
be the case that FB and 〈f〉 are approximately equal. It is not sufficient because the equation can
fail in large systems, no matter how large the systems are. We will see examples of this in the next

23We do not attribute this claim to Baxter.

17



section. Conversely, the condition is not necessary because FB = 〈f〉±χf can hold in small systems
like a single harmonic oscillator for particular variables f (it holds exactly, for instance, for f(x) = c
for all x and c constant).

Another possible condition is C = {the system is ergodic}. Hill begins his discussion of AP by as-
sociating observed values with finite time averages over a period τ during which the ‘experimental
measurement’ lasts (1987, 3). He notes that a ‘direct computation’ of this value cannot be carried
out and that ‘Gibbs’ alternative suggestion’ was ‘that an ensemble average be used in place of a time
average’ (ibid. 5). This instates a ‘correspondence’ between time averages and phase averages. But
he immediately adds that ‘[n]o completely general and rigorous proof of the validity of this correspon-
dence is available’ (ibid. 8). What would it take to get such a proof? Hill states that establishing
the correspondence for ‘τ → large’ is known as the ‘ergodic problem’, and there have been ‘many
attempts’ to solve the problem, ‘none completely successful’ (ibid. 16). Hence, the limitation on AP
are grounded in the limitations of establishing ergodicity. Similarly, Kittel states AP and anchors it
in equating phase averages and time averages. He notes that to justify such a move the system has
to be ergodic but immediately adds a cautionary note: ‘It is certainly plausible that the two averages
might be equivalent, but it has not been proved in general that they are exactly equivalent’ (1958, p.
8).24 Ruelle (1969, 2-3) also discusses the justification of AP in terms of time-averages and ergodic-
ity and notes that ‘it should be stressed that a more satisfactory argument should involve the fact
that we deal with large systems. In particular, a large system may have from the physical viewpoint
a completely normal thermodynamic behaviour without being, strictly speaking, ergodic’ (Ruelle
1969, 3). By not being strictly ergodic he seems to have the idea in mind that a system is nearly
ergodic; formally, this is usually captured by the condition of epsilon-ergodicity (cf. Vranas 1998).
So the view expounded here seems to be that FT = 〈f〉 ± χf holds if the system is ergodic, or the
slightly weaker condition that the system is epsilon-ergodic, i.e. C = {the system is epsilon-ergodic}.

This viewpoint is unsuccessful for several reasons. Sklar (1973, 211; 1993, 176-9) and Malament and
Zabell (1980, 342-3) argue that from the fact that measurements take some time it does not follow
that what is actually measured are time averages, and the association of measurement results with
time averages is unjustified. One might try to circumvent this objection by adopting Chandler’s
point of view, mentioned in the last paragraph of Subsection 2.3, that the observed value is a average
over many independent observations. But this would still have to be the average of observations
made over a finite interval of time, and this does not sit well with ergodicity with requires a limit
for time towards infinity.

Even if one could, somehow, set all these issues aside and legitimately associate measured values
with infinite time averages, ergodicity would not provide a condition which makes MAP true be-
cause ergodicity is neither necessary nor sufficient for FB = 〈f〉 ± χf . First, there are system in
which this equation holds despite them not being ergodic or epsilon-ergodic. An example of such
a system is the Kac ring, which we will encounter later in the next subsection. Second, there are
ergodic and epsilon-ergodic systems in which FB = 〈f〉 ± χf fails, which happens trivially when f
assumes values on non-equilibrium states that are vastly different from FB .

What we have seen is that being large and being ergodic or epsilon-ergodic by themselves do not
provide the C needed. This does, however, not rule out that they play a role in a larger package of
conditions that do fit the bill.

24Similar arguments can found in Chandler (1987, 55-59) and Isihara (1971, 23-30).
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4.2 The Khinchin Condition

In the previous subsection we noted that FB = 〈f〉 holds trivially if the function f is constant.
This is of course an uninteresting case because functions that are of interest in physics will vary.
But it provides an interesting perspective on the problem because we can now ask: how far can we
move away from the trivial case of f being constant and still retain the result that FB = 〈f〉 ± χf .
Intuitively this is the case when fluctuations of f away from 〈f〉 are small. This suggestion has been
articulated by a number of authors. Hill submits that the validity of the identification of observable
values with ensemble averages is legitimate only when the fluctuations of f away from 〈f〉 are small
(1987, 9-10). Schrödinger declares phase averaging works in cases where the ‘distribution becomes
infinitely sharp. Mean values, most probable values, any values that occur with non-vanishing prob-
ability — all become the same thing’ (1989, p. 35). And Landau and Lifshitz note that ‘if, by means
of the function ρ(p, q) we construct the probability distribution of the function for the various values
of the quantity f(p, q), this function will have an extremely sharp maximum for f = f̄ , and will be
appreciably different from zero only in the immediate vicinity of this point’ (1980, p. 5).

The challenge then is to articulate what it means for f to have small fluctuations. An important
way to do this is by dint of the Khinchin condition. There are two versions of the Khinchin condi-
tion, one formulated in terms of Gibbsian phase averages and the other in terms of Boltzmannian
equilibrium values. The idea underlying the first version is that the values of the variable f are
approximately equal to the Gibbsian phase average 〈f〉 almost everywhere on the state space. This
formulation is often appealed to in the literature, e.g. Wallace 2015, 289; Unpublished; Malament
and Zabell 1980, 344-345; Vranas 1998, 693; Lavis 2005, 267-268, also endorses this condition and,
in particular, seems to have in mind that this condition should apply to densities like the entropy
density, internal energy density and magnetisation density).

To make this idea precise, recall the notion of a fluctuation as introduced in equation (9) and assume,
to begin with, that macro-states are defined by certain specific values of the macro-variables (see
Section 2.2). Then the Khinchin-condition (Version A) is then satisfied iff:

There is a X̂ ⊆ Z with µX(X̂) = 1− δ for a very small δ ≥ 0 such that |∆f(x)| = 0 for
all x ∈ X̂.

If macro-states are defined via ranges of macro-values (see again Section 2.2), which is how they
seem to be defined in the references given in the second paragraph of this section, then the Khinchin-
condition (Version A) is satisfied iff:

There is a X̂ ⊆ Z with µX(X̂) = 1− δ for a very small δ ≥ 0 such that |∆f(x)| ≤ ε for
all x ∈ X̂ and a very small ε ≥ 0.

The underlying assumption here is that one macro-state is defined by exactly those values within ε
of 〈f〉.

Suppose now that a Boltzmannian equilibrium exists and let Fequ be the value of f in the Boltz-
mannian equilibrium macro-region (for standardly defined macro-states) or let Fequ be one of the
values in the range of values defining the equilibrium macro-state (when macro-states are defined via
ranges of values). There are only very few states of at most measure δ that have macro-values that
differ from 〈f(x)〉 (for standardly defined macro-states) or that differ by more than ε from 〈f(x)〉
(for macro-states defined via ranges of values). Hence these states cannot form the Boltzmannian
equilibrium macro-state. Therefore, for standard macro-states Fequ must be equal to 〈f(x)〉 (for
standard macro-states); for macro-states defined via ranges of values Fequ must be within ε of 〈f(x)〉,
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i.e.,
|〈f(x)〉 − Fequ| ≤ ε, (12)

and the Boltzmannian equilibrium values and the Gibbsian phase average agree approximately.

The second formulation of the Khinchin condition is also often appealed to in the physics and
philosophy literature (e.g. Ehrenfest and Ehrenfest-Afanassjewa 1959, 46-52). Here the idea is that
the variable f is equal to the Boltzmannian equilibrium value nearly everywhere on state space and
that the variable does not take extreme values on the rest of the state space. That is, as remarked
above, Version B is formulated in terms of Boltzmannian equilibrium values and not, as Version
A, in terms of the phase average. Also, Version B is only formulated for a standard macro-states
structure (and not for macro-states defined via ranges of values). Formally, the Khinchin condition
(Version B) is satisfied iff:

There is an X̄ ⊆ Z with µX(X̄) = 1−δ (for a small δ ≥ 0) such that (i) |f(x)−Fequ| = 0
for all x ∈ X̄ and (ii) |

∫
Z\X̄ f(x)dµX − Fequδ)| ≤ γ (for a very small γ ≥ 0).

The idea behind (ii) is that macro-values of non-equilibrium states should not be extremely high
or extremely low such that their contribution to the phase average causes a significant difference
between the Boltzmannian equilibrium value and the phase average.

A simple calculation shows that for systems that satisfy Version B of the Khinchin condition with
respect to f , the phase average is approximately equal to the Boltzmannian equilibrium macro-value
Fequ:

|〈f(x)〉 − Fequ|

≤ |
∫
X̄

f(x)dµX − Fequ(1− δ)|+ |
∫
X\X̄

f(x)dµX − Fequδ

| ≤ 0 + γ = γ, (because of (i) and (ii) of Version B of the the Khinchin condition). (13)

In what follows, dependent on what is more suitable, we will sometimes focus on Version 1 and
sometimes on Version 2.

The name of the condition is owed to the fact that Khinchin instigated a systematic study of func-
tions that satisfy strong symmetry requirements and therefore have small fluctuations for systems
with a large number of constituents.25 As discussed in this section, and also in Section 1, arguments
for the conclusion that Gibbsian phase averages are the correct equilibrium values and hence ap-
proximately agree with Boltzmannian values (or lie within the Boltzmannian equilibrium interval)
typically assume that the Khinchin condition is satisfied.The importance of the Khinchin condition
(Version B) can be illustrated with two examples.

4.2.1 The Dilute Gas With Distributions as Macro-States

The first example for a system in which the Khinchin condition furnishes the required justification
is the dilute gas as discussed by Ehrenfest and Ehrenfest-Afanassjewa (1959). Consider a dilute gas

with N particles. The state of one particle is given by a point in the 6-dimensional state space Xdg
1

(consisting of the three position and the three momentum coordinates of the particle). Thus the

state xdg of the entire gas is given by N points in Xdg
1 , which is equivalent to specifying one point

in Xdg – N times the Cartesian product of Xdg
1 . Since the gas is confined to a finite container and

25The Khinchin condition should not be conflated with Khinchin’s (1949) theorem, to which we turn shortly.

20



its energy is constant, only a certain finite part of Xdg
1 is accessible. This accessible part of Xdg

1 is
then divided into cells of equal size whose dividing lines run parallel to the position and momentum
axes. The result is a finite partition Ωdg := {ωdg1 , ..., ωdgl }, l ∈ N, on Xdg

1 . The cell in which a
particle’s state lies is referred to as the particle’s coarse-grained micro-state. The specification of
the coarse-grained micro-state for all particles is called an arrangement. Finally, a specification of
the number of particles in each cell is referred to as a distribution Ddg = (N1, N2, . . . , Nl) (Ni is the

number of particles in cell ωdgi ). Each distribution is compatible with several arrangements, and the
number of arrangements corresponding to a given distribution Ddg is G(Ddg) = N ! /N1!N2! . . . , Nl!.

Since the energy is constant, the effective state space of the system is the hypersurface of constant
energy Z = Xdg

E = {xdg ∈ Xdg | E(xdg) = E}, where E(xdg) is the energy of xdg and E is a

certain energy value. The measure on this state space is the microcanonical measure µdgE . Under
the assumption that the energy ei of particle i only depends on the cell in which it is located (and
not on the location of the other particles),26 one can show that the most common distribution (in

terms of the measure µdgE ) is the (discrete) Maxwell-Boltzmann distribution

Ni = γeλei , (14)

where γ and λ are parameters which depend on N and E. This is the result of the calculations in
Boltzmann’s (1877) classical combinatorial argument).

Now suppose that, based on the distributions Ddg, a macro-variable fdg is defined on Z as follows:
it assigns the value Fequ to states xdg that are in the Maxwell-Boltzmann distribution or in a
distribution that is very close to the Maxwell-Boltzmann distribution. It assigns different values
for all other distributions, and it is assumed that these values do not differ dramatically from
Fequ. Ehrenfest and Ehrenfest-Afanassjewa then assume that a Boltzmannian equilibrium exists.27

More specifically, they assume that the macro-region in which the macro-variable has value Fequ
is an α-ε-equilibrium (i.e. that for all initial states x (except possibly for a set of measure ε)
LFXdgMFequ

(x) ≥ α for a certain α > 1/2). By the dominance theorem, it follows that this region

takes up most of the state space. In fact, as Ehrenfest and Ehrenfest-Afanassjewa (1959, 46-52)
show with reference to Jeans’ (1916, §46-§56) calculations, in this case nearly all of state space is
taken up by the equilibrium macro-region MF equ . Because nearly all of state space is taken up
by the equilibrium macro-region and the macro-variable fdg does not take extreme values outside
equilibrium, the Khinchin condition (Version B) is satisfied. Hence the Gibbsian phase average∫
fdgdµE is approximately equal to the Boltzmannian equilibrium value Fequ. To conclude, for

dilute gases with variables fdg of the kind considered here, the Boltzmannian equilibrium value and
the Gibbsian phase average are approximately equal.

4.2.2 The Kac Ring With Coarser Macro-States

As another example consider the Kac ring with a non-standard macro-state structure. The Kac ring
consists of an even number N of sites distributed equidistantly around a circle. On each site there
is a spin, which can be in states up (u) or down (d). Hence the one spin state space is Xkr

1 = {u, d}.
A micro-state xkr of the ring is a specific combination of up and down spin for all sites, and the full

26Strictly speaking this amounts to assuming that the gas is ideal.
27More precisely, they state that the equilibrium macro-region is given by the macro-region of largest measure.

This assumes that a Boltzmannian equilibrium exists. In general, it does not follow that the macro-region of largest
measure automatically corresponds to a Boltzmannian equilibrium. For instance, if the dynamics is the identity
function, the macro-region of largest measure does not correspond to a Boltzmannian equilibrium – cf. Werndl and
Frigg (2015a, 2015b).

21



state space Z = Kkr consist of all combinations of up and down spins (i.e., of 2N elements). There
are s, 1 ≤ s ≤ N − 1, spin flippers distributed at some of the midpoints between the spins. The dy-
namics T kr rotates the spins one spin-site in the clockwise direction every second (or whichever unit
of time one chooses), and when the spins pass through a spin flipper, they change their direction.
The measure usually considered is the uniform measure µXkr on Xkr. (Xkr, P (Xkr), T krt , µXkr ),
where T krt is the t-th iterate of T kr and P (Xkr) is the power set of Xkr, is a deterministic model
describing the behaviour of the spins (cf. Bricmont 2001; Lavis 2008). The macro-states usually
considered are the total number of up spins and will be labelled as MK

i , where i denotes the total
number of up spins, 0 ≤ i ≤ N . The usual macro-state structure will be discussed in the next section
(because it does not provide an instance of the Khinchin condition). Here we will discuss instead
a different macro-state structure also discussed in Lavis (2008, 686). Namely, let N = 10.000 and
let one macro-state be defined by the union of all MK

i for 5000− 221 ≤ i ≤ 5000 + 221 and assign
the macro-value 0 to it (this is an example where new macro-variables are defined by previously
considered macro-variables as discussed in Section 2.2; in this case the new macro-variables are de-
fined by the previously considered standard macro-variables of the KAC ring). It can be shown that
the macro-region corresponding to this macro-state takes up 99.999% of state space. Now assume
that there are other positive macro-values that are different from zero but that are not exorbitantly
large or exorbitantly small. Then, clearly, the Khinchin condition (Version B) is satisfied for this
macro-state structure of the Kac ring and the Boltzmannian equilibrium value is 0 and the value
obtained by Gibbsian phase averaging is approximately 0.

4.2.3 Fluctuation Theorems and Khinchin’s Theorem

The requirement that ∆f(x) is small in Version A of the Khinchin condition is in effect a condition on
f and so the question is: what functions satisfy the requirement of zero (small) fluctuation? When
put in this way, two places to look for conditions suggest themselves: the subfield of SM working
on so-called fluctuation theorems, and Khinchin’s own research programme. We now look at each
in turn. Our sober conclusion will be that while both offer interesting results, these results concern
different issues and provide no clear-cut criteria for f to have small fluctuations. Yet what remains
is that both Version A and Version B of the Khinchin condition identify some of the most important
conditions under which the Boltzmannian equilibrium value and the Gibbsian phase average coincide.

The core idea of fluctuation theorems is to show that under certain conditions (typically involving
the limit N →∞) fluctuations vanish. But rather than working with ∆f(x), fluctuation theorems
typically concern relative fluctuations:

∆rf(x) =

√
〈(∆f(x))2〉
|〈f〉|

, (15)

which quantify the average size of fluctuations – as defined in Equation (9) – relative to the absolute
value of the Gibbsian phase average: ∆rf(x) is small if the average fluctuations ∆f(x) are small
compared to 〈f〉. A typical fluctuation theorem then shows for a certain function f that ∆rf(x)
vanishes as N →∞ (Lavis and Bell 1999, Section 2.5). As an example consider the internal energy
U (which will be defined in Section 4.4.1). One can show that ∆rU(x) ≈

√
2/(3N), and hence

∆rU(x) goes to zero as N goes to infinity (ibid.).

If a fluctuation theorem holds, in many cases the Boltzmannian equilibrium value is approximately
equal to the Gibbsian phase average. So that a fluctuation theorem holds can give a hint that there
might be approximate euqality between Gibbsian phase averages and Boltzmannian equilibrium
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values. Yet logically the question is whether a fluctuation theorem provides us with a sufficient con-
dition for approximate equality. That is, assuming that a fluctuation theorem for a certain quantity
f holds, can we infer that Gibbsian phase averages and Boltzmannian equilibrium values coincide?
Unfortunately not. The problem is that results about relative fluctuations ∆rf(x) imply nothing
about absolute fluctuations ∆f(x). The numerator in ∆rf(x) is the expectation value of the square
of ∆f(x). But from the fact that ∆rf(x)→ 0 as N →∞ one cannot infer that ∆f(x)→ 0. In fact
∆rf(x)→ 0 is compatible with ∆f(x) diverging for N →∞. The internal energy of the six-vertex
model mentioned above is a case in point. As just noted, it can be shown that the relative fluc-
tuation for the internal energy is proportional to

√
N/N . So the relative fluctuation tends toward

zero as N →∞. However, as we will see in Section 4.4.1, the absolute fluctuation is at least
√
N/2

and in fact diverges for N → ∞. So a zero relative fluctuation is compatible with large absolute
fluctuations, which shows that Boltzmannian equilibrium values and Gibbsian phase average can be
very different even if there is a fluctuation theorem.

Can we at least draw the converese conclusion and take the failure of a fluctuation theorem to
indicate that Boltzmannian equilibrium value and the Gibbsian phase average are different? Unfor-
tunately this inference does not hold either. First, there could be cases where the numerator in the
relative fluctuation tends to zero (implying that Boltzmannian equilibrium value and the Gibbsian
phase average agree approximately) while the relative fluctuation does not tend toward zero (e.g.
because the denominator of the relative fluctuation is or goes to zero). Second, note that the nu-
merator does not concern what we are interested in, i.e. the difference between the Boltzmannian
equilibrium value and the phase average. Rather, it concerns the expectation value of the difference
between the value of the macro-variable f(x) and the phase average 〈f〉. There are cases where
the Boltzmannian equilibrium value is approximately equal to the phase average while at the same
time the numerator of the relative fluctuation is not small because the expectation value of f(x)
and the phase average is not small. Examples include cases where the Cancelling Out Theorem (to
be discussed in Section 4.4) holds and hence the Boltzmannian equilibrium value equals the phase
average but where there are large differences between f(x) and 〈f〉 on macro-regions different from
the equilibrium region. So the sober conclusion is that fluctuation theorems per se tell us nothing
about the relation between Boltzmannian and Gibbsian equilibrium calculations.

We are well aware of the prominent role of fluctuation theorems in the literature and that they
are often taken to tell us when Boltzmannian and Gibbsian calculations agree. Yet, it is simply a
misapprehension that fluctuation theorems tell us something about the most common formulations
(formulation 1 and formulation 2 above) of the Khinchin condition. They do not because they
concern relative fluctuations while the Khinchin condition concerns absolute fluctuations.28

The core idea of Khinchin’s (1949) programme is to focus attention on a specific class of variables,
so called sum functions, and to study these in the context of large models.29 Sum functions are
functions f that can be written as a sum of one-particle functions f =

∑N
i=1 fi, where a < fi < b

for some a, b ∈ R. A simple example is the internal energy of a model of noninteracting particles,
which is just the sum of the energy of the individual particles. Khinchin furthermore assumed that
the model was isolated from the environment and that the Hamiltonian of the model was also a sum
function. Under these assumptions Khinchin could prove that for all sum functions f there exist

28The Khinchin conditions will, in general, be much easier to satisfy if the relevant quantities are intensive because
the relevant calculations are then often similar to those in the fluctuation theorems. (Recall that the macro-variables
f that figure in the Khinchin condition can be extensive or intensive – whatever one is interested in. As already
argued above, we want to be flexible and noncommittal about the choice of macro-variables).

29For detailed discussion of this programme see Badino (2006), Batterman (1998) and van Lith (2001).
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positive constants k1 and k2 such that

λ
({

x ∈ XE :
∣∣∣f∗(x)− 〈f〉

〈f〉

∣∣∣ ≥ k1N
−1/4

})
≤ k2N

−1/4, (16)

where XE is hypersurface of constant energy, λ is the microcanonical measure and N the num-
ber of constituents of the system. f∗(x) denotes the infinite time average of the function f along
the trajectory that starts in initial condition x (the average is infinite in that the limit t → ∞ is
taken). This result is now known as Khinchin’s ergodic theorem. In effect the theorem says that as
N becomes larger, the measure of those regions on the hypersurface of constant energy where the
infinite time average and the phase average differ by more than a small amount when compared to
the phase average tends towards zero.

The numerator of the crucial term in the theorem, (f∗(x)− 〈f〉)/〈f〉, looks similar to the definition
of ∆f(x) and so one might hope that Khinchin’s theorem offers an answer to the question about the
circumstances in which fluctuations are small. Unfortunately, this hope is in vein. Most importantly,
there is a crucial difference between ∆f(x) and f∗(x) − 〈f〉: the former is defined in terms of the
value of f at x while the latter is defined in terms of the infinite time average of a trajectory
starting in x. There is a tradition in the foundation of GSM that associates time averages with
measurement outcomes, and therefore sees time averages as the true equilibrium values. However,
as many commentators have pointed out, it is far from clear why observations on a model should
yield time averages30 (much less why they should yield infinite time averages).31 So bringing time
averages back into the account would be a regress rather than progress. Even if this problem
could be circumvented, we would have to face up to the intrinsic limitations of Khinchin’s theorem,
namely the unrealistic (and therefore constraining) assumption that both the observable and the
Hamiltonian are sum-functions (effectively limiting the theorem to non-interacting particles) and
the restriction to the microcanonical ensemble.

4.3 The Average Equivalence Theorem

In addition to the Khinchin condition, another important case of agreement between the Boltzmann
and Gibbsian equilibrium calculations is given by the Average Equivalence Theorem (Werndl and
Frigg 2017).32 The conditions of this theorem will be referred to as the ‘Average Equivalence
Conditions’.

Average Equivalence Theorem (AET). Suppose that a model is composed of N ≥ 1
components. That is, for the deterministic case the state x ∈ Z is given by the N
coordinates x = (x1, . . . , xN ); Z = Z1×Z2 . . .×ZN , where Zi = Zoc for all i, 1 ≤ i ≤ N
(Zoc is the one-component space). Let µZ be the product measure µZ1 × µZ2 . . .× µZN ,
where µZi = µZoc is the measure on Zoc.

33 Suppose that the macro-variable K is the

sum of the one-component variable, i.e. K(x) =
∑N
i=1 κ(xi) (it is assumed here that all

30See Frigg (2008, 146-147) for a review of this discussion.
31Lavis’ (2005, 2007) conditions for the agreement of Gibbsian and Boltzmannian values also rests on the assumption

that what is observed in equilibrium are time averages of the observable, and hence his approach suffers from the
same difficulty.

32Werndl and Frigg (2017) refer to this result as the ‘equilibrium equivalence theorem’. This name could be
misleading because the theorem concerns the largest macro-region and not the a Boltzmannian equilibrium per se.
For this reason we prefer the label ‘average equivalence theorem’. If the theorem is used to make claims about
Boltzmannian equilibrium, dynamical assumptions have to come in. Specifically, if a Boltzmannian equilibrium state
exists, then, by the dominance/prevalence theorem, the Boltzmannian equilibrium value equals the value of the largest
macro-region which, by the theorem, is equal to the Gibbsian phase average.

33N is assumed to be a multiple of k, i.e. N = k ∗ s for some s ∈ N.
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sums of possible values of the one-component variable are possible values of the macro-
variable). Then the value corresponding to the largest macro-region as well as the value
obtained by Gibbsian phase averaging is N

k (κ1 + κ2 + . . . κN ). It is obvious how to
formulate the theorem for the stochastic case by making the substitutions discussed in
Subsection 2.1.

The proof for the deterministic case can be found in Werndl and Frigg (2017) (and it is clear how
it carries over to the stochastic case). Note that the AET equally applies to deterministic and
stochastic models and makes no assumptions about the dynamics of the model. While it is true
that the existence of a Boltzmannian equilibrium crucially depends on the dynamics, the AET is
not a claim about a Boltzmannian equilibrium but about the largest-macro-region. Of course, if
the AET is used to compare the Boltzmannian equilibrium value and the Gibbsian phase average
(and the AET will usually be used in this way), dynamical assumptions play a role. Namely, then
the dynamics has to be such that a Boltzmannian equilibrium exists. Finally, note that even if a
Boltzmannian equilibrium exists, the theorem only offers sufficient but not necessary conditions for
the Boltzmannian equilibrium value and Gibbsian phase averages to agree (indeed, in Subsection
4.5 we show that the Khinchin condition, the Average Equivalence Condition and the Cancelling
Out Condition are independent).

The crucial assumptions of the theorem are (i) that the macro-variable is a sum of a variable on the
one-component space (where all sums of possible values of the one-component variable are possible
values of the macro-variable); (ii) that the macro-variable on the one-component space corresponds
to a partition with cells of equal probability; and (iii) that the measure on state space is the product
measure of the measure on the one-component space. These assumptions may seem restrictive and
to some extent they are. Nevertheless a number of standard applications of SM fall within the scope
of the theorem.34

4.3.1 The Baker’s Gas with Distributions as Macro-states

One instance of the AET is the baker’s gas. The baker’s gas is a deterministic model, consisting
of N identical particles that evolve independently according to the baker’s transformation (Lavis
2005). The model’s state space is Xbg = [0, 1]2N (which is at once the full and the effective state
space of the system), and its micro-states are of the form xbg = (b1, c1, . . . , bN , cN ), where bi ∈ [0, 1]

34There seems to be a similarity between the AET and the weak law of large numbers (LLN), which states that
given independent and identically distributed random variables (which we consider in the AET theorem) for any
ε > 0 (cf. Meester 2003, Section 4.1):

µ

({
x :

∣∣∣∣∑N
i=1 κ(xi)

N
−

(κ1 + κ2 + . . . κN )

k

∣∣∣∣ < ε

})
≥ 1−

σ2

ε2N
. (17)

This similarity is superficial and the theorems are different. We list two major differences here. First of all, the LLN
only states that the values of

∑N
i=1 κ(xi)/N and (κ1 + κ2 + . . . κN )/k are within ε. It does not say whether the

values of the extensive macro-variables we consider in the AET,
∑N

i=1 κ(xi), are close to N(κ1 + κ2 + . . . κN )/k.
All one obtains from the LLN is that their values are within Nε, but Nε can be very large. By contrast, the AET
states that the value of the largest macro-region of the macro-variable

∑N
i=1 κ(xi) equals N(κ1 + κ2 + . . . κN )/k.

Second, AET and the LLN are results about different macro-variables. AET is a result about the macro-variable∑N
i=1 κ(xi) or, if it is divided by N , about

∑N
i=1 κ(xi)/N . By contrast, LLN is a statement about the probability of

states that are close or equal to (κ1 + . . .+ kk)/k. Hence it can tell us something about the different macro-variables
that are defined by assigning the same macro-value to all states that are close or equal to (κ1 + . . .+ kk)/k (or about
macro-states that are defined by a range of values, and one macro-state is given by values that are close or equal
to (κ1 + . . . + κk)/k). Yet, note that these new macro-variables are not the macro-variables considered in the AET

theorem, viz.
∑N

i=1 κ(xi). So the LLN does not tell us about what happens for the macro-variables considered in the
AET.

25



is the momentum and ci ∈ [0, 1] the position coordinate of the i-th particle. Time is discrete and the
evolution to the next time step is given by applying to each coordinate the baker’s transformation.
That is, xbg = (. . . bi, ci . . .) evolves into Λ(xbg) = (. . . θ(bi, ci) . . .), where

θ(bi, ci) = 2bi,
ci
2

if 0 ≤ bi ≤
1

2
and 2bi − 1,

ci + 1

2
otherwise. (18)

The state space Xbg is endowed with a uniform probability measure µXbg , the 2N -dimensional
Lebesgue measure, which is invariant under the dynamics.

Next we need a macro-variable. So we partition the unit square (the state space for one particle)
into cells of equal size δω whose dividing lines run parallel to the position and momentum axes.
This results in a finite partition Ωbg := {ωbg1 , ..., ω

bg
k }, k ∈ N. The coarse-grained micro-state of

a particle is the cell in which a particle’s state lies. An arrangement is given by a specification of
the coarse-grained micro-state of all the particles. A distribution is a specification of how many
particles’ states lie in a given cell. Consider the distribution Dbg = (N1, N2, . . . , Nk), where Ni is

the number of particles in cell ωbgi . As shown in Werndl and Frigg’s (2017), for these macro-variables
the AET theorem applies and the Boltzmannian equilibrium value and the Gibbsian phase average
are both (N/k,N/k, . . . , N/k).

4.3.2 The Kac Ring With Distributions as Macro-States

Another instance of the AET is the Kac ring (Section 4.2.2) with the standard macro-state structure.
The macro-states that are usually considered are the total number of up spins MK

i . Clearly, the
total number of up spins is a sum of the variable of the one-component space {u, d} (namely, it
is 1 for u and 0 for d). Also, the macro-variable on the one-component space corresponds to a
partition with cells of equal probability (each state u and d has probability 1/2). Further, the
uniform measure on Xkr is the product measure of the measures on the one-spin space {u, d}. It
follows that the Kac ring is an instance of the AET and the Boltzmannian equilibrium value and
the Gibbsian phase average are both N/2.

4.3.3 The Ideal Gas With the Coarse-Grained Position

As a further example consider the ideal gas with N particles. For simplicity, we assume that the
particles are moving on a three-dimensional torus (implying that the momentum of each particle
stays constant). The state of one particle is given by a point in the 6-dimensional state space Xig

1 (of
all possible three momentum and position coordinates). The state xig of the system is given by N
points in Xig

1 , and Xig is then the set of all possible states of the system. Now as macro-variable let

us consider the coarse-grained position of the particles. More specifically, consider a partition Xig
1

into cells of equal size whose dividing lines run parallel to the momentum axes, i.e. the partition tells
you about the coarse-grained position of the particle (for an ideal gas on a torus the momentum of
any particle stays constant; hence it only makes sense to coarse-grain the position coordinate). This
results into a finite partition Ωig := {ωig1 , ..., ω

ig
l }, l ∈ N, on Xig

1 . The specification of where each
particle’s state lies is called an arrangement. Finally, a specification of the number of particles in each
cell is referred to as a distribution Dig = (N1, N2, . . . , Nl) (Ni is the number of particles in cell ωigi ),
and the distributions are the possible macro-states. The number of arrangements corresponding to a
given distribution Dig is G(Dig) = N ! /N1!N2! . . . , Nl!. It is then easy to see that the most common
distribution is the uniform distribution Dig

u = (N/l, . . . , N/l)35. The calculations in Lavis (2005)36

35We are assuming that N is divisible by l, i.e. there is a m ∈ N such that N = m ∗ l
36The calculations performed for the baker’s gas carry over to the ideal gas.
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then show that the largest macro-region corresponds to the uniform distribution and that this largest
macro-region takes up less than half of state space. It can be shown that the motion confined to
the hypersurface Xp determined by the constant momenta of the particles is ergodic for nearly all
values of p (namely, when the coordinates of p = (p1, . . . , p3N ) are linearly independent over Z –
then the dynamics corresponds to an irrational rotation on a torus). Hence Dig

u corresponds to an
α-0-equilibrium. Clearly, the distributions are a sum of an variable on the one-component space
Xig

1 (namely the l-dimensional vector, whose jth coordinate is 1 for the cell the particle is in and
whose other coordinates are all 0). Also, by construction, the macro-variable on the one-constituent
space corresponds to a partition with cells of equal probability. Further, the uniform measure on
Xig is the product measure of the uniform measure on the one-constituent space. It follows that the
ideal gas with the distributions as macro-variables is an instance of the AET and the Boltzmannian
equilibrium value and the value provided by Gibbsian phase averaging is (N/l,N/l, . . . , N/l).

4.4 The Cancelling Out Theorem

A third important condition under which the Boltzmannian and Gibbsian equilibrium calculations
agree is given by the Cancelling Out Theorem (and the conditions of this theorem will be refereed
to as the ‘Cancelling Out Conditions’).

Cancelling Out Theorem (COT). Consider a deterministic or stochastic model
with Boltzmannian equilibrium macro-state Mequ with equilibrium value Vequ and other
macro-states M1, . . . ,Mq, q ∈ N, with corresponding macro-values VM1

, . . . , VMq
. Fur-

ther, suppose that for any macro-state Mi 6= Mequ there is a macro-state Mj such that
(i) µZ(ZMi) = µZ(ZMj ) (for deterministic models) or P̄{S(t) ∈ Z̄Mi} = P̄{S(t) ∈ Z̄Mj )}
(for stochastic models) and (ii) VMi+VMj = 2VMequ . Then the Boltzmannian equilibrium
value as well as the value obtained by phase averaging is Vequ.

The proof of this theorem is given in the Appendix. The intuitive reasoning behind the proof is
as follows. If the state space is divided up in such a way that next to the largest macro-region
(which corresponds to the Boltzmannian equilibrium) there are always two macro-states of equal
size whose average equals the Boltzmannian equilibrium value, then the Boltzmannian equilibrium
value is equal the value obtained by Gibbsian phase averaging.

Note that, as the other conditions, the COT only offers sufficient but not necessary conditions for
the Boltzmannian equilibrium value and Gibbsian phase average to agree (and in Subsection 4.5
we will show that the Khinchin condition, Average Equivalence Conditions and Cancelling Out
Conditions are independent). Note also that the proof does not make any assumptions about the
dynamics of the model (other than that a Boltzmannian equilibrium exists), and it applies equally
to deterministic and stochastic models. The assumptions of the theorem are, of course, to some
extent restrictive (the macro-state structure needs to be of a special kind). Nevertheless, a number
of standard applications of SM fall within the scope of the theorem. We will now discuss two
important instances of the COT.

4.4.1 The Six-Vertex Model With the Polarisation for High Temperatures

First, consider a two-dimensional quadratic lattice with N grid points. We assume that the lat-
tice lies on a two-dimensional torus, which ensures that every grid point has exactly four nearest
neighbours and allows us to neglect border effects. The grid points are referred to as ‘vertices’.
Each vertex is connected to its four nearest neighbours by an edge. Each edge carries an arrow
either pointing towards or away from the vertex. A rule is now imposed restricting the allowable
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Figure 1: The configurations of the six-vertex model.

arrangements of arrows: the arrows have to be distributed such that at each vertex in the lattice
there are exactly two inward and two outward pointing arrows. This rule is known as the ‘ice-rule’,
and models based on this rule are known as ‘ice-type models’. At every vertex there are exactly six
configurations of the arrows that satisfy the ice-rule. These are shown in Figure 1. The existence
of exactly six configurations is what motivates the name ‘six-vertex model’.

The physical motivation of the ice-rule is that in frozen water each oxygen atom is connected to
four other oxygen atoms. So one can think of vertices as representing oxygen atoms and the edges
as representing their bonds, where each bond contains a hydrogen atom. This hydrogen atom does
not sit in the middle between the two oxygen atoms; it occupies a position closer to either one or
the other oxygen atoms. The arrow can be seen as indicating to which oxygen atom the hydrogen
atom is closer. The ice-rule is then the requirement that each oxygen atom has two close and two
remote hydrogen atoms (Baxter 1982; Lavis and Bell 1999). The ice rule is satisfied not only by wa-
ter ice, but also by several crystals and, in particular, potassium dihydrogen phosphate (Slater 1941).

The micro-state of the model κ = (κ1, . . . , κN ) is given by assigning one of the six types of configu-
rations of the arrows permitted by the ice rule to each vertex in the model, where the assignment of
configurations to each vertex have to fit together (e.g. one cannot assign vertex 3 to one vertex and
vertex 4 to the vertex immediately to its right because they disagree on the direction of the arrow
on the line joining them). Each of the six configurations has a certain energy εi, 1 ≤ i ≤ 6. Let
ε(κj) be the energy or the jth vertex (hence all ε(κj) range over the εi). The energy of the state κ
is then given by:

E(κ) =

N∑
j=1

ε(κj). (19)

In what follows we assume that the energy of the different configurations is ε1 = ε2 = 0 and
ε3 = ε4 = ε5 = ε6 = 1 (this is an important case of parameter values that is often discussed – cf.
Lavis and Bell 1999, 299). It is common to take the canonical distribution

p(κ) = e−E(κ)/kT /ζ (20)

with
ζ =

∑
κ

e−E(κ)/kT (21)

to be the outcome distribution. The canonical distribution implies that the lower the temperature,
the larger the probability of the lower energy states; and the higher the temperature, the more
uniform the probability distribution becomes.

There are many versions of the six-vertex model, but most versions work with a stochastic dynamics
that is assumed to be an irreducible Markov model (cf. Section 2). There are several specific algo-
rithms that can be used to generate such a model (see, e.g., Allison and Reshetikin 2005, Barkema
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and Newman 1998, Levis 2012; Syljuasen and Zvonarev 2004). A popular family of algorithms are
loop algorithms (cf. Levis 2012, 101). The core idea of these algorithms is that, given an initial
state κ, an arrow is chosen at random from κ. The vertex where it points to is denoted by v0. Then
randomly an arrow is chosen among the two outgoing arrows attached to v0. This procedure is
repeated until the path encounters a vertex that already belongs to it, creating a closed loop. Then
all spins along the loop are reversed to obtain a state κ∗. A Metropolis rule then decides whether
this is accepted as the new state. That is, the energy difference between κ∗ and κ is calculated. If
the energy difference is smaller than zero, the new state is always accepted. If it is larger than zero,
it is accepted with probability e∆E/kT .

A comment on the choice of the canonical distribution as the outcome distribution is in place. The
canonical distribution is historically associated with Gibbs, and the choice of this distribution might
therefore give the impression that we treat the model in a Gibbsian way right from the start. This
impression is mistaken. Its historical origins notwithstanding, the canonical distribution per se is
simply a probability distribution, playing the role of the outcome distribution of a stochastic model.
Given the state space, the canonical distribution and a deterministic or stochastic dynamics, we have
a deterministic or stochastic model. And a deterministic or stochastic model can be studied either
from the Boltzmannian perspective (by looking at macro-states and the macro-values the system
takes over time) or phase averages can be calculated for this system (as done in Gibbsian statistical
mechanics). So at this point we simply specify a stochastic model (in the sense of Subsection 2.1),
and such a model is conceptually prior to either the Boltzmannian and or the Gibbsian approach,
and indeed to any consideration of SM!

Consider now two polarisation macro-variables, the vertical polarisation πv and the horizontal po-
larisation πh. They are conveniently written as a vector ~π:

~π(κ) = (πv(κ), πh(κ)) = (
N − 2n

N
,
N − 2m

N
), (22)

where n is the number of arrows pointing downward and m is the number of arrows pointing to the
left. Note that −1 ≤ πv ≤ 1 and −1 ≤ πh ≤ 1.

As just noted, the higher the temperature, the more the micro-states become equally likely. From
this it follows that for sufficiently high temperatures, the largest macro-region corresponds to the
polarisation (0, 0) (because the most frequent micro-states will be the ones with an equal number of
sites pointing up and pointing down, and an equal number of sites pointing left and pointing right).
Because the dynamics is given by an irreducible Markov model (which corresponds to ergodicity in
the deterministic case), (0, 0) is the Boltzmannian equilibrium value Vequ. Now note that to any
micro-state κ there corresponds a micro-state κ∗ that results from a 180◦ rotation of all the arrows
of κ. One easily finds that (πv(κ), πh(κ)) + (πv(κ

∗), πh(κ∗)) = 0 = 2Vequ and that the probabilities
of κ and κ∗ are the same. By grouping the micro-states together into macro-states, it is obvious
that conditions (i) and (ii) of COT are satisfied. Hence Gibbsian phase averaging also yields the
value (0, 0) (cf. Lavis and Bell 1999, Chapter 10).

4.4.2 The Ising-Model With the Magetisation for High Temperatures

The Ising model is another paradigm model of SM, and there are many versions of the model. In this
section we consider a two-dimensional version with nearest neighbour interactions and a stochastic
dynamics.37 Despite being only two-dimensional, this model provides a realistic description of crys-

37Our presentation of the Ising model follows Baxter’s (1982).
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tals that have strong horizontal and weak vertical interactions such as K2NF4 and RB2MnF4.

Consider again a two-dimensional quadratic lattice with N grid points. At every grid point there is
a spin. The state of the ith spin is described by a variable σi that can take two values: σi = 1 if the
spin points up and σi = −1 if the spin points down. The model’s micro-state σ is then given by a
specification of the state of every spin on the lattice:

σ = {σ1, . . . , σN}. (23)

The model’s energy is given by its Hamiltonian:

H(σ) = E(σ) = −J
∑
nn

σiσj + L
∑
i

σi, (24)

where the first sum ranges of over all nearest neighbour pairs and the second over i = 1, ..., N . The
first term describes the contribution of intermolecular forces to the energy and the constant J ≥ 0 is
the energy associated with the nearest-neighbour interaction. The second term is the contribution
of the interaction of the spins with an external magnetic field of strength L. The zero field case
(L = 0) plays a particularly important role in the discussion, not least because it is the only case
that has been solved analytically, and in what follows we assume L = 0.

The standard choice for the outcome distribution is again the canonical distribution

p(σ) =
e−H(σ)/kT

ζ
, (25)

which specifies the probability of finding the model in a certain configuration σ. ζ is the partition
function

ζT =
∑
σ

e−H(σ)/kT , (26)

where the sum is taken over all possible configurations σ of the model. As in the case of the six-vertex
model, the underlying dynamics is assumed to be an irreducible Markov model. The probability
p(σ) is invariant under this dynamics and is therefore the stationary measure of the model. As for
the six-vertex model: p(σ) is simply the outcome distribution of a stochastic model. Given the state
space, the canonical distribution and a deterministic or stochastic dynamics, we have a determin-
istic or stochastic model. And a deterministic or stochastic model can be studied either from the
Boltzmannian perspective (by looking at macro-states and the macro-values the system takes over
time) or phase averages can be calculated for this system (as done in Gibbsian statistical mechan-
ics). For what follows it is important to note that if the field is zero and the temperatures are low,
the probabilities of the lower energy states are dominant. For high temperatures the probability
distribution is flattened out and all configurations are more or less equally likely (Baxter 1982, 9
and 21; Cipra 1987, 942).

The assumption that the dynamics of the Ising model is a Markovian and the stationary outcome
distribution is the canonical distribution is a standard assumption in the literature. The dynamics
is often specified to be either the Glauber dynamics or the Metropolis algorithm (Adler 2016; Fer-
renberg and Landau 1991). The idea underlying the Metropolis algorithm is that, starting from an
initial configuration σ, one of the sites is randomly chosen and its spin is flipped. This gives rise to
a new state σf . The energy difference between the new state and the old state ∆E : σf − σ is then
calculated. If the energy difference is smaller than zero, the new state is always accepted. If it is
larger than zero, it is accepted with probability e∆E/kT . The idea underlying the Glauber dynamics
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is that, starting from an initial configuration σ, one of the sites of the lattice i is randomly chosen.
Then the spin of the site is assigned a positive spin with a probability that equals the p-conditional
probability of a positive spin at site i, given that that all spins agree with σ, at sites different from
i, and in this way the new state is obtained.

Consider now the magnetisation as the relevant macro-variable:

m(σ) =
∑
i

−sσi, (27)

where s is a constant. As just noted, the higher the temperature, the more the micro-states are
more or less equally likely. Hence, for sufficiently high temperatures T the largest macro-region is
the one with macro-value 0 (because the most frequent micro-states will be the ones with an equal
number of up and down spins). Because the dynamics is given by an irreducible Markov model, 0
is the Boltzmannian equilibrium value Vequ. Now for any state σ = (σ1, . . . , σn) we can define its
conjugate state σ∗ = (−σ1, . . . ,−σn), and it is clear that m(σ) +m(σ∗) = 0 = 2Vequ and that both
σ and σ∗ have the same probability. By grouping the micro-states together into macro-states, it is
obvious that conditions (i) and (ii) of the COT are satisfied, and thus the value of Gibbsian phase
average is also 0 (cf. Cipra 1987; Lavis and Bell 1999, Chapter 8).

4.5 Independence of the Three Conditions

We have identified three conditions (the Khinchin condition, the Average Equivalence Conditions
and the Cancelling Out Conditions) under which the Mechanical Averaging Equation holds, i.e. the
Gibbsian phase average agrees with the Boltzmannian equilibrium value. We will now show that
these three conditions are independent.

Let us first show the independence of the Khinchin condition and the Average Equivalence Condi-
tions. The baker’s gas with the macro-structure that is usually considered (as discussed in Subsection
4.3) is an instance of the AET but it is not an instance of the Khinchin condition. As Lavis (2008,
685-688) showed, the equilibrium macro-region corresponding to (N/k,N/k, . . . , N/k) only takes up
less than a half of state space. The rest of state space is taken up by macro-regions with for which
the macro-variables assume values which are distinguishable from the equilibrium value. Thus it
is obvious that this cannot be an instance of the Khinchin condition. Likewise, the Kac ring with
the standard macro-state structure usually considered (cf. Section 4.3) is an instance of the AET.
Yet it is not an instance of the Khinchin condition because, as Lavis (2005, 2008) has shown, the
equilibrium macro-region corresponding to an equal number of up and down spins only takes up less
than half of state space (the rest is taken up by states that are macroscopically distinguishable from
the Boltzmannan equilibrium state). Finally, the ideal gas with the coarse-grained distributions as
macro-variables is also an instance of the AET (cf. Section 4.3) with the uniform distribution as
equilibrium distribution. Yet the Khinchin condition is again not satisfied (the calculations in Lavis
(2005, 2008) carry over and show that the equilibrium macro-region does not take up nearly all of
state space). These examples illustrate the general point that the conditions of the AET theorem
are not equivalent to those of the Khinchin condition because the AET theorem does not require
that the equilibrium macro-region takes up nearly all of state space.

Conversely, the Khinchin condition does not imply that the AET theorem is satisfied. For the
Khinchin condition none of the specific requirements of the AET theorem needs to be satisfied. In
particular, the Khinchin condition does not require that the macro-variable is a sum of variable on
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the one-component space, that the macro-variable on the one-component space corresponds to a par-
tition into cells of equal probability, or that the measure on state space is the product measure of the
measure on the one-component space. This is illustrated by our example of the dilute gas with the
macro-variables we discussed above in the Introduction and again in Section 4.1. As we have seen,
this example is an instance of the Khinchin condition. However, it is not an instance of the AET.
More specifically, it is not the case that all sums of possible values of the one-component variable
are possible values of the macro-variable f (because of the requirement that the total energy is con-
stant, only certain sums of values of the one-component variable are possible macro-values). Hence
the condition that the macro-variable K is the sum of the one-component variable where all sums
of possible values of the one-component variable are possible values of the macro-variable is violated.

Second, let us now show the independence of the Khinchin condition and the Cancelling Out Condi-
tions. Recall the example of the magnetisation of the Ising model for sufficiently high temperatures,
which is an instance of the COT. This example is, however, not an instance of the Khinchin condi-
tion because the equilibrium region (where there are an equal number of up and down spins) does
not take up nearly all of state space (here again the calculations in Lavis (2005) carry over to show
that the largest macro-region does not take up nearly all of state space). In general, the Cancelling
Out Conditions do not imply the Khinchin condition because the COT does not require that the
equilibrium macro-region takes up nearly all of state space.

Conversely, the Khinchin condition also does not imply the Cancelling Out Conditions. Intuitively
speaking, this is clear because the Cancelling Out Conditions require a very specific macro-state
structure (that, next to the equilibrium macro-state, pairs of macro-regions have the same size and
that their averaged macro-value equals the Boltzmannian equilibrium value) that is not required by
the Khinchin condition. An example illustrating this point is the dilute gas with the macro-value
f as discussed by Ehrenfest and Ehrenfest-Afanassjewa (1959), which, as we have seen above, is
an instance of the Khinchin condition. Yet the Cancelling Out Conditions do not necessarily ap-
ply here. Recall that the macro-variable f defined on the hypersurface of constant energy Xdg

E is
such that it assigns the same value to states xdg that are in the Maxwell-Boltzmann distribution
or in a distribution that is very close to the Maxwell-Boltzmann distribution and it assigns differ-
ent values for all other distributions. Now suppose that the values assigned by f for macro-states
that are not very close to the Maxwell-Boltzmann distribution are all larger than the macro-value
of the Maxwell-Boltzmann distribution. Then it cannot be that condition (ii) of the COT is satisfied.

Finally, let us show that the Average Equivalence Conditions and the Cancelling Out Conditions
are independent. Consider the magnetisation of the Ising model for sufficiently high temperatures
or the polarisation of the six-vertex model for sufficiently high temperatures, which, as we have
seen, are instances of the COT. However, they are not examples of the AET because the measure
on state space is not the product measure of the measure of the one-component space and hence (ii)
and (iii) of the AET are not satisfied. In general, the Cancelling Out Conditions do not require that
the macro-variable is a sum of the variable on the one-component space, that the macro-variable
on the one-component space corresponds to a partition with cells of equal probability, or that the
measure on state space is the product measure of the measure on the one-constituent space. Hence
the Cancelling Out Conditions do not imply the conditions of the AET.

For the other direction, consider again the baker’s gas with the distributions Dbg = (N1, N2, . . . , Nk)

(where Ni is the number of particles in cell ωbgi ) as macro-variables as discussed in Subsection 4.3.

Suppose that the macro-value is given by the sum function
∑k
i=1 1N1 + 2N2 + . . . (k − 1)Nk−1 +

(k + 1)Nk. Because the dynamics is ergodic (cf. footnote 2.1), Dbg
equ = (N/k, . . . , N/k) is the
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Boltzmannian equilibrium macro-state with equilibrium macro-value VDbgequ =
∑k
i=1 1Nk + 2Nk +

. . . (k−1)Nk +(k+1)Nk . Clearly, the baker’s gas with these macro-variables is a instance of the AET

and the Boltzmannian and Gibbsian phase average is
∑k
i=1 1Nk + 2Nk + . . . (k − 1)Nk + (k + 1)Nk .

But now consider the macro-state Dbg
h = (0, 0, . . . , N) with macro-value VDbgh

= N(k + 1) (the

highest possible macro-value). For this macro-state there cannot be another macro-state such that
condition (ii) of the COT is satisfied. This is so because even if one pairs it with the distribution

with the lowest macro-value Dbg
l = (N, 0, . . . , 0), the combined values VDbgl

+ VDbgh
will be larger

than 2VDbgequ . To show this, recall that 1 + 2 + . . . k − 1 = k(k − 1)/2. Hence:

2VDbgequ = 2
(
1
N

k
+ 2

N

k
+ . . . (k − 1)

N

k
+ (k + 1)

N

k

)
= (28)

2
N

k

k(k − 1)

2
+

2N(k + 1)

k
= N(k − 1) +

2N(k + 1)

k
.

Because

3N > 2N
(k + 1)

k
, (29)

also

Nk + 2N > Nk −N + 2N
(k + 1)

k
. (30)

Hence from equations (28) and (30) it follows that:

VDbgl
+ VDbgh

= N +N(k + 1) = N(k + 2) > N(k − 1) +
2N(k + 1)

k
= 2VDbgequ . (31)

Yet if the value of VDbgl
+ VDbgh

is larger than 2VDbgequ , then for every macro-value V bgM the value

of VDbgh
+ V bgM will be higher than 2VDbgequ . This implies that condition (ii) of the COT cannot

be satisfied. In general, this example illustrates that the Average Equivalence Conditions do not
imply the Cancelling Out Conditions because the COT requires a very specific macro-state structure
(where pairs of macro-values, averaged over, “cancel out” to yield the Boltzmannian equilibrium
value).

5 When the Mechanical Averaging Equation Fails

The conditions in the last section are not just consolations for philosophers. They can fail. We now
consider three examples in which MAE fails. The first example, the Baker’s gas (Subsection 5.1),
is a toy model that we discuss for its simplicity and intuitive appeal. The other two examples, the
six-vertex model (Subsection 5.1) and the Ising model (Subsection 5.2), occupy centre stage in SM,
and show that one cannot take MAP for granted.

5.1 The Baker’s Gas With the Evenness Macro-Variable

Recall the baker’s gas as introduced in Subsubsection 4.3.1. Assume we are interested in how homo-
geneous the particles are distributed, both in terms of location and momentum, and we introduce
a variable e for ‘evenness’. The variable measures to what extent the gas molecules depart from an
even distribution, with e = 0 indicating that the distribution is perfectly even and with e assuming
higher values for more pronounced inhomogeneities. To define e, consider again the distributions
Dbg = (N1, N2, . . . , Nk), where Ni is the number of particles in cell ωbgi . A distribution is perfectly
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even if all Ni assume the same values; the wider the spread of the values of the Ni the more un-
even the distribution. One can now define a partition on Xbg by grouping together all points that
have the same distribution. Let Xbg

u be the subset of all points of Xbg which correspond to the
uniform distribution Ni = N/k for all i = 1, ..., k.38 One can now define the variable e as follows:
e(xbg) = 105 ×

√
(N1 −N/k)2 + . . .+ (Nk −N/k)2, where (N1, N2, . . . , Nk) is the distribution cor-

responding to xbg. It follows that e(xbg) = 0 for xbg ∈ Xbg
u . For a distribution where only one

particle is displaced we have e(xbg) = 105
√

2, and for distribution with more that one displaced
particles the value of e(xbg) is even higher. Therefore e(xbg) ≥ 105

√
2 for all states that do not have

an even distribution.

In the Boltzmannian treatment of the baker’s gas the model has one macro-variable, which is e:
v1 = e. The elements of the partition of Xbg are then the macro-regions of e that we have seen in
the previous paragraph. The number G(Dbg) of arrangements that lead to the same distribution
Dbg is G(Dbg) = N ! /N1!N2! . . . , Nk! and it is therefore clear that Xbg

u is larger than any other
element of the partition. The baker’s gas is ergodic (Lavis 2005), and hence spends more time in
Xu than in any other cell. For this reason, the long run fraction of time for which the value of e is
0 is larger than the long run fraction for any other value. Hence the macro-state defined by e = 0
is a γ-ε-equilibrium, and e = 0 is the Boltzmannian equilibrium value.39

In the Gibbsian treatment of the baker’s gas the model has one variable f bg, namely f bg = e.
Since the gas is isolated from the its environment its equilibrium distribution is the microcanoni-
cal distribution, i.e. the uniform distribution ρ(xbg) = 1 for all xbg ∈ X is the stationary equi-
librium distribution. The phase average 〈e〉 for the macro-variable e will be greater than (1-
µXbg (Xbg

u )) × 105. Lavis (2005, table on page 275) showed that µXbg (Xbg
u ) ≤ 0.385 (for large

N), and hence (1− 0.385)× 100.000
√

2 =
√

2× 62.500 is a lower bound for 〈e〉.

So the Boltzmannian equilibrium value and the Gibbsian phase averages are very different! We note
that this difference will not disappear in the thermodynamic limit when N goes to infinity: for any
arbitrary large N the phase average will always be at least

√
2 ∗ 62.500, which is different from the

Boltzmannian value 0.

Four comments are in order. First, the equilibrium macro-region of the baker’s gas is small. The
baker’s gas shares this feature with other toy models that are standardly discussed in the literature,
for instance the Kac ring (e.g. Lavis 2008). Some may want to dig in their heels and say that
a small region cannot be an equilibrium region. This in effect amounts to rejecting the notion of
γ-ε-equilibrium state altogether. As we noted in Subsection 2.2, this is a possible but revisionary
move. We here proceed under the assumption that γ-ε-equilibria are genuine equilibria.

Second, the size of macro-regions depend on the macro-variables chosen, which raises the question of
some macro-variables are more natural than others and whether ‘unnatural’ ones can be dismissed
as irrelevant. A discussion of what counts as a ‘natural’ macro-variable would take us too far away
from our main concerns and will have to be left for another occasion. However, we readily admit
that the macro-variable e is somewhat contrived and so one might hope that the problem does not
arise once such variable are ruled out. We will see in the next two sections that this hope is in vein:
problems similar to those we have seen in this subsection crop up also in the case of perfectly ‘natu-
ral’ macro-variables like magnetisation. The grain of truth in this remark is that much depends on

38We assume that N = k × r for some r ∈ N.
39Lavis (2005) showed that for large N the equilibrium macro-region takes up less than half of the state space, and

therefore e = 0 is not an α-ε-equilibrium.
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the choice of the macro-variable and, as we have seen in Section 4, for sufficiently restrictive classes
of macro-variables the problem can indeed be avoided. But there are serious physical models that
do not fall into these classes. Thus, the relevant contrast is not between ‘mathematical contrivance’
and ‘natural physics’.

Third, a referee urged us to emphasise that just because MAE fails for evenness macro-variable fo
the baker’s gas, this does not imply that GSM cannot make sense of this example. Consider the
fluctuation interpretation of GSM as discussed in Section 2.3. Since the baker’s gas is ergodic, the
masking condition applies and hence the baker’s gas can be interpreted according to the fluctuations
interpretation of GSM. Under that interpretation, fluctuations appear within equilibrium and the
uniform distribution of the baker’s gas provides the probabilities for fluctuations away from 〈e〉 to
occur.

Finally, let us explain why for the baker’s gas with the evenness macro-variable the Khinchin con-
dition, the AET and the COT do not apply. First, note that for the baker’s gas significant chunks
of state space are taken up by non-equilibrium states whose macro-values differ considerably from
the Gibbsian phase average. Hence the Khinchin-condition is not satisfied. Second, the evenness
macro-variable for the baker’s gas is not the sum of a one-component macro-variable whose out-
comes have equal probability. So the first condition of the AET is not satisfied and hence the AET
does not apply. Third, for the evenness macro-variable of the baker’s gas the macro-values different
from the equilibrium value are all higher than the equilibrium macro-variable, implying that (ii) of
the COT fails and hence COT does not apply.

5.2 The Six-Vertex Model

5.2.1 Internal Energy Macro-Variable

Consider again the six vertex model as introduced in Subsection 4.4.1. Let us now study the internal
energy as defined in Equation (19) as the relevant macro-variable. In the Boltzmannian treatment,
the full state space (which is at the same time the effective state space) consists of all possible states
κ that satisfy the ice rule. The lowest energy value is E = 0, which defines a macro-state M0 with
the associated macro-region X̄M0 = {κ∗, κ+}, where κ∗ is the state where all vertices are in the
first configuration, and κ+ is the state where all vertices are in the second configuration. Recall
that N (the size of the system) is an arbitrarily large but finite number. Then, for sufficiently low
temperatures T the probability mass is concentrated on the two lowest energy states, and therefore
X̄M0

is the largest macro-region. Since the dynamics is given by an irreducible Markov model and
the outcome distribution is stationary, the model spends more time in the largest macro-region,
i.e. M0, than in any other macro-region provided that the temperature is sufficiently low. For this
reason M0 is a Boltzmannian γ-0-equilibrium, and E = 0 is the Boltzmannian equilibrium value.

In the Gibbsian treatment p(κ) is the stationary equilibrium measure and the variable f is the
internal energy. By definition the internal energy assumes its lowest value E = 0 only for two
specific micro-states, namely κ∗ and κ+, and will assume higher values for all other micro-states.
Furthermore, for any T > 0 there will be a non-zero probability that the model is in a state of higher
energy. Therefore, the phase average 〈E〉 is greater than 0 and hence higher than the Boltzmannian
equilibrium value.

To see that this difference can be significant and hence that this is a case where MAP fails, choose
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a T such that {κ∗, κ+} is the largest macro-region while its probability is less than 0.5.40 In this
case the Boltzmannian equilibrium value is still E = 0. The second lowest macro-value is E =

√
N ,

which is the energy of micro-states where all columns, except one, are taken up by states with the
first or the second configuration, and the states in the exceptional row are all states of the third or
fourth configuration.41 For this reason 〈E〉 is higher than

√
N/2, and therefore the Gibbsian phase

average and the Boltzmannian equilibrium value will differ by at least
√
N/2, which is not at all a

negligible difference, in particular for large N . Note that this argument holds for any arbitrary large
N . It is important that the Boltzmannian macro-value that is closest to the value obtained from
Gibbsian phase averaging is higher or equal to

√
N ; and the Boltzmannian macro-value of higher

or equal to
√
N is different from the Boltzmannian macro-value in equilibrium which is 0. This

underscores that the Gibbsian phase average is different from the Boltzmannian equilibrium value.

Finally, note that the macro-variable of the internal energy considered above is extensive, i.e. it
depends on the number of constituents of the system. Extensive variables are standardly used in
statistical mechanics (e.g. Baxter 1982; Lavis and Bell 1999). It is interesting to point out what
happens if the corresponding intensive macro-variable – the energy density (the internal energy
divided by N) – is considered instead (intensive macro-variables do not depend on the number of
constituents). One readily finds that for the intensive variable the difference between the Gibbsian
and Boltzmannian equilibrium calculations tends toward zero as N → ∞ because

√
N/2N → 0.

This illustrates the point that whether or not the Gibbsian phase average agrees with the Boltz-
mannian equilibrium value depends on the macro-variable. We also expect that the lesson of this
example generalises and that it is usually easier to achieve agreement for intensive than extensive
variables. Yet the problems we are discussing cannot simply be dismissed by exorcising extensive
variables and only working with intensive variables instead because, at least to many authors, exten-
sive variables simply are very important. Indeed, one of the best currently available rationalisations
of thermodynamics construes a system’s state space as consisting only of extensional variables (Lieb
and Yngvason 1999). Furthermore, as we will see in the next subsection, in some cases differences
between Gibbsian and Boltzmannian appear both for intensive and extensive variables. In general,
we want to leave it open what kind of macro-variables one wants to consider as this will depend on
the context.

In our case one first fixes N and then chooses a sufficiently low T . One might wonder what happens
if one first chooses the temperature and then takes the limit for N toward infinity. In this case the
situation changes. More specifically, if the temperature is below the critical temperature, then the
Boltzmannian equilibrium value and the Gibbsian phase average agree (the equilibrium values is
then (0, 0)) (Lavis and Bell 1989, 307). However, we think that what we do in the example above
(i.e. first fixing N and then choosing a sufficiently low T ) is physically realistic insofar as real
systems are finite and then for sufficiently low temperatures the disagreement between Gibbsian
phase averages and Boltzmannian equilibrium values arises. The equality between Gibbsian phase
averages and Boltzmannian equilibrium values for the internal energy only arises when N is taken
to infinity after fixing T , something one can never do with real – finite! – systems. In any case,
in all the examples that follow the difference between Gibbsian phase averages and Boltzmannian
equilibrium values will persist even if first T is fixed and then N is taken to infinity.

40Such a choice is possible because the higher the temperature, the more uniform the probability distribution
becomes. Hence for sufficiently high temperature values, the largest macro-region will be different from {κ∗, κ+}
Since the canonical distribution is continuous, there has to be a T such that {κ∗, κ+} is the largest equilibrium
macro-region while its probability is less than 0.5.

41These states mark the smallest possible departure from states with zero energy: it can be shown that the number
of downward pointing arrows is the same for all rows, and from this follows that there has to be a perturbation in
each row and that

√
N is the second lowest value of the internal energy (Lavis and Bell 1999, Chapter 10).
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5.2.2 Polarisation Macro-Variable

Consider now again the polarisation macro-variables ~π(κ) as defined in equation (22). As above, we
suppose that the dynamics is given by an irreducible Markov model. For sufficiently low values of
T it is then the case that the value of ~π will be flipping back and forth between (1, 1) and (−1,−1),
with other values occurring only for very brief intermittent periods. In the long run the system
spends the same fraction of time in both polarisation states, with flips becoming less frequent as
the model gets larger (cf. Levis 2012).

In BSM this situation is conceptualised as the system having a dual equilibrium, with M(1,1) and
M(−1,−1) being the two equilibrium states. Recall that N is an arbitrarily large finite number. Then,
as above, for sufficiently low temperatures T the probability mass is concentrated on micro-states
with minimal energy. It is obvious that the micro-states with extremal polarisation are also the
micro-states with minimal energy and so the union of the macro-regions of M(1,1) and M(−1,−1),
X̄M(1,1)

∪X̄M(−1,−1)
, is in fact identical with the macro-region of {κ∗, κ+} above. Therefore, for these

sufficiently low values of T , the model spends more time in that macro-region than in any other
macro-region. Hence X̄M(1,1)

∪ X̄M(−1,−1)
is a dual γ-ε-equilibrium. Baxter (1982, 151) express that

this is a dual equilibrium by saying that ‘[...] either all arrows point up and to the right or down
and to the left. Thus at low temperatures the system is ferroelectrically ordered’; and Lavis and
Bell (1999, 307), commenting on vertical polarisation, say that ‘the equilibrium state is thus one of
perfect long-range order with either p = 1 or p = −1’.

The result of Gibbsian phase averaging is 〈~π〉 = (0, 0). This is because to any micro-state κ there
corresponds a micro-state κr that results from κ by a 180◦ rotation of all arrows. One easily finds
(πv(κ), πh(κ)) = (−πv(κr),−πh(κr)), and the probabilities of κ and κr are the same. The Gibbsian
phase average (0, 0) is different from the Boltzmannian equilibrium values of (1, 1) or (−1,−1), and
the differences remain as N goes to infinity. The polarisation is an intensive macro-variable. Nothing
changes in substance if the corresponding extensive macro-variable (N − 2n,N − 2m) is considered.
For the sufficiently low values of T one finds a disagreement between Gibbsian phase averaging and
the Boltzmannian equilibrium values also in the extensive case because here the Gibbsian phase
average is (0, 0) while there is a dual Boltzmannian equilibrium with equilibrium values (N,N) and
(−N,−N). Hence MEA fails, which shows that MAP is wrong. As in the case of internal energy,
this argument applies for any arbitrary large N . As presented here, one first fixes N and then choses
T . One might wonder what happens if we first choose T and then take limit N →∞. The result is
that if the temperature is below the critical temperature, then the two Boltzmannian equilibrium
states are again (1, 1) and (−1,−1) (Lavis and Bell 1989, 307), and the Gibbsian phase average is
zero. Hence the differences remain.

One might have the idea to remedy this situation by describing this as a case where there are two
Gibbsian equilibria. However, while for the Boltzmannian concept a generalisation to two equilibria
is straightforward (as we have seen in section 2.2), it is not clear how the idea of a stationary ensem-
ble should be generalised to make sense of a dual equilibrium.42 We note that the generalisation in
the Boltzmannian case does not presuppose that we know in general how to calculate equilibrium

42One idea would be that a dual equilibrium corresponds to two stationary distributions. Yet, then there is the
problem that there are always several stationary distributions, and GSM lacks a criterion for determining whether
there is one equilibrium or two equilibria. Another idea would be to say that there are two equilibrium states if there
are exactly two maximum entropy stationary distributions, or if there are exactly two stationary distributions where
every state has a positive probability. But neither of these work in the current case because the six-vertex model
has just one stationary maximum entropy distribution and just one stationary distribution where every state has a
positive probability.
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values in the Boltzmannian framework (in particular, for systems with a broken symmetry). The
generalisation relies only the existence of equilibrium values, not on our ability to calculate them (for
discussion of this point see Frigg and Werndl (2019)). Indeed, whether Boltzmannian equilibrium
values can actually be calculated will depend on the mathematical knowledge of the example in
question.

The conclusion that the Gibbsian phase average of the polarisation is (0, 0) can be avoided by
appealing to limits. Consider a system that arises by adding a small positive (or negative) electric
field E to the six-vertex model. Then two limits are taken at a certain temperature T : first the
limit for N to infinity and then the limit for E to zero (from the right had side for the positive
electric field and the left hand side for the negative electric field). The idea here is to find out how
the system behaves when the electric field is turned off. One considers two different limits for E > 0
and E < 0 because one expects a discontinuity at E = 0 where the right-hand side and left-hand
side limits are different. That is, for a positive electric field one considers

P+ := lim
E→0,E>0

lim
N→∞

〈~π(κ)〉, (32)

and for negative electric field one has

P− := lim
E→0,E<0

lim
N→∞

〈~π(κ)〉. (33)

It turns out that the two phase average limits P+ and P− are no longer (0, 0). In fact, for a T smaller
than the critical temperature, they are in approximate agreement with the two Boltzmannian equi-
librium values. Hence it is sometimes stipulated that the results of Gibbsian phase averaging at
zero external field are P+ and P− (e.g. Baxter 1982, 153). Thus, by considering these limits one
can avoid the conclusion that the Gibbsian phase average of the polarisation is (0, 0) and that there
is disagreement between the Gibbsian phase average and the Boltzmannian equilibrium value.

While this procedure has a certain formal elegance, is common in physics, and leads, at least approx-
imately, to the desired values, the addition of the external field in the first place seems unmotivated
from the point of GSM. There is nothing in the Gibbsian framework that would suggest, let along
prescribe, that the equilibrium values of systems without an external field have to be calculated as
the limit of systems with an external field. This procedure is ad hoc and its main justification is that
it produces a result that is in line with the Boltzmannian values. The ad-hocness of the procedure
is further underscored by the fact that the order of the limits is crucial: if one first takes limit
E → 0 and only then the limit N → 0, one again obtains (0, 0) as an equilibrium value. But there
is nothing in the physics of the situation that would favour any particular order in which the limits
have to be taken. Furthermore, the conclusion of a zero phase average can only be avoided when
the limit system as N →∞ is considered; for any arbitrary finite N the phase average will always
be zero. This is problematic because in reality systems are finite and hence that the calculations
should work for large but finite N . In sum, calculating the polarisation at zero external field by
adding an external field and then taking the limit seems ad hoc: it is done just to obtain the correct
results but an independent physical motivation is missing

A referee suggested that we discuss the case in which the Boltzmannian measure is the uniform
measure. The reason to do so is that many undergraduate texts tell students that the Boltzman-
nian equilibrium state is the macro-state that can be realised in the largest number of different
ways. For models with discrete state spaces (such as the six-vertex or later the Ising model), this
can be interpreted as the prescription to simply count the number of micro-states that give rise to a
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certain macro-state, which in effect amounts to assuming that the system has a uniform measure. It
is certainly interesting to study the six-vertex model (or indeed the Ising model) with the uniform
measure and it is also interesting to explore whether the uniform measure is more natural than
other measures in the Boltzmannian context. However, a lack of space prevents us from getting
into a full discussion of this case. Such a discussion would take us rather far away from the cases
we have discussed so far because the uniform measure is not invariant under the usual Markovian
dynamics of the six-vertex model discussed in the literature on the six vertex model, and, similarly,
the uniform measure is not invariant either for the usual dynamics of the Ising model discussed in
the literature on the Ising model (details will follow in the next subsection). Hence the uniform
measure violates the basic assumption that the models considered must have an invariant measure.
Intuitively, this is so because the dynamics of the six-vertex model (or the Ising model) for low
temperatures is such that the lowest energy states are assigned the bulk of the probability distri-
bution. Hence, the uniform measure gets distorted under the dynamics and is not invariant. If one
wants to study the six-vertex model (or the Ising model) with the uniform measure as invariant
measure, one has to choose a different dynamics. Yet if the model has a different dynamics, then
this clearly is a different system than the one studied in the standard literature on the six vertex
model (and the Ising model). Since we want to concentrate on the dynamics that is standardly stud-
ied in the literature, we pass over the case of the uniform measure as invariant measure in this paper.

Another referee urged us to stress that just because MAE fails for polarisation of the six vertex
model, this does not imply that GSM cannot make sense of this example. A Gibbsian account of
this example can be given in the fluctuations interpretation of GSM as discussed in Section 2.3.
Since the dynamics oft the six vertex model is an irreducible Markov model, the masking condition
applies. Hence the six vertex model can be interpreted according to the fluctuations interpretation
of GSM. Under that interpretation, fluctuations appear within equilibrium and the canonical dis-
tribution provides the probabilities for fluctuations away from 〈p〉 to occur. This treatment also
explains why that phase average does not coincide with the Boltzmannian equilibrium value.

Finally, let us briefly explain why the examples just discussed are not instances of the Khinchin
condition, the AET and the COT. First, for the six-vertex model with the macro-variable of the
internal energy the non-equilibrium values that differ considerably from the Gibbsian phase av-
erage are not negligible (for the sufficiently low temperature values discussed). Hence for these
examples the Khinchin-condition is not satisfied. For the six-vertex model with the polarisation
macro-variable the Khinchin condition cannot be satisfied because most of the state space (namely
the regions corresponding to the two equilibrium states) is taken up by macro-values that are very
different from the phase average. Second, the internal energy for the six-vertex model is not the sum
of a one-component macro-variable whose outcomes have equal probability. So it does not satisfy
the first condition in the AET. Also, while the polarisation macro-variable in the six-vertex model
is a sum of one-component macro-variables, and hence satisfies the first condition of the AET, the
probability on the full state space is not the product measure of the measure on the one-component
space (indeed there is no measure on the one-component space in terms of which the measure of
the state space is defined). Hence the second and third conditions of the AET are not satisfied and
the AET does not apply. Third, for the internal energy of the six-vertex model the non-equilibrium
macro-values are all higher than the equilibrium macro-value, implying again that (ii) of the COT
fails. And for the polarisation macro-variable in the six-vertex model there are two Boltzmannian
equilibrium states and hence the structure of the macro-states is not as required by the COT, im-
plying that COT does not apply.
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5.3 The Ising Model

Recall the Ising model as introduced in Subsection 4.4.2.The behaviour of the internal energy macro-
variable has already been discussed in another paper (Werndl and Frigg 2017). There are differences
between the Boltzmannian equilibrium value and the Gibbsian phase average, but they are rather
small. More specifically, if first a certain N is fixed and then a sufficiently low temperature is
chosen, the differences are larger than 4J , which, if J is sufficiently large, seems significant. Yet, the
differences for the internal energy and polarisation of the six-vertex model are larger and hence, in
our opinion, while the internal energy of the Ising model is also an interesting example, the internal
energy and polarisation of the six-vertex model provide a clearer example for how Boltzmannian
equilibrium values and Gibbsian phase averages can come apart. A macro-variable that has not
been previously discussed in Werndl and Frigg (2017a) for the Ising model is the magnetisation.

5.3.1 Magnetisation Macro-Variable

Consider the magnetisation as the relevant macro-variable:

m(σ) =
∑
i

−sσi, (34)

where s is a constant. Supposing again an irreducible Markov model operating at a sufficiently low
temperature, the value of m will be flipping back and forth between its extremal values sN and
−sN and other values are assumed only for very brief intermittent periods. In the long run the
model will spend the same fraction of time in both macro-states, with flips getting less frequent the
larger the system becomes.

Let us start with BSM. The relevant macro-variable is v = m, and the behaviour of the system is of
the kind described at the end of Subsection 2.2 where the model has two equilibrium states. Enter
and van Hemmen (1984, 258) express that this is a dual equilibrium state by writing that ‘below Tc
the model has two equilibrium states, a (+) state with positive magnetisation and a (-) state with
negative magnetisation’. Similarly, Baxter (1982, 20) talks about two equilibrium states when he
says that ‘[a]s T approaches Tc from below, the two equilibrium states become the same’ (see also
Cassandro et al. 1973, 153; Gonsalves 2007; Sekular Unpublished, 2).

Recall that N is an arbitrarily large finite number. As we have seen above, for sufficiently low
temperature values the probabilities are centred on the two lowest energy states. These are in fact
the states in which all spins point in the same direction, i.e. the states with macro-value sN and
−sN . Thus, for sufficiently low temperatures (and under the assumption that the dynamics is an
irreducible Markov model), the model spends most of it time in the union of the two macro-regions
MsN and M−sN , X̄MsN

∪ X̄M−sN . For this reason the system has a dual γ-ε-equilibrium with MsN

and M−sN as its equilibrium states (with ε = 0). In this way BSM is able to offer a coherent and
empirically adequate description of the situation.

GSM associates equilibrium with the stationary distribution given in equation (25). The relevant
variable is f = m, and the phase average is 〈m〉. It now turns out that 〈m〉 = 0 because for any
state σ = (σ1, . . . , σn) we can define its conjugate state σ∗ = (−σ1, . . . ,−σn), and it is then obvi-
ous that m(σ) = −m(σ∗) and that both σ and σ∗ have the same probability. For this reason the
Gibbsian phase average is 0. So the Gibbsian phase average is different from the two Boltzmannian
equilibrium values sN and −sN . Hence this is a case where MEA does not hold. Again, it is unclear
how to remedy this situation by describing this as a case where there are two Gibbsian equilibria
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because, as discussed above, it is unclear how the idea of a stationary ensemble should be generalised
to makes sense of a dual Gibbsian equilibrium.

Also as above, the differences between the Gibbsian and Boltzmannian calculations will not disap-
pear for large N . For any arbitrary large N , the value obtained from Gibbsian phase averaging will
be 0. Yet, for the same N (and for sufficiently high temperatures) the values of the magnetisation
in equilibrium will be either sN or −sN . Hence our argument applies for any arbitrary large N one
starts with and hence, in a sense, in the infinite limit. In our argument first N is fixed and then T is
chosen. One might again wonder what happens when first T is chosen and then the limit as N goes
to infinity is considered. What one obtains here is as follows. In the Boltzmannian framework for
a nonzero temperature below the critical temperature there are again two equilibrium states, but
with a value of a magnetisation that is smaller than sN and −sN but clearly different from zero.
The Gibbsian phase average remains zero (for zero temperature, the Boltzmannian equilibrium state
corresponds to {σ′, σ̂} and the Gibbsian phase average is again zero) (cf. Baxter 1982, Chapter 7).
Hence the differences between the Boltzmannian equilibrium value and the Gibbsian phase aver-
age remain. Note that the magnetisation is an extensive variable and that, for the sufficiently low
temperature values discussed, the difference between the Boltzmannian equilibrium value and the
Gibbsian phase average will persist if the corresponding intensive variable of the magnetisation per
site m(σ)/N is considered: for the magnetisation per site at sufficiently low temperatures there are
again two Boltzmannian equilibria corresponding to the macro-values s and −s, but the Gibbsian
phase average is always zero.

As in the case of the polarisation of the six-vertex model, there is a trick to avoid the conclusion that
the Gibbsian phase average of the magnetisation is zero: add a small external positive (or negative)
magnetic field L to system (cf. equation (19) and the text below for an explanation of the role of
L) and then consider the right-hand side and left-hand side limits as L goes to zero (e.g. Baxter
1982, 118). Again, these two limits are no longer zero and are in in approximate agreement with
the two Boltzmannian equilibrium values. For this reason it is sometimes stipulated that these are
the values obtained in the Gibbsian framework. However, as in the case of the polarisation of the
six-vertex model, we think that this procedure is ad-hoc and unmotivated from the point of GSM:
it is done just to obtain the correct results but an independent physical motivation is missing.

As above, referees urged us to stress that just because MAE fails for magnetisation of the Ising
model, this does not imply that GSM cannot make sense of this example. For instance, consider
again the fluctuations account of GSM as discussed in Section 2.3. Because the dynamics oft the
Ising model is an irreducible Markov model, the masking condition applies. Hence the Ising model
can be interpreted according to the fluctuations interpretation of GSM, and the canonical distribu-
tion provides the probabilities for fluctuations away from 〈m〉 to occur.

The six-vertex model and the Ising model are often discussed in the context of phase transitions.
Hence the question might arise whether there is any relation between phase transitions and the fail-
ure of MAE. The answer is no: MAE can fail away from phase transition points, at phase transition
points, and also when the system shows no phase transition at all. An example where MAE fails
but there is no phase transition is the baker’s gas with the evenness macro-variable (Subsubsection
5.1). The six-vertex model with the internal energy macro-variable is an example of a system in
which the averaging principle fails away from a temperature where a phase transition occurs (Sub-
subsection 5.2.1).43 The Ising model with varying external magnetic field provides an example of

43For this examples there is a range of temperature values where MAE fails and hence the failure of MAE does not
only happen at a phase transition point of the temperature – cf. footnote 5.2.1
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system in which MAE fails at a phase transition point. That is, consider the Ising model in an
external magnetic field L. Given a fixed sufficiently low temperature, one can then show that if
one varies the external field (from negative values through zero to positive values), there is a phase
transition at L = 0 when the external field goes from negative to positive values. As we have seen,
when L = 0 MAE fails, and so this is an example for the failure of MAE at a phase transition point.44

Let us briefly comment on why the Khinchin condition, the AET and the COT do not apply
to the examples just discussed. First, for the Ising model with the magnetisation macro-variable
the Khinchin condition cannot be satisfied because most of the state space (namely the regions
corresponding to the two equilibrium states) is taken up by macro-values that are very different
from the phase average. Second, while the magnetisation macro-variable of the Ising model is
a sum of one-component macro-variables, and hence satisfies the first condition of the AET, the
probability on the full state space is not the product measure of the measure on the one-component
space (indeed there is no measure on the one-component space in terms of which the measure of the
state space is defined). Hence the second and third conditions of the AET are not satisfied and the
AET does not apply. Third, for the magnetisation macro-variable in the Ising model there are two
Boltzmannian equilibrium states and hence the structure of the macro-states is not as required by
the COT, implying that COT does not apply.

5.4 Existence Under Different Conditions

In the last three subsections we have seen examples of models in which Boltzmannian equilibrium
values and Gibbsian phase averages are markedly different. And things get even more interesting:
Boltzmannian and Gibbsian equilibria can exist under different conditions. While it is true that the
existence of a Boltzmannian equilibrium implies the existence of a Gibbsian equilibrium, the reverse
implication fails: there are models that have a Gibbsian equilibrium but fail to have a Boltzmannian
equilibrium.45

To see how the existence of a Gibbsian equilibrium fails to imply the existence of a Boltzmannian
equilibrium consider the Ising model with the magnetisation macro-variable and the six-vertex model
with the polarisation macro-variable. As we have seen, these models oscillate back and forth between
two macro-states, spending the same fraction of time in each of the two macro-states in the long
run. This implies that there is no single Boltzmannian equilibrium.46 As noted above, this problem
cannot be resolved by introducing something like a ‘dual Gibbsian equilibrium’. Furthermore, one
can construct models with a Gibbsian equilibrium that have neither a single nor dual Boltzman-
nian equilibrium (this is the case, for instance, if the system spends the same amount of time in
each macro-state of a set of macro-states with more than two elements). In sum, the existence of
a Gibbsian equilibrium has no bearing on the existence of a Boltzmannian equilibrium (of any type).

Conversely, however, the existence of a Boltzmannian equilibrium (either single or dual) implies the
existence of a Gibbsian equilibrium. As we have seen in Section 2, all models in SM have a stationary
measure. A fortiori every model with a Boltzmannian equilibrium has a stationary measure. Recall

44Note that if one instead considers the magnetisation of the Ising model for a fixed positive or negative external
magnetic field when the temperature is varied, then there is no phase transition.

45In Werndl and Frigg’s (2017) it is argued that the implication fails in both directions, i.e. that there are also
models that have a Boltzmannian but not a Gibbsian equilibrium. We note that this argument employs a different
notion of equilibrium than the one used here and so there is no contradiction between these claims.

46There is nothing special about the Ising and the six-vertex models. The Baker’s gas with a mass-imbalance macro
variable (v = 1 if there are more particles in the left half of the container than in the right half, and v = 0 otherwise)
exhibits the same behaviour.
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that in GSM the relevant notion of equilibrium is statistical equilibrium, which simply corresponds
to a stationary measure. Hence, trivially, the existence of a Boltzmannian equilibrium implies also
the existence of a Gibbsian equilibrium.

6 Conclusion

We have identified three conditions for MAP. These conditions are individually sufficient, but not
necessary, to guarantee that Boltzmannian equilibrium values and Gibbsian phase averages agree:
the (well-known) Khinchin condition, the conditions given by the recently-proven Average Equiva-
lence Theorem and the conditions given by the new Cancelling Out Theorem. Since these conditions
are sufficient but not necessary, there could (and probably will) be other conditions that make MAP
true. Uncovering such conditions is a challenge for future research.

As we have seen in the previous section, these conditions are by no means always satisfied and
there are cases in which Gibbsian phase averages and Boltzmannian equilibrium values come apart.
The cases in which this happens include core models of statistical mechanics such as the six-vertex
model and the Ising model, and hence such cases cannot be dismissed as irrelevant mathematical
contrivances. We have also seen that the Boltzmannian and Gibbsian equilibria need not even exist
under the same conditions.

This raises the important question of which of the two approaches (if any) is correct when then they
disagree. This is a complex matter that raises many difficult issues, and a conclusive discussion is
a task for a future project. At this point we would to like to articulate the tentative proposal that
in cases in which Gibbsian phase averages and Boltzmannian equilibrium values come apart, the
Boltzmannian values are correct in sense that FB = FT (which means that BEP is true). There
are two reasons for this. First, the examples in the previous section show that in cases in which
Gibbsian phase averages and Boltzmannian equilibrium disagree, there are good reasons not use the
phase averages. For example, when observing the polarisation on a physical system that is accu-
rately represented by the six vertex model, the measurements do not return the phase average (0,
0) as a measurement outcome, because most of the time one measures the Boltzmaniian equilibrium
values, i.e. either (1, 1) or (−1,−1). Similarly, for the magnetisation, observations on a physical
system that is accurately represented by the Ising model will not return the phase average (0, 0) as
a measurement result; instead one measures the Boltzmannian equilibrium values, i.e. either −sN
or sN (cf. Lavis and Bell 1999, 299). Second, in recent paper Frigg and Werndl (2019) argue that
BSM is a fundamental theory while GSM is an effective theory. If this is correct (and we find their
arguments convincing) then it follows that BSM provides the correct results.

Irrespective of how this question is resolved, we hope that this paper has shed some light on the
relation between BSM and GSM, and that the results presented here will be useful in future inves-
tigations of the relation between the two theories.
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Appendix: Proof of the Cancelling Out-Theorem

The proof is stated for the deterministic case (it is obvious how it carries over to the stochastic case).
Relabel the macro-state in such a way that the Boltzmannian equilibrium macro-state is Mequ and
the other macro-states are Mk,l (l = 1 or 2 and 1 ≤ k ≤ q/2) such that (i) µZ(ZMk,1

) = µZ(ZMk,2
)

and (ii) VMk,1
+ VMk,2

= 2VMequ for all k. By assumption, the Boltzmannian equilibrium value is
VMequ . The Gibbsian phase average is given by

q/2∑
k=1

µZ(ZMk,1
)VMk,1

+ µZ(ZMk,2
)VMk,2

+ µZ(Mequ)VMequ . (35)

This equals (applying (i)):

q/2∑
k=1

µZ(ZMk,1
)[VMk,1

+ VMk,2
] + µZ(Mequ)VMequ

. (36)

And this equals (applying (ii)):

q/2∑
k=1

2µZ(ZMk,1
)VMequ + µZ(Mequ)VMequ . (37)

Applying (i) once again then yields:

q/2∑
k=1

[µZ(ZMk,1
) + µZ(ZMk,2

)]VMequ
+ µZ(Mequ)VMequ

= VMequ
. (38)
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