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Abstract

It is a fact that the larger the amount of defective (vague, partial, conflict-
ing, inconsistent) information is, the more challenges scientists face when
working with it. Here, I address the question of whether there is anything
special about the ignorance involved in big data practices. I submit that
the ignorance that emerges when using big data in the empirical sciences
is ignorance of theoretical structure with reliable consequences and I ex-
plain how this ignorance relates to different epistemic achievements such
as knowledge and understanding. I illustrate this with a case study from
observational cosmology.
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1 Introduction

Cosmology is the branch of astronomy which concerns the studies of the origin
and evolution of the universe; some of its objects of enquiry include galaxies,
dark matter and dark energy, among others. For a long time, cosmology had
been regarded to be very different from other empirical disciplines. Despite its
successful predictions and observational discoveries, cosmology was in general
perceived as too speculative, having a status even closer to philosophy than
to other areas of physics (Cf. Massimi and Peacock 2015). Nonetheless, this
has changed in the last decades, mostly, thanks to the development of new
technological and formal resources that allow scientists to receive, order and
integrate enormously large amounts of data. This data is later used in surveys,
like Kepler, Gaia and DES, SDSS, DESI, LSST, Euclid and WFIRST, which
increase the scope of the cosmologists’ predictions, makes their models more
accurate and grants cosmologists access to novel phenomena.1 But, cosmology

1Thanks to this, much progress is being made in the study of the nature of dark matter and
the formation and evolution of galaxies due to the possibility of ordering, integrating and even
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is not the only scientific discipline that has been benefited from the emergence
of big data and data science; as a matter of fact, the same happened to geology,
climatology, biology, and other areas of scientific enquiry that had a long history
of working with large datasets.

Unfortunately, and despite its positive outcomes, the incorporation of big
data into scientific practice has come with some problems. Associated to the
increase in the amount of data there is a significant increase in the scientists’
ignorance regarding the ways in which such data hangs together. For example,
observational cosmology has made much progress accessing phenomena that
were initially considered to be unreachable for us, like galaxies that are million
light years away, and that now can be “photographed” by us. However, much
of this observational success depends on computational processes that cannot
be fully scrutinized, examined and justified by human agents (see Humphreys
2009). This is, we could look at pictures of two galaxies colliding and rely on
them as visual representations of the actual phenomena, yet we might not be able
to rationally justify such a reliance.2 This lack of epistemic access to the ways
in which the received data holds together when generating certain outputs, such
as pictures cosmological phenomena, is called ignorance of theoretical structure
and it limits the understanding of the inference patterns that hold within a set
(or a collection of sets) of data (Cf. Mart́ınez-Ordaz 2020).

Here, I address the question of whether there is anything special about the
ignorance involved in big data practices. I submit that the ignorance that
emerges when using big data in the empirical sciences is ignorance of theoretical
structure with reliable consequences and I explain how this ignorance relates
to different epistemic achievements such as knowledge and understanding. I
illustrate this with a case study from observational cosmology.

While philosophy of science has already started discussing the different epis-
temic challenges and ethical consequences of the use of big data in the scientific
endeavor, very little attention has been paid to the individual agents and the
ways in which they overcome ignorance and acquire both knowledge and under-
standing when depending on big data. The novelty of this paper lies in paying
attention to the problems that individual epistemic agents face when using big
data in the empirical sciences.

The plan for the paper goes as follows. In Sec. 2, I discuss the epistemological
worries about the use of big data in the empirical sciences. Later on, in Sec.
3, I scrutinize the relation between these epistemological worries and ignorance.
In Sec. 4 I argue that the ignorance that underlies big data practices in the
empirical sciences is ignorance of theoretical structure with reliable consequences,
and in Sec. 5, I illustrate this with a case study from observational cosmology.
Sec. 6 is devoted to drawing some conclusions on the connections between
ignorance and big data practices in the empirical sciences.

visualizing the data that different telescopes report. A great example of this are the famous
images of the Bullet Cluster which integrate optical data, X-ray data, and a reconstructed
mass map, and that work as evidence in favor of the existence of dark matter.

2These problems in observational cosmology are approached again and in more detail in
Sec. 5.
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2 Epistemological worries about big data

In this section, I discuss the most distinctive epistemological worries associated
with the use of big data in the empirical sciences; I divide these worries into
two main categories: the methodological and the understanding-directed. To
do so, the section is divided in three main parts: Sec. 2.1. introduces some
preliminary concepts, Sec. 2.2., summarizes the main methodological worries
and Sec. 2.3. presents two concerns about the scope of these worries. Finally,
Sec. 2.4. the main concerns related to understanding.

2.1 Preliminaries

Big data is the field that concerns ways to work with datasets whose size is
beyond the ability of typical database software tools to capture, analyze, store,
and manage (Cf. Manyika et al., 2011). Note that the name big data does not
only indicate the amount of data that is managed but, more importantly, the
range of computational methods used to work with such data (Cf. Arbesman
2013, Boyd and Crawford 2012).

Big data practices are grounded in data science and, due to the human
agents’ cognitive limitations, make constant use of machine learning algorithms
to process, retrieve, analyze and extract information from immensely large
and complex datasets. There are five main characteristics of these datasets:
volume(the amount of data that is being managed, measurable in terabytes,
petabytes, and even exabytes), velocity (the data generation rate and the pro-
cessing time requirement), variety (the data-type, which can be structured,
semi-structured, unstructured, and mixed), veracity (how accurate or truthful
a dataset or a data source may be) and value (the possibility of turning data
into something useful).3

From the outset I want to be clear about the main purpose of the paper.
From now on, I only focus on the epistemic challenges that individual agents
face when working with big data in the sciences. My aim in the rest of this
section is to show that big data practices have introduced important challenges
to the scientific activity −leaving aside philosophical discussions regarding the
logical grounds of information and machine learning algorithms, the philosophi-
cal approaches to computability, the connections between Artificial Intelligence
and the human mind, among others.

2.2 The methodological worries

Traditionally, scientific knowledge has been regarded as hierarchical, explana-
tory and at least partly unified. First, according “to hierarchical models of

3I am fully aware of the fact that there is an ongoing philosophical debate about the
status of the different characterizations of big data, however, I believe this will suffice for the
purposes of the paper. If interested in comprehensive philosophical analyses of the inferential
mechanisms used when faced with immensely large amounts of data, see: [Floridi 2011] and
[Floridi 2019], and for introductory discussions regarding the epistemology of big data see
[Floridi 2012] and [Leonelli 2014].
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science, our scientific knowledge (...) forms a knowledge system that has two
properties: (i) it is stratified, and (ii) the items of some layer are or should be
justified in terms of items of a higher layer” (Batens 1991: 1999). Second, the
demand for explanatory power has at least two sources: pragmatic strand in
terms of the power to predict and manipulate reality and a epistemic in terms
of understanding what reality is like. Pragmatism and manipulability require
simplicity and optimization whereas understanding reality through science re-
quires accurate representations. These aims can conflict, but whenever they
go together happily our explanatory ambitions tend to be satisfied. Third, the
hierarchical spirit of scientific knowledge aided by its explanatory character en-
able scientists to look for unification, at least, in particular domains. When
different theories satisfactorily explain the same system at different levels, the
explanations that they provide are compatible, interconnected and mutually
reinforcing.4

But big data has affected information gathering processes making them more
comprehensive and faster than ever before. The incorporation of big data
into the empirical sciences has modified the ways in which scientific knowl-
edge was traditionally pursued and scientific methodology followed. The three
main methodological worries associated to big data practices that have caught
the philosophers’ attentions are: the lack of clarity about purposes and uses of
data, the reliance on correlations, and the epistemic opacity that surrounds the
results of big data (Cf. Humphreys 2009, Floridi 2012, Leonelli 2014).

The first two worries come from analyzing the actual novelty of big data
practices. First, the increase of data that big data brings to scientific practice
must not be conceived as essentially problematic. “Yes, there is an obvious
exponential growth of data on an ever-larger number of topics, but complaining
about such overabundance would be like complaining about a banquet that
offers more than we can ever eat (...) We are becoming data-richer by the day;
this cannot be the fundamental problem” (Floridi 2012: 436). As a matter of
fact, the novelty of big data, at least for the epistemology of science, should not
lie in the sheer quantity of data involved, but rather in

(1) the prominence and status acquired by data as commodity and
recognized output, both within and outside of the scientific commu-
nity and (2) the methods, infrastructures, technologies, skills and
knowledge developed to handle data. (Leonelli 2014: 2)

The first methodological worry concerns (1) and the need for determining the

4However, hierarchical models face important difficulties, like lacking stable justificatory
mechanisms that can avoid infinite regress or the absence of (robust) relations that can explain
how to increase the order of our knowledge system. This considered, contextual models tend
to be more satisfactory in both respects specially when explaining the ways in which scientists
rationally deal with incomplete, incompatible and even inconsistent information in their day-
to-day practice (Cf. Batens 1991). This has had an important effect on the unificatory
character of science, as contextual approaches seem to be the only effective resource to address
scientific practice, unification should remain only as a regulatory ideal. Despite the weakening
of the hierarchical and unificatory nature of scientific knowledge, it is still expected for science
to be mainly an explanation-seeking activity.
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purposes and uses of data. Nowadays, the key epistemological problem for the
use of big data in the sciences is to identify which questions are interesting, or
even essential, to answer at a certain moment, as well as the production and
selection of the relevant answers (Cf. Floridi 2012).

Moreover, regarding (2), the most notorious change when moving to big
data driven scientific practices consists of moving from mistrusting correlations
to ground scientific activity in the search for them. Correlations being “the sta-
tistical relationship between two data values, are notoriously useful as heuristic
devices within the sciences” (Leonelli 2014: 3). For a long time, they were
considered to be confusing and even misleading; as they do not suffice for expla-
nation, it seemed unclear how much could correlations get scientists closer either
to truth or to knowledge. Nowadays, correlations are seen as a form of knowl-
edge −even if compared to explanatory knowledge−, “the correlations may not
tell us precisely why something is happening, but they alert us that it is hap-
pening. And in many situations this is good enough” (Mayer-Schönberger and
Cukier 2013: 14). While part of our current scientific practices are explanatory,
there is another significant part that takes correlations to be keystones for sci-
entific development. Thus, big data practices have shown that the explanatory
character of science is not as strong as the traditional view had suggested, and
the traditional way in which scientific knowledge was conceived is not enough
for capturing and describing the statistical epistemic practices that nowadays
ground many scientific disciplines.

The second methodological worry is to determine under which circumstances
can scientists rationally trust correlations as legitimate instances of scientific
knowledge. This concern is motivated from two sides. First, correlations leave
unexplained why and how something is the case, and therefore, it seems hard
to trust them as grounds of any epistemic enterprise. Second, given the large
amount of information involved in big data practices, it is inevitable that it
exceeds our cognitive capacities. Since scientists cannot ever process such quan-
tities of data by themselves, whenever wanting to access and manage this data,
they require technological implementation; making any epistemic product linked
to those datasets, necessarily constrained by specific technological resources.
This is, the rational trust of correlations requires a previous defense of the ra-
tional trust on the technological resources involved in their discovery.

The third worry concerns the scientists’ trust on the products of big data
despite their lack of epistemic access to the way in which such products are
achieved. Due to our physical limitations, the only way in which scientists can
approach certain phenomena is through technological implementation. But,
once the data is gathered, due to their cognitive constraints, scientists must
now rely on computer resources that store, filter, classify and structure the
data in the shortest possible time. The combination of these factors causes
that the observational reports depend on not necessarily interconnected layers
of technological implementation. And despite them being hardly scrutinizable
by humans, these technological resources are indispensable for approaching phe-
nomena that were initially inaccessible to us and for structuring data that we
would have never been able to compute by ourselves. Such a lack of scrutiniz-
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ability associated to big data processes has often been explained as a case of
epistemic opacity.

A process is epistemically opaque “to a cognitive agent X at time t just in
case X does not know at t all of the epistemically relevant elements of the pro-
cess” (Humphreys 2009: 618). Many of our epistemic processes are, in different
degrees, opaque to us, but what is distinctive of the ones involved in big data
is that many of them would be strongly opaque to human agents. The third
worry captures two main cases of epistemic opacity:

• Opacity regarding the status of the products: Nowadays, it is not
clear whether the models that are created by computer-based methods are
substitutes for empirical experiments in empirically inaccessible contexts
or they are closer to theoretical abstractions (Cf. Barberousse and Vorms
2014, Morrison 2015: Chap. 7). This opacity has an impact in the way in
which these models are and should be endorsed by the scientists and the
doxastic commitments that they might have towards them.5

• Opacity regarding the procedures: In big data practices, “no human
can examine and justify every element of the computational processes
that produce the output of a computer simulation or other artifacts of
computational science” (Humphreys 2009: 618).6 While the patterns that
emerge through these computational processes are often necessary for the
scientific enterprise, they are obtained in such unique ways that traditional
human modeling techniques would not be able to generate (Cf. Bedau
1997). This has as a consequence that some of the procedures that underlie
the filtering, the selection and the leading to specific outputs become not-
reproducible by, and even inaccessible to, human agents.

Some of the elements that remain strongly opaque to us include privileged
inference patterns that have been produced via machine learning algo-
rithms and that are now significantly distant from human programmers’
initial inputs. The fact that scientists might not be able to scrutinize all
the steps through which some outputs were obtained, leaves them lacking
inferential explanations for such outputs.

The second and the third worries are interconnected in the following way: while
big data practices concern primarily the identification of new correlations, those

5The reader might object that it is not clear if the status of the products of these computer-
based methods is epistemically opaque, or if it is simply the case the their philosophical signif-
icance is not completely understood. However, while the question of whether a model counts
as an experiment or an abstraction seems to be more philosophically oriented −rather than
focused on our epistemic access to the world−, the epistemic opacity described here concerns
only the status of the outputs of these computer-based methods, and not the methodology in
itself. This is, this epistemic opacity concerns the question of whether the measurements, the
descriptions and the visualizations of the data should count as observational reports, or only
as theoretical expectations within a specific model.

6Here I am concerned with processes associated to the realization of algorithms in code as
well as to the ways in which programs are actually run in particular instances. If interested
in the conditions under which these processes can be made transparent see [Creel 2020].
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supposed correlations rest on a multitude of sources −where there is often opac-
ity of the workings of computer systems and reasoning, or research and obser-
vational techniques. There is a lot that is not known but that is trusted in big
data practices; and therefore, the need for explaining how this ignorance does
not affect the scientists’ rationality.7

2.3 But, why big data?

At this point, the reader might wonder whether the second and, specially, the
third worries actually address consequences of big data −and not common phe-
nomena in any scientific discipline. Following this intuition, one might consider
that phenomena such as reliance on technology are not immediately connected
to the use of large datasets, and therefore do not need to be approached by
studying the epistemic practices of big data.

This concern is properly grounded: nowadays, different types of computer
simulations are key resources in astrophysics similarly as they are in genomics
or in fluid dynamics, they are handy when using immensely large datasets but
also when working with ordinary-size sets of information (Cf. Morrison 2015:
Chap. 6 and 7). Even more problematically, some procedures of computer
simulations are not strongly opaque to us, because they are only used to make
mathematical operations go smoother but not to do work that exceeds human
capacities. However, while there are elements that traverse scientific practice
regardless the amount of data that scientists deal with, the main difference
−datawise− that exists between big data practices and other scientific practices
is that the former constitute limit cases of the amount of data that is processed
for scientific purposes.

While many epistemic practices in science might not require to implement
methodological networks of high performance computing and deep learning al-
gorithms, it is a fact that any research that aims at working with immensely
large datasets would need to do so. And when this happens, at least, some
crucial parts of the processes will remain opaque for the scientists. What is
characteristic of big data practices is that such an epistemic opacity, necessar-
ily, would surround at least some of the main products and procedures of these
practices, and despite this, some of them will have surprisingly novel and seem-
ingly reliable outputs. These outputs would often be of the form of reliable
correlations that are susceptible to ground part of the future research.

Furthermore, the number of scientific applications of big data has increased
substantially in the last decade, and it is expected to only keep growing in the
following years; thus, study of the epistemic successes and disadvantages of big
data practices can only shed light on the grounds of our current, and future,
science. In addition, if big data practices generate limit cases of epistemic
opacity −mostly due to the amount of computational challenges that they deal
with−, the ways in which this opacity is sorted out might be illuminating of
ways in which similar problems can be tackled within similar ordinary-sized

7I am indebted to a referee who helped to give a better phrasing of my ideas on this point.
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data practices.

2.4 The understanding-directed worries

Understanding “consist of knowledge about relations of dependence. When one
understands something, one can make all kinds of correct inferences about it”
(Ylikoski 2013: 100). Scientific understanding is a fundamental component of
any successful scientific enterprise; understanding a theory allows scientists to
find new domains of application for it, and understanding an empirical domain
makes it possible to build new theoretical approaches to that domain.

There is a common agreement on the fact that the increase of data that the
sciences receive, storage and manage nowadays should lead scientists to an ever
greater understanding of the world. Unfortunately, according to the traditional
literature, the more scientists rely in correlations and statistics, while losing
grasp of causal explanations, the further away from understanding they are
(Leonelli 2014).8 As a matter of fact, for achieving understanding, “the ability
to explain why certain behaviour obtains is still very highly valued – arguably
over and above the ability to relate two traits to each other” (Leonelli 2014:
6). In what follows, I present three worries that concern the achievement of
scientific understanding in big data practices.

The first worry that comes when pursuing understanding in big data prac-
tices: understanding requires explanatory knowledge, correlations do not suffice
for explanation, and the salient product of big data methodology is the recog-
nition of new correlations. Therefore, understanding and big data methodology
might just be going in opposite directions −and more frequent than desirable,
one might have to choose between gaining understanding and identifying new
patterns.9

The second worry is that, due to the involvement of epistemic opacity, agents
would not be able to identify the relations of dependence between their beliefs.
While this worry is clearly close to the ones presented in Sec. 2.2, it takes
the problem a bit further and consider those cases in which a strong epistemic
opacity does not prevent the achievement of knowledge, but conflicts with the
pursuit of understanding.

A third worry concerns the quality of the data that inform the agents’ be-
liefs. Scientific data is, and has been, often defective (vague, partial, conflicting

8A group of epistemologists of science characterize understanding as an epistemic achieve-
ment that comes only after having obtained explanatory knowledge; this type of understanding
has received the name of explanatory understanding (Cf. Kvanvig 2003; Grimm 2006, 2014;
Morris 2012; Strevens 2013, 2017; Kelp 2014; Sliwa 2015; Lawler 2016, 2018). If understand-
ing is essentially explanatory, it would be available only if (i) scientists can provide (causal)
explanations for what is being understood, and (ii) the content of their beliefs is true.

9There is an alternative account for scientific understanding which does nor require the
previous acquisition of explanatory knowledge; however, it still requires that the content of
the beliefs that will be related and understood is known to be true, which will also conflict
with the third understanding-directed worry. If interested in this view, see: [Pettit 2002];
[Elgin 2004, 2007, 2017]; [De Regt and Dieks 2005]; [De Regt 2009, 2015]; [Khalifa 2013]; [De
Regt and Gijsbers 2017].
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or even inconsistent). This defective character of information is not only ubiqui-
tous, but inevitable; for this reason, an important part of the scientific activity
consists of tolerating the defects of the scientific data while aiming to acquire
some scientific success −such as increase of either predictive or explanatory
power, accuracy, empirical adequacy, among others. So, it should not come as a
surprise that the data that scientists get when working with immense datasets
is defective. However, there is a consensus on the factive character of under-
standing; this is, the content of what will be understood should be true. In the
case of defective data, the satisfaction of this factive condition does not seem so
straight forward, and therefore, neither does understanding.

I take this section to have shown that, when science incorporates big data to
its epistemic practices there are, at least, six important epistemological worries
to address. The next section is devoted to explain how these worries have a
common ground: ignorance.

3 Types of ignorance

Here, I take that the study of ignorance can shed light on important peculiarities
of big data practices in the empirical sciences; this section is devoted to charac-
terize the different types of ignorance that have been recognized in traditional
epistemology.

The section is divided in two main parts: Sec. 3.1. explains very briefly
how the worries introduced in the previous section indicate different types of
ignorance. Sec. 3.2., provides an overview of the different types of ignorance
that epistemologists have recognized and they might put forward against the
scientific activity.

3.1 A common ground

In the previous section, I argued that there are six worries associated with big
data epistemic practices. While these worries might seem very different from
each other, they have a common ground: ignorance.

Assume for a moment the intuitive characterization of ignorance as lack of
knowledge about something. Needing to determine the purposes of data reveals
that, because big data methodology consists in accumulating as much data
as possible without a privileged purpose, when possessing access to immense
datasets, scientists often ignore the specifics of the domains of application for
such data as well as the problems that it can help to solve within the discipline.
The trust of correlations when also aspiring to explanation reveals the previous
acknowledgment of ignorance of a causal link. The two types of epistemic opac-
ity that I discussed before are clear instances of ignorance, scientists ignore the
nature of the products of simulations as well as the procedures through which
they were obtained −and most of the time, they cannot perform the inferential
procedures that originated such products.
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As epistemic opacity indicates ignorance, when it conflicts with understand-
ing, it can be said that because there is still a blank that should be filled −such
a blank could be about the status of the models and simulations, or about the
mechanisms that generated such models − understanding remains out of reach
for the scientists. For the case of the emergence of defective data the role that
ignorance plays should not be marginalized. There is the trivial sense in which
having incomplete, partial or vague information is only a direct consequence of
ignoring important bits of such information −how it connects, how it behaves,
how does it relate to other datasets, among other aspects. Yet, there is also
a more substantial interpretation of the ignorance behind the use of defective
data, which is, even if we know that two mutually conflicting or even incon-
sistent chunks of information cannot be true at the same time, what scientists
ignore is how to determine the truth values of the propositions contained in each
chunk, and that uncertainty is what prevents the achievement of understanding.

3.2 Ignorance(s)

Traditionally, ignorance has been understood as lack of knowledge. In this sense,
one can be ignorant via the non-satisfaction of any of the basic conditions for
knowledge. This is, by failing at fulfilling a doxastic condition (S believes that
p), an alethic condition (p is true), a justificatory condition (S believes that p
with justification) or a Gettier-proofing condition (S’s justification for believing
that p must withstand Gettier-type counterexamples) (Cf. Le Morvan and Peels,
2016: 18).

Following such characterization, ignorance is often classified in, at least,
the following types: (i) absence of factual knowledge, (ii) absence of objectual
knowledge, (iii) absence of procedural knowledge, and very recently, another type
of ignorance has been added to the list: (iv) absence of knowledge of theoretical
structure (Cf. Mart́ınez-Ordaz 2020). Orthogonally, one can also recognize (v)
erotetic ignorance −absence of answers to questions.

Let’s look at these types of ignorance by paying special attention to corre-
sponding challenges that they (might) impose to the scientific activity:10

(i) Factual ignorance (or absence of factual knowledge): this igno-
rance consists in lacking knowledge of either facts or the truth of specific
propositions. For instance, let p be pThe speed of light, in vacuum, is
299792458 metres per secondq. When an agent S is factually ignorant of
p the agent fails at determining the (correct) truth value for the propo-
sition in question. This could happen due to: S holding a false belief,
S struggles at assigning an alethic value to p or S’ cognitive limitations
prevent her from knowing a particular fact.

10Because there is no clarity regarding its status compared to the other types or whether
this ignorance reduces to any of the others, in what follows, I do not focus on this particular
type expecting that the characterization of the other four is broad enough to capture the large
majority of cases of lack of answers to questions.
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This type of ignorance conflicts with scientific reasoning by limiting the
application of certain inferential rules. For example, if S fails at assigning
an alethic value to p, S will not be able to detach the consequent of every
conditional of the form p→q.

(ii) Objectual ignorance: this ignorance requires absence of knowledge of
a particular object. The main characteristic of this ignorance is that one
ignores a whole set of properties that an object possesses and that are
regarded to be indicative of such an object.

This ignorance conflicts with scientific activity by troubling preventing
agents to connect lists of properties to a particular object. Even if knowing
that there is an x which has the properties p1 and p2, and knowing that
there is a y that has the properties p1, p2 and p3, one cannot determine
whether there is any relation between x and y until we come to know them.
Therefore, the main problem that comes with objectual ignorance is the
impossibility of relating lists of properties to a common object, preventing
scientists from identifying (new) phenomena and naming them.

(iii) Procedural ignorance (or absence of procedural knowledge): this
type of ignorance requires agents to not know how to perform a certain
task, such as riding a bike, baking a cake, operating a computer, and so
on11 Most of the time, an agent is considered to be procedurally ignorant
when she cannot neither explain nor perform a specific task.

This ignorance conflicts with scientific practice especially in experimen-
tal contexts. For example, consider a scenario in which all members of a
particular scientific community are ignorant of how to reproduce an exper-
iment in order to validate other team’s reports; this absence of procedural
knowledge becomes an impediment for the other team’s results.

(iv) Ignorance of theoretical structure: this type of ignorance consists in
lacking knowledge of

the (relevant) inference patterns that scientific theories allow for.
When ignoring (the relevant parts of) the theoretical structure
of a theory, scientists are not capable of grasping abstract causal
connections between the propositions of their theory, they can
neither identify the logical consequences of the propositions that
they are working with nor can explain under which conditions
the truth value of such propositions will be false. (Mart́ınez-
Ordaz 2020: 12)

Ignorance of theoretical structure is often the cause of persistent instances
of any of the other types of ignorance. Lacking access to a relevant part

11According to some epistemologists, this type of ignorance also resembles factual ignorance;
Specifically, it can be translated into ignoring lists of causal relations, this is, not knowing
what has to be done to obtain certain outcome (Cf. Williamson 2001, Snowdon 2004).
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of the structural conditions of a theory prevents scientists from either in-
ferring the value of certain proposition (causing factual ignorance), iden-
tifying whether distinct sequences of properties refer to the same object
(causing objectual ignorance) or explaining inferential procedures (causing
procedural knowledge).

The partial overcoming of this type of ignorance within a specific set of
data, consists in identifying ways to inferentially secure particular regions
of the logical space associated to such a set.12 Determining ways in which
reliable outputs are obtained and logical harm is avoided.13

Going back to the connection between ignorance and big data, one should still
wonder to which extend the analysis of ignorance would be revealing of the
epistemic grounds of big data practices. This, in light of the fact that as humans
are epistemically limited, they are constantly ignorant of different things at
different moments. So, if ignorance is not only common but essential to human
agents, why should we worry about it when using big data in the sciences? With
this in mind, in the next section I discuss the ways in which ignorance challenges
scientific rationality in big data contexts.

4 Big data, big Ignorance?

Here I claim that the ignorance that underlies big data practices is, often, igno-
rance of theoretical structure with reliable consequences, and that this ignorance
does not prevent scientific understanding from being achieved.

The section is divided in four parts: Sec. 4.1. I briefly acknowledge the
importance of identifying the ignorance that is involved in big data practices
and the ways to overcome it. Sec. 4.2. addresses the type of ignorance that
underlies the big data practices and Sec. 4.3. sketches the type of understanding
that is achievable through these practices.

12Partial overcoming of ignorance of theoretical structure means that, when tolerating a
contradiction, scientists need not to identify the ultimate or the total structure of their theory,
but that they can provide a set of inference patterns that allow them to successfully use the
theory in question while avoiding logical triviality (Cf. Mart́ınez-Ordaz 2020). It is important
to remind that as theoretical structure is a dynamic entity, changing as a theory evolves,
new findings can lead to changes in how inferences are made. For example, new findings in
methods of approximation greatly affect the inferences made in many sciences.

13Faced with p→q and ¬p →q, if S is ignorant of the truth of p (and its negation), many
would be happy to detach q; however, when being ignorant of the theoretical structure that
relates ps, ¬qs and qs this would not be necessarily possible. Ignoring the theoretical structure
that relates a set of data means ignoring how negation works within that particular set, what
can be inferred, what is not a consequence of the dataset, among others.

But once this ignorance is partially overcome, propositions will have a specific value in a
world like the one described by a specific theory (or model); and this does not necessarily
extend to the actual world.
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4.1 The landscape

Big data methodology consists of the recollection of very different types of data
(images, redshifts, time series data, and simulation data, among others) that
relates to different aspects and facets of the studied phenomena −that is, in the
large majority of cases, scientists receive partial information about their object
of study. This recollection involves integrating data from various sources and
formats which initially might not be fully compatible. Also the data is produced,
transmitted and analyzed at an extremely high velocity, which prevents indi-
vidual agents to keep a detailed track of how the data changes and relates. In
addition, it is well known that the use of defective data comes with the price of
different degrees of ignorance (Cf. Wimsatt 2007, Norton 2008). But scientific
rationality is only met either when the degree of ignorance can be maintained
or reduced, or when scientists do not hold any doxastic commitments towards
the information that they are working with −in particular, if they do not trust
neither the information that they are working with nor their results.14

The combination of the above poses the following dilemma against scientific
rationality: unless scientists find a efficient way to low the level of ignorance,
they are irrational for trusting data that at its best is defective and at its
worst might be false; or they are irrational for reasoning under high degrees of
ignorance –regardless their doxastic commitments towards the products of using
big data. So either we explain how scientists can reliably lower their degrees
of ignorance when working with big data or we accept the fact that they are
irrational.

4.2 The ignorance behind big data

In big data practices, the combination of both physical instruments and formal
tools has helped to automate much of the scientists’ processes (like pattern
recognition and classification) as well as facilitating big tasks (like processing
vast amounts of data in hours instead of the months or years it would take for a
group of human agents by themselves). This resulted in aiding the identification
and scrutiny of newly detected objects. For instance, the fact that the NASA
Chandra X-ray Observatory constantly receives, stores, filters, classifies and
integrates enormously large amounts of optical data and X-ray data, among
others, has enabled the detection, and the later scrutiny, of the so called Bullet
Cluster, a phenomenon that was expected to occur but which detection would
have been impossible without the help of observatories that do not only receive
data but also process it (see Sec. 5.1.). These practices have allowed scientists
to acquire knowledge regarding the objects that were initially inaccessible; this
is, to attain objectual knowledge.

14While there is not a uniform view on what scientific rationality is exactly, there is a com-
mon agreement on the fact that reliable indicators of it include: the achievement of knowl-
edge and understanding, instances of scientific success (accurate predictions, the provision
of explanations, manipulability via experimentation, among others), reliable mechanisms for
constructing, testing, revising, and selecting theories, among others. For the purposes of the
paper, I focus only on the relation between scientific rationality, knowledge and understanding.
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However, as the selection of data sometimes depends on epistemically opaque
processes, scientists end up ignoring how certain outputs were obtained as well as
other possible outputs that were disregarded by the algorithms −meaning that
there are going to be some important bits of information about phenomena that
will remain ignored by the scientists despite having being initially captured. At
this point, it only seems fair to say that what scientists ignore is the way in
which particular sets of data hang together in order to entail certain outputs,
this is, they ignore the relevant part of the theoretical structure that glues the
received data and the products of computational processes.

In addition to reliance on technology, there is another element in data-driven
sciences that should also be considered as causing epistemic opacity about pro-
cesses and products, this element is the increasing collaboration.

Big data practices possess a massively cooperative nature which makes the
transmission and acquisition of knowledge very opaque as well. Very often
scientific communities rely on the quality of the datasets that were initially
processed and now shared by other communities, making these practices based
on a new type of epistemic trust. What is being at stake here is a reliance not
on the individuals that integrate the communities, but on their technological
choices and the procedures that such choices imply −regardless of how opaque
they are for the individuals who have chosen and employ them. The result is
that, if what is transmitted and acquired is a type of knowledge, it is not of the
kind of knowledge by (expert) testimony (Cf. Sullivan 2019).15

In big data practices, the source of knowledge is not always an individual
that can provide better explanations to support her claims if asked to do so;
it is often a combination of methodologies plus machine implementation over
inputs that come from very diverse sources in very different formats, and which
interconnections are not always clear to us. In the long run, this has the effect
of scientists being unable to provide explanations about procedures that might
have lead to the discovery of novel phenomena. Yet, should this be understood
as a case of procedural ignorance? not necessarily. When they cannot provide
inferential explanations about why an output obtains, they are not ignoring
only a specific recipe, they are ignorant of how the bits of data relate to one
another −at least, inferentially; and this is indicative of ignorance of theoretical
structure.

Consequently, when working with big data, scientists are trading knowledge
of some parts of theoretical structure in exchange for access to inaccessible ob-
jects. As a matter of fact, the incorporation of big data to the empirical sciences
has created a new epistemic preference: “answers are found through a process of

15This, especially when adopting a standpoint similar to the so-called assurance view of
testimony, according to which ”testimony is restricted to speech acts that come with the
speaker’s assurance that the statement is true, constituting an invitation for the hearer to trust
the speaker. Such views highlight the intention of the speaker and the normative character
of testimony where we rebuke the testifier in the instance of false testimony (Tollefsen 2009)”
(Sullivan 2019: 21). Because testimony is often perceived as a highly intentional speech act
that assumes that the expert can offer explanations to back up her assertions, it is not clear how
technological implementations could provide us with something like that; in particular, in cases
in which there is a strong epistemic opacity surrounding the outputs of such implementations.
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automatic fitting of the data to models that do not carry any structural under-
standing beyond the actual solution of the problem itself” (Napoletani, Panza,
and Struppa 2014: 486. in [Leonelli 2020]).

Nonetheless, if the ignorance that underlies big data practices is ignorance of
theoretical structure, one should not overlook the fact that, in the corresponding
literature, this ignorance is described as the main source of negative epistemic
outputs such as resilient anomalies, mutually conflicting inferential products,
among others (Cf. Mart́ınez-Ordaz 2020). In light of its negative impact on the
pursuit of knowledge and understanding, one should worry that this ignorance
causes a larger epistemic harm in big data contexts. In particular, by preventing
scientists from determining the inference patterns that govern specific datasets
and the selection mechanisms for inferential products from these sets, ignorance
of theoretical structure might put in danger the epistemological basis of big data
practices.

The challenge seems more complicated when, scientists might not be able to
satisfactorily get rid of this ignorance due to the combination of (a) the fact that
big data is often used to study phenomena that is hard to verify or intervene
without heavy technological implementation, and (b) the strong presence of
different types of epistemic opacity and diverse instance of epistemic trust. (a)
and (b) might just be enough to undermine the epistemological basis of big
data practices in the empirical sciences. This concern can be formulated in the
following way:

1. If one cannot explain how certain (heavily) mediated observational reports
are generated, one must weaken one’s belief of them being evidence of
something being the case.

2. In empirical data-driven sciences, certain outputs of big data procedures
are expected to count as observational evidence of something occurring in
a particular way.

3. But, when present, ignorance of theoretical structure messes up with the
scientists’ capability to explain how these outputs are generated; without
necessarily affecting the scientists’ capability to explain why a particular
phenomenon would occur in a specific way.

In light of the above, scientists might have to chose between either rejecting
these outputs as evidence about a specific phenomenon or, at the risk of being
irrational, trusting products that they ignore where they come from and how
they were obtained, and use them for testing empirical hypothesis.

The first option might look appealing in cases in which there are alternative
methods for gathering evidence about phenomena which do not require the use
of big data and opaque computational methods. However, if these phenomena
are essentially inaccessible to us without heavy technological implementation, to
take the first option would mean to lose our epistemic access to entire empirical
domains. This makes the second option more appealing, but also rises the

15



question of how to make outputs of processes that are opaque to us more reliable
when using them as evidence in the empirical sciences.

This concern has not been overlooked by the scientists, as a matter of fact,
they have constantly sought for methodologies that allow them to preserve and
justify the reliability of the data −regardless if they are ignorant of the processes
that generated the data. An important instance of how these collaborative work
succeeds are

taxonomic efforts to order and visualise data inform causal reasoning
extracted from such data (Leonelli 2016, Sterner and Franz 2017),
and can themselves constitute a bottom-up method—grounded in
comparative reasoning—for assigning meaning to data models, par-
ticularly in situation where a full-blown theory or explanation for
the phenomenon under investigation is not available (Sterner 2014).
(Leonelli 2020)

The positive outcomes of the joint work of researchers, curators and program-
mers include accurate predictions, measurements and descriptions. This con-
sidered, there is the need to explain the continued trust that scientists posit on
big data practices despite the epistemic opacity that surrounds them.

While scientists might be ignorant of the way in which data hangs together in
order to generate certain outputs, some of the results that are reached through
different computational processes would be extremely novel and accurate. And
is in light of such successful results that scientists are justified in trusting the
processes that generated them −this justification is of a reliabilist nature. Sci-
entists trust big data practices in a similar way than they trust their vision,
mainly because they can recognize that the outputs of both big data procedures
and processes carried out by the visual system produce more successful than
ineffective consequences.

But, in big data contexts in the empirical sciences, what counts as a success-
ful consequence? A successful consequence of a computational process would be
an output (prediction, description, representation, etc.) that grants access to
empirical phenomena −specially if that phenomena that wouldn’t be accessible
to humans without the aid of big data and computational processes−, and en-
hances the achievement of objectual knowledge regarding such phenomena. In
addition, this output should be:

• novel in its field,

• empirically adequate, 16

• fruitful − the output seems to be crucial for the development of related
research programs, and

16Even if ignoring the status of the output; this is, not knowing if it should be accepted as a
substitute for empirical experiment or a theoretical abstraction of a specific empirical domain.
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• the output holds a possible evidential relation with a model or theory
within the discipline.17

Note that, when the output concerns an empirical domain that is physically
inaccessible to us, the empirical adequacy of such an output might be hard to
evaluate observationally; therefore, the success of such a result can be graded
considering both its connections with accepted models or theories, and its im-
pact on measuring, predicting and explaining other empirical phenomena. But
what is it about the volume, velocity, variety, etc. – what is it about big data’s
features? While in Sec. 2, I emphasised the epistemically negative consequences
of these features and their connection with proprietary and opaque software
−causing different types of epistemic opacity; here, I want to draw the reader’s
attention to the benefits of these features for the novelty of the outputs of big
data practices.

Gathering largely immense amounts of data of different kinds at an extremely
high speed, makes the resulting sets of data, when finally integrated, extremely
informative. For instance, the representations that are obtained through big
data are not only representations that, computationally and observably, we
could not have constructed ourselves alone; but they are also exceptionally
comprehensive representations of highly complex phenomena. The fine grained
detail that is possible to recognize in big data products constitutes one of the
most important parts of their novelty, and this is mostly caused by the fact that
the data that is received comes not only in different formats but also refers, in
great detail, to the different layers of the studied phenomenon. So, when this
data is satisfactorily integrated and structured −even if the integration process
is extremely opaque to us−, the result will be a highly detailed map of the
phenomenon, in which scientists would be able to zoom in and zoom out, in
such a way that will enhance their grasping of the phenomenon at different
levels and in different scenarios.

The combination of all the above gives the impression of, while the igno-
rance that underlies big data practices in the empirical sciences is ignorance of
theoretical structure, its main characteristic is that it possesses (significantly)
reliable consequences.

4.3 Understanding big data

According to what has being discussed in previous sections, big data practices
have granted scientists access to new phenomena, and have provided them with
the opportunity of accurately identifying, measuring and predicting their be-
havior. In particular, the use of big data has allowed empirical scientists to
achieve objectual knowledge of things that, for centuries, were considered to be

17I am fully aware of the fact that there are many ongoing debates regarding the sufficient
(and necessary) conditions for the evaluation of scientific success in big data practices. And,
for that reason, the criteria listed in this section are not expected to be taken as neither
universal nor definitive, but only intuitive enough to consider them as indicative of success
when satisfied.
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too complex for the human mind. But this success is not without its down-
side, it comes with the loss of causal explanations −with respect to, at least,
novel phenomena−, and therefore, the loss of explanatory understanding with
regard to the newly discovered objects. However, is this all we can get from the
implementation of big data practices?

In what follows, I argue that there is a way to interpret the epistemic profits
of big data practices as a keystone for the achievement of scientific understand-
ing. In particular, the type of understanding that can be gained through these
practices is modal understanding.

First, given the multiplicity of approaches undertaken by scientists to extract
useful information from big data, it could be said that even in those cases where
the data points out the existence of an object and some of is properties, it does
not do so in a way that suffices for full blown knowledge of theoretical structure.
Crucially, the disjointness in methods, types of information and models used to
arrive at the object leaves gaps in the grasping of specific theoretical structures
−both in terms of inferences and properties, and in terms of experimental and
operational procedures for its use.

Second, it might happen that scientists are able to, from big data analy-
sis, obtain important information regarding an object. If that information is
put together with independent theoretical knowledge in the special sciences, it
becomes possible for scientists to generate a representation of the object, a pos-
sible world or a proper part of one that represents how the object is embedded
in a relevant theoretical domain. However, given the distinct sources of knowl-
edge of the object and the lack of unity in methods and conceptual resources
scientists cannot be sure that these possible worlds are actual, i.e., that these
representations hold of some actual empirical domain.

In the corresponding literature, it has been argued that False Theories can
still Yield Genuine Understanding (see De Regt and Gijsbers 2017). That is, for
a given set of propositions, even if the veridicality condition is not satisfied, this
would not necessarily prevent scientists from gaining understanding of such a set
of data. According to De Regt and Gijsbers, what is needed for understanding
is only the satisfaction of an ‘effectiveness condition’ −where, for this case,
‘effectiveness’ could be understood as the tendency to produce useful empirical
outcomes of certain kinds, such as accurate descriptions and predictions.

One has some modal understanding of some phenomena if and only if one
knows how to navigate some of the possibility space associated with the phe-
nomena” (Le Bihan 2017: 112). In the case of big data practices, to achieve
modal understanding of the behaviour of novel objects in an established theo-
retical domain would be to determine the set of possible worlds that correspond
to the generic structural features assumed by the theoretical view that such a
cluster of data substantiates. An important remark is that the understanding
that is obtained is understanding of the relations that hold within (a segment
of) a theoretical structure given the presence of a newly discovered object −not
to be confused with dependence relations between objects in the actual world.

However, at this point, the reader might wonder whether modal understand-
ing does not assume the previous achievement of knowledge of theoretical struc-
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ture −which we are supposedly ignorant of in these cases. Such knowledge could
be expressed in the form of laws, grounding relations, or any kind of dependence
relation within the structure. This considered, it is not clear how big data can
aid the scientists to produce such modal understanding, or to even draw out
a possibility space without directly positing causal relations and laws, among
others. It seems that if there are correlations, even if they be reliable, either
no possibility space can be generated solely from them or the possibility space
that is obtained is caused by our previous knowledge of the relevant part of the
theoretical structure. And therefore, big data practices have no impact on the
achievement of modal understanding.

While the reader’s concern might sound appealing, it is grounded on a mis-
understanding about of the scope of both knowledge of theoretical structure
and modal understanding. On the one hand, due to our cognitive limitations,
it seems implausible that we can achieve full knowledge of the theoretical struc-
ture of a specific set of data −whether it is a theory, a model, or only a set of
collected information about a specific phenomenon. But the same happens with
ignorance, no scientist working within a specific field will be absolutely ignorant
of the theoretical structures of the sets of data that she is working with. Know-
ing parts of such structure and satisfactorily drawing some inferences when using
these sets, is compatible with ignoring other parts of the structure and failing
at identifying which inferences are correct within it. So, yes, the scientist that
achieves modal understanding can rely on both her previous knowledge of cer-
tain segments of the structure and the outputs of big data processes. These two
elements can constrain of the possibility space, helping the scientist to identify
the specific inference patterns that might govern the newly identified objects.
On the other hand, modal understanding does not require the possibility space
to be constrained by any type of metaphysical assumptions. In particular, while
the possibility space that is being understood could reveal dependence relations
of the form of grounding relations, in the large majority of cases, the relations
that enhance this understanding are only inferential −making the possibility
space, logical space.

Big data processes integrate immensely large amounts of data in such a
way that they enhance extremely comprehensive representations of new objects;
this grants scientists with objectual knowledge of the things that have been
newly identified. After the acquisition of such knowledge, and thanks to the
comprehensiveness of these representations, scientists are able to incorporate the
factuality of these objects into theoretical structures that could explain why they
occur the way they do. The comprehensiveness of these representations helps
to narrow down the set of alternative structures that scientists can navigate, at
least, at an inferential level; gaining understanding of the specific possible worlds
that are compatible with what we now know about these new objects −without
necessarily recognizing whether any of the alternative structures is isomorphic
with a specific chunk of the world. This is, while scientists might ignore the
theoretical structure of immensely large datasets and the ways in which certain
outputs are produced within the sets, they can still gain understanding of the
worlds in which, at least, the most salient outputs of big data processes are true.
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In sum, despite the presence of ignorance of theoretical structure in big data
practices, there are two main epistemic products that are obtained through
them: objectual knowledge regarding objects that were initially unreachable
to us, and modal understanding of how such newly identified objects fit in
theoretical descriptions of the world. The conquest of modal understanding,
allows the scientists to have a clear picture of the set of possible worlds that
correspond to the structural connections that are relevant only with respect to
some domain of the possibility space associated with the phenomena in question.
In the next section, I illustrate this with a case study from cosmology.

5 Cosmology and big data

This section offers a case study from observational cosmology that illustrates the
role that ignorance of theoretical structure plays in big data practices. Further-
more, this case brings the attention on three main phenomena: the successful
consequences of computational processes, the acquisition of objectual knowledge
and furthermore, the achievement of (some) modal understanding.

5.1 The story

Observational cosmology aims at providing precise agreement between large
scale-physical theories, cosmological models and observation. On a daily basis,
high-throughput detectors and (land and space based) telescopes generate ter-
abytes of raw data about objects in specific regions of the sky. The data that
is gathered comes in heterogeneous formats, once received, it has to go through
different isolating, filtering and integrating processes; and only after the data is
processed, merely a fraction of it is saved and put to the service of cosmologists.

In light of its observational character, the reduction of data into images
constitute one of the best received outputs of technological implementation in
cosmology.

Much work has also been directed to the automated analysis and
classification of objects on images, particularly the discrimination of
stars from galaxies on optical band photographic plates and CCD
images. Each object is characterized by a number of properties (e.g.,
moments of its spatial distribution, surface brightness, total bright-
ness, concentration, asymmetry), which are then passed through a
supervised classification procedure. Methods include multivariate
clustering, Bayesian decision theory, neural networks, k-means par-
titioning, CART (Classification and Regression Trees) and oblique
decision trees, mathematical morphology and related multiresolu-
tion methods (Bijaoui et al. 1997; White 1997). Such procedures
are crucial to the creation of the largest astronomical databases with
1-2 billion objects derived from digitization of all-sky photographic
surveys. (Feigelson and Babu 1997: 365)
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While the selection of such methods is often described in internal technical
memoranda, it commonly goes unnoticed and is almost never subject to public
scrutiny. Once this is done, the constructed images should be reduced into cata-
logues. Some of the most successful results of these processes include the reports
of the microwave background from the COBE, WMAP and Planck satellites,
the detection of gravitational lensing, the ensamble of surveys such as Kepler,
Gaia and DES, SDSS, DESI, LSST, Euclid and WFIRST, and the observation
of the Bullet Cluster ; being the latter one of the most important contributions
to the cosmology of this century.

The Bullet Cluster, officially named 1E 0657-558, is one of the most energetic
known galaxy clusters in the universe (Cf. Schramm 2017: 13). The cluster
consists of “two merging galaxy clusters, that the hot gas (ordinary visible
matter) is slowed by the drag effect of one cluster passing through the other. The
mass of the clusters, however, is not affected, indicating that most of the mass
consists of dark matter” (Riess 2017). The Bullet Cluster was first discovered in
1998, later on, it was registered by The Chandra x-ray observatory in 2004. And
it was only in 2004 when optical images of the Bullet Cluster were integrated
by the Magellan telescope and the Chandra x-ray (Cf. Markevitch et al. 2004;
Clowe, Gonzalez and Markevich 2004).

Image 1. First visual representation of the Bullet Cluster 2004 (gray-scale I-band

VLT image). From Markevitch et al. (2004): 820.

In the following years, it was possible to provide a picture of the bullet cluster
which comprehensively integrated optical data, X-ray data, and a reconstructed
mass map, becoming one of the most famous and informative images in all of
astronomy.
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Image 2. Visual representations of the Bullet Cluster 2006.

Left : From [Clowe, D.et al. 2006], Right : From [NASA Chandra X-ray Observatory

2006]

5.2 Evaluating the case study

This case study illustrates two main things: (1) the ignorance that underlay the
epistemic practices in the discovery of the Bullet Cluster is ignorance of theo-
retical structure with reliable consequences. And, (2) despite their ignorance,
scientists were able to achieve objectual ignorance and modal understanding of
the world(s) in which the Bullet Cluster could exists.

First of all, as it has been argued in Sec. 4.2., due to their methodological
basis, many big data practices are underlain by ignorance of theoretical struc-
ture, specially the practices in which different instances of epistemic opacity are
combined. The epistemic practices associated to the use of big data in obser-
vational cosmology are not an exception to this general claim. As a matter of
fact, due to the nature of the discipline’s main object of study, these practices
are the result of the union of reliance on technology and increasing collabo-
ration. The former is clearly linked to the common use of different layers of
machine implementation and computational processes −aided by deep learning
algorithms− which scope exceeds programmers’ original input and human’s cog-
nitive capacities. The latter, is mostly connected to the way in which raw data
is filtered, structure and reduced into catalogues by one community, and later
on reused by another community. The choices that the first community made
are taken by the second to be at their best correct and at their worst, at least,
non-problematic; but, considering that those initial choices were constrained by
ignorance makes the foundations of this trust shaky.

Yet, this ignorance does not necessarily undermine the scientists’ rationality
when relying on big data practices and some of their successful outputs; in this
particular case, the combined models that enhance (visual) representations of
the Bullet Cluster. Intuitively, the criteria that when satisfied, could be indica-
tive of an output being successful includes evidence of the way in which such
output grants scientists access to empirical phenomena while enhancing the ac-
quisition of objectual knowledge and modal understanding of such phenomena.
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In addition, the output should be novel, empirically adequate, fruitful, and there
should exist a possible evidential relation between the output and a model or
theory within the discipline.

In this respect, the study of the cluster produced by the NASA Chandra
X-ray Observatory has provided

sufficient precision to determine the mass distribution of the under-
lying galaxies through weak gravitational lensing (...) they made
four main observations relating to the mass distributions:

1. Due to the large distance scales in question, stellar matter was
only moderately affected. For the most part, the stars from
each galaxy simply passed through the other galaxy without
any inelastic interactions. The only visible effect is a veloc-
ity reduction through gravitational forces, with the occasional
inelastic meeting of stars.

2. As usual, the gaseous component of the galaxies is much more
spread out. The meeting of two gas clouds results in a signif-
icant interaction under the electromagnetic force, due to the
shorter length scales (...)

3. The centre of total mass of the galaxies, observed through weak
gravitational lensing, is offset from the stellar and gaseous mat-
ter. This suggests the presence of additional invisible matter.

4. The dark matter distributions can be inferred from the to-
tal mass contours, and they remain mostly spherical in shape.
(Schramm 2017: 13,14)

(1)-(3) indicate (purely) observational discoveries that were achieved only thanks
to the observation of the bullet cluster −regardless how heavily meditated this
observation was. As a matter of fact, the comprehensiveness, the accuracy and
fine granularity of the visual representations of the Bullet Cluster −and the
models that ground them−, combined with the impact that they have had in
the study of the universe in general, are indicative of the scientists’ acquisition
of objectual knowledge of, at least, the Bullet Cluster. This reinforces the in-
tuition that, even if cosmologists cannot have sufficient epistemic access to the
inferential processes that generated these images, they can consider the outputs
of such processes to be evidence of something occurring in a particular way.

Another sign of success is the existence of a possible evidencial relation be-
tween the results of big data computational processes and a conjecture, a model
or a theory within the discipline. (4) can be interpreted as indicative of the
fulfillment of this condition. The Bullet Cluster has been taken by many cos-
mologists as evidence in favor of the existence of dark matter and, transitively,
in favor of the model of cosmology- ΛCDM (Lambda-Cold Dark Matter) (Cf.
Lage and Farrar 2015).18

18This model is a parametrization of the Big Bang cosmological model according to which
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But the Bullet Cluster does not only hold a possible evidencial relation with
ΛCDM, some cosmologists have interpreted the existence of the Bullet Cluster
as a challenge to modify alternative models in order to give account of this
phenomenon without accepting the existence of dark matter; a good example of
this are refined versions of the Modified Newtonian dynamics (MOND) −which
is a hypothesis that proposes a modification of Newton’s laws to account for
observed properties of galaxies and constitutes an alternative to the hypothesis
of dark matter.

At this point, there is a weak form of underdetermination of theory by
data surrounding the Bullet Cluster: As with the mass discrepancies in galactic
structures (that were originally explained by the dark matter hypothesis but
were eventually explained by MOND), it has been proved that the Bullet Cluster
can be explained by both ΛCDM and MOND (Cf. Angus et al. 2006).19 But,
while this underdetemination is problematic for explaining the phenomenon
in itself, it reinforces the idea of the description and representations of the
Bullet Cluster being sufficiently empirically adequate to count as observational
evidence that must be explained. And at the same time, the fact that nowadays,
the discovery and observation of the Bullet Cluster is driving the modifications
of ΛCDM and MOND is indicative of its fruitfulness within the discipline.

Finally, the fact that objectual knowledge has been gained with respect to
the Bullet Cluster is not enough for neither achieving explanatory knowledge of
what causes this phenomenon nor for deciding the truth value of the dark matter
hypotheses or the Modified Newtonian dynamics. Yet, what has being gained
through the observation of the Bullet Cluster is the opportunity of incorporating
its factuality into alternative theoretical structures that could explain why it
occurs the way it does and when doing so, exploring the logical space described
by such structures.

Thanks to the observation of the Bullet Cluster, cosmologists have been able
to develop modal understanding of what the Bullet Cluster might be and how
it would behave in, at least, both a ΛCDM-constrained world (Cf. Kraljic and
Sarkar 2014) and a MOND-constrained world (Cf. Angus et al. 2006). While, at
least, part of the computational processes associated to the gathering, filtering
and structuring of the data might remain opaque to the cosmologists, they have
now been equipped with fine grain detailed representations of the Bullet Cluster
and its behaviour in different contexts. The value of this structured information
is that it provides the scientists with a possibility space constrained by the exis-
tence of the Bullet Cluster, which they can navigate in either a ΛCDM-direction
or a MOND-direction. This is, while cosmologists might remain ignorant of the
theoretical structure that underlies the set of raw data about the Bullet Cluster,
they now have access to the inference patterns that the representation of the
Bullet Cluster allows for −without necessarily knowing which of these patterns,
if any, is satisfied in the actual world.

the universe is composed mainly of three elements: a cosmological constant denoted by Λ and
associated with dark energy; the postulated cold dark matter (CDM); and ordinary matter.

19I am greatly indebted to an anonymous referee for pointing me to this problem.
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6 Final remarks

When incorporating big data into the empirical sciences, scientists are able to
reach objects that were initially inaccessible to them. However, the outcomes
of big data applications often involve high degrees of epistemic opacity about
how such outcomes were generated. This leaves scientists having to choose
between rejecting these outputs as observational evidence or, at the risk of
being irrational, relying on them −even if ignoring where they come from and
how they were obtained.

Here I argued that the ignorance associated to the epistemic opacities found
in big data practices is ignorance of theoretical structure with reliable conse-
quences. Scientists might ignore the structural particularities of how the obser-
vational outputs are identified and generated, but, at the same time, they have
evidence in favor of the reliability of these outputs −and therefore, of the pro-
cesses that generated them. Such reliability has made possible that scientists
achieve objectual knowledge of initially inaccessible objects as well as modal
understanding of how these objects (could) behave and relate to one another,
all this while being ignorant of the inference patterns that govern the datasets
from which the access to these objects is constructed.

Acknowledgments
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