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                                                      ABSTRACT  

Richard Jeffrey’s Conditioning, Kinematics, and Exchangeability is one of the foundational 

documents of probability kinematics. However, the section entitled Successive Updating 

contains a subtle error involving updating by so-called relevance quotients in order to ensure 

the commutativity of successive probability kinematical revisions.  Upon becoming aware of 

this error Jeffrey formulated the appropriate remedy, but never discussed the issue in print. 

To head off any confusion, it seems worthwhile to alert readers of Jeffrey’s paper to the 

aforementioned error, and to document his remedy, placing it in the context of both earlier 

and subsequent work on commuting probability kinematical revisions.  
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        Postscript to Richard Jeffrey’s Conditioning, Kinematics, and Exchangeability 
 
 
ABSTRACT.  Richard Jeffrey’s Conditioning, Kinematics, and Exchangeability is one of 

the foundational documents of probability kinematics. However, the section entitled 

Successive Updating contains a subtle error regarding the applicability of updating by so-

called relevance quotients in order to ensure the commutativity of successive probability 

kinematical revisions.  Upon becoming aware of this error Jeffrey formulated the 

appropriate remedy, but never discussed the issue in print. To head off any confusion, it 

seems worthwhile to alert readers of Jeffrey’s paper to the aforementioned error, and to 

document his remedy, placing it in the context of both earlier and subsequent work on 

commuting probability kinematical revisions. 1 

 

 

 

 

 

 

 
1  This discussion note summarizes and elaborates on discussions between Jeffrey and the 
author that occurred during the late 1990s. The core of those discussions is described in 
Section 5. 
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 1. Introduction.  Along with his book, The Logic of Decision (1983), and the 

mathematically bountiful article, Updating Subjective Probability (Diaconis and Zabell 

1982), Richard Jeffrey’s Conditioning, Kinematics, and Exchangeability (1988, 221; 1992, 

117) is one of the foundational documents of probability kinematics. Among other things, 

this paper gives a beautifully lucid account of various equivalent formulations of the 

preconditions for updating a prior by conditioning or by probability kinematics. However, 

the section entitled Successive Updating contains a subtle error regarding the applicability of 

updating by so-called relevance quotients in order to ensure the commutativity of successive 

probability kinematical revisions.  Upon becoming aware of this error Jeffrey formulated the 

appropriate remedy, but never discussed the issue in print. To head off any confusion, it 

seems worthwhile to alert readers of Jeffrey’s paper to the aforementioned error, and to 

document his remedy, placing it in the context of both earlier and subsequent work on 

commuting probability kinematical revisions. 

     While this note touches on some of the philosophical and methodological issues arising 

in choosing the correct representation of what is learned from new evidence alone, it is 

intended primarily to clarify certain mathematical aspects of successive probability 

kinematical revisions. More detailed discussions of associated philosophical issues may be 

found in Field (1978), Lange (2000), Wagner (2002), and Hawthorne (2004).  
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2. Notation and Terminology. In what follows,  denotes a set of possible states of the 

world, conceived as mutually exclusive and exhaustive, and A denotes an algebra of subsets 

(called events) of . If p and q are finitely additive probability measures on A and A, 

the relevance quotient (terminology due to Carnap), denoted by , is defined by the 

formula . Typically, q is thought of as resulting from the revision of p 

as a result of encountering new evidence. In such cases, p is called the prior probability, and 

q the posterior probability.  If q comes from p by conditioning on the event E, then  

              

Note that  contains implicit restraints on the prior p. As a simple example, if 

 then, necessarily, 1/2. We will return to this apparently trivial 

observation later in this note.  

       If p and q are as above, and A and B are events, the Bayes factor, denoted by , 

is defined by the formula  , which is simply the ratio of the new to 

old odds on A against B.  Relevance quotients and Bayes factors are connected by the 

formula 

  (2.1)                                             . 

Ω

Ω A∈

Rp
q (A)

Rp
q (A) : = q(A) / p(A)

Rp
q (A) = p(A | E) / p(A) = p(A∩ E) / p(A)p(E) = p(E | A) / p(E).

Rp
q (A)

Rp
q (A) = 2, p(A) ≤

Bp
q (A : B)

Bp
q (A : B) : =

q(A) / q(B)
p(A) / p(B)

Bp
q (A : B) =

Rp
q (A)
Rp
q (B)
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When q comes from p by conditioning on E, then  reduces to the familiar 

likelihood ratio   

 

3. Probability Kinematics.  In the remainder of this note, all probability measures are 

assumed to be strictly coherent, in the sense that every nonempty event A is assigned a 

nonzero probability. This assumption, while inessential, allows us to avoid the distraction of 

continually having to postulate the positivity of various probabilities in theorems and their 

proofs.  

      Suppose that p is your prior probability on A, and E  is a partition of , 

with each A. New evidence prompts you to revise p to the posterior probability 

measure q as follows. Based on the total evidence, old as well as new, you first assess the 

posterior probabilities , where, of course,  Judging that you have 

learned nothing that would disturb any of the prior conditional probabilities ,  you 

adopt the rigidity condition , for all A and . This fully and 

uniquely determines q (Jeffrey 1983) by the formula 

(3.1)                                   . 

When probability measures q and p are related by (3.1), we say that q has come from p by 

probability kinematics (henceforth, PK), or by Jeffrey conditioning, on the partition E.  

 

Bp
q (A : B)

p(E | A) / p(E | B).

={E1,...,En} Ω

Ei ∈

q(Ei ) = ei e1 + ⋅⋅⋅+ en = 1.

p(A | Ei )

q(A | Ei ) = p(A | Ei ) A∈ i = 1,...,n

q(A) = ei
i=1

n

∑ p(A | Ei )
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4. Successive Updating. 

     4.1.  The Elementary Model.    Consider two possible successive updating schemes. In 

the first instance,  p is first revised to q by PK on the partition E  of , with 

, and then q is revised to r on the partition F  of , with 

. In the second instance,  p is first revised to  by PK on F, with , and then   

is revised to  by PK on E, with . 

Figure 1. 

                                                       E,    

                                                                              

                       F,                                                        F,    

                                                                         

                                             E,   

If it turns out that   the successive PK revisions are said to  It is 

straightforward to verify that 

(4.1)         ,  and   

(4.2)         . 

={E1,...,En} Ω

q(Ei ) = ei ={F1,...,Fm} Ω r(Fj ) = f j

′q ′q (Fj ) = f j ′q

′r ′r (Ei ) = ei

ei

p q

f j f j

′q ′r r

ei

′r = r commute.

r(A) =
ei f j

p(Ei )q(FJ )i, j
∑ p(AEiFj )

′r (A) =
ei f j

′q (Ei )p(FJ )i, j
∑ p(AEiFj )
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     It is obvious from (4.1) and (4.2) that the conditions  and , 

which Diaconis and Zabell (1982) dub with the beautifully suggestive nomenclature Jeffrey 

independence, are sufficient to ensure commutativity. In fact, they proved that Jeffrey 

independence is necessary for commutativity as well.  In general, however,  may differ 

from . Individuals who have found this troubling (see Lange (2000) for some sample 

references) presumably subscribe to the following two principles:  

I.  If the revisions of  to , and of  to ,  are based on identical new learning, and the 

revisions of  to , and of  to , are based on identical new learning, then it ought to be 

the case that   

II. Identical new learning prompting the revisions of  to , and of  to , should be 

represented by the identities  , for all . Identical new learning prompting 

the revisions of  to , and of  to , should be represented by the identities 

, for all   

       While the first of these principles seems uncontroversial, the second is profoundly 

mistaken. This was already noted by Carnap in correspondence with Jeffrey in the late 

1950s, as described in Jeffrey (1975). Carnap pointed out (in the terminology of our current 

example) that the probabilities  are based not only on the new learning prompting the 

revision of the probabilities , but on the totality of evidence incorporated in the latter 

probabilities. Similar remarks apply of course to the probabilities   Carnap’s point 

′q (Ei ) = p(Ei ) q(Fj ) = p(Fj )

′r

r

p q ′q ′r

q r p ′q

′r = r.

p q ′q ′r

′r (Ei ) = q(Ei ) = ei i

q r p ′q

′q (Fj ) = r(Fj ) = f j j.

′r (Ei )

′q (Ei )

′q (Fj ).
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was forcefully reiterated by Field (1978), who proceded to identify the correct representation 

of what is learned from new evidence alone, the details of which we examine in the next 

sub-section.  

     4.2. The Extended Model: Field’s Analysis.  By the Extended Model, we mean the 

following generalization of Figure 1: 

 

Figure 2. 

                                                      E,    

                                                                              

                        F,                                                         F,     

                                                                         

                                             E,    

 

As our notation suggests, it is no longer assumed in the extended model that   or that 

  Under what conditions do we get commutativity in this model? Hartry Field 

(1978), presumably inspired by the old Bayesian idea (Good 1950, 1983) that ratios of new 

to old odds furnish the correct representation of what is learned from new evidence alone,  

established the remarkable result that the classical PK formula (3.1) could be transformed   

into the “re-parameterized”  form 

ei

p q

′f j f j

′q ′r r

′ei

′ei = ei

′f j = f j .
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(4.3)        ,  where        2 

The analogous re-parameterizations of the classical formulas for  and  are  

(4.4)      ,  where    , 

(4.5)       ,  where   ,       

and 

 
2  Note that  is simply the geometric mean of certain Bayes factors. Field actually 

expressed  in the form , where , and interpreted  as expressing the direct 

and immediate effect of a given stimulus. However, Garber (1980) noted that if , 

repeated exposure to that stimulus would then drive the value of  toward 1. 

Unfortunately, Garber’s counter-example led philosophers to ignore Field’s beautiful re-

parameterization of JC, which, as we’ll see, clearly, and for the first time, exhibited 

sufficient conditions for successive JC revisions on different partitions to commute. As 

argued in Wagner (2002), Field’s analysis can easily be divested of its physicalist gloss. 

 

q(A) = Gi p(AEi
i=1

n

∑ ) / Gi
i=1

n

∑ p(Ei ) Gi : = Bp
q (Ei : Ek )

k=1

n

∏⎛⎝⎜
⎞
⎠⎟

1/n

.

r, ′q , ′r

r(A) = g jq(AFj ) / g j
j=1

m

∑
j=1

m

∑ q(Fj ) g j : = Bq
r (Fj : Fk )

k=1

m

∏⎛⎝⎜
⎞
⎠⎟

1/m

′q (A) = ′g j
j=1

m

∑ p(AFj ) / ′g j
j=1

m

∑ p(Fj ) ′g j : = Bp
′q (Fj : Fk )

k=1

m

∏⎛⎝⎜
⎞
⎠⎟

1/m

Gi

Gi eα i α i = lnGi α i

α i > 0

q(Ei )
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(4.6)     ,  where     

     Combining (4.3) – (4.6) yields the successive PK revision formulas 

(4.7)                 

and 

(4.8)              ,  

from which the following theorem follows immediately: 

Theorem 4.1.  The Field parameter identities  

(4.9)      , for ,  and , for ,  

imply that   

Proof. Obvious.   

      It is important not to read more into the above results than has so far been established. In 

Figure 2 it is assumed that and  are fully defined probability measures on the 

algebra A, that  has come from , and  from , by PK on E, and that  has come 

from  and  from , by PK on F. Then, if it is determined that  and , it 

follows that    

     Consider, however, the following different scenario, in which the preceding assumptions 

hold only for  and , and the parameters  and  have been determined.  Can we 

′r (A) = ′Gi
i=1

n

∑ ′q (AEi ) / ′Gi
i=1

n

∑ ′q (Ei ) ′Gi : = B ′q
′r (Ei : Ek )

k=1

n

∏⎛⎝⎜
⎞
⎠⎟

1/n

.

r(A) = Gi
i, j
∑ g j p(AEiFj ) / Gi

i, j
∑ g j p(EiFj )

′r (A) = ′Gi
i, j
∑ ′g j p(AEiFj ) / ′Gi

i, j
∑ ′g j p(EiFj )

′Gi = Gi 1≤ i ≤ n ′g j = g j 1≤ j ≤ m

′r = r.

!

p,q,r, ′q ′r

q p ′r ′q r

q, ′q p ′Gi = Gi ′g j = g j

′r = r.

p,q r Gi g j
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then design  revisions  of  by PK on F, and   of  by PK on E, so that we are 

guaranteed to have ?  The natural move is to define  and  by the formulas  

(4.10)                   

 and  

(4.11)                  . 

To show that this is the right move, however, requires a proof of the following theorems. 

First, we need to take note of a key property of products of Field parameters. 

Theorem 4.2.        . 

Proof. By (4.3) and (2.1), 

.                    

Next, we show that the probabilities defined by (4.10) and (4.11) behave just as we intend. 

 

Theorem 4.3.  The set function  defined by (4.10) is a probability measure on A, and 

comes from  by PK on F. Moreover, 

(4.12)                     .   

′q p ′r ′q

′r = r ′q ′r

′q (A) : = g j
j=1

m

∑ p(AFj ) / g j
j=1

m

∑ p(Fj )

′r (A) : = Gi
i=1

n

∑ ′q (AEi ) / Gi
i=1

n

∑ ′q (Ei )

Gi
i=1

n

∏ = ′Gi
i=1

n

∏ = g j = ′g j
j=1

m

∏
j=1

m

∏ = 1

Gi
i=1

n

∏ = Rp
q (Ei ) / Rp

q (Ek )
k=1

n

∏⎛⎝⎜
⎞
⎠⎟

1/n

i=1

n

∏ = Rp
q (Ei )

n / ( Rp
q (Ek ))

n

k=1

n

∏
i=1

n

∏⎛⎝⎜
⎞
⎠⎟

1/n

= 11/n = 1 !

′q

p

′g j : = Bp
′q (Fj : Fk )

k=1

m

∏⎛⎝⎜
⎞
⎠⎟

1/m

= g j
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The set function  defined by (4.11) is a probability measure on A, and  comes from  

by PK on E. Moreover,  

(4.13)                       .  

So by Theorem 4.2,    

Proof.   It is easy to show that  is an additive set function on A and that  

Also, 

, 

and so  comes from  by PK on F. Finally, (4.11) implies that , and 

so , by Theorem 4.1. The proof of  is similar. 

  

In the next section we will encounter an attempt to simplify Field’s analysis for which  

analogues of (4.13) and (4.14) fail to obtain. 

5. Jeffrey’s Proposal.  In an attempt to simplify Field’s parameterization of JC, Jeffrey 

noted that, in the extended model, the classical PK formula   can be 

recast as  , where  . Similarly, one can recast the classical 

′r ′r ′q

′Gi : = B ′q
′r (Ei : Ek

k=1

n

∏⎛⎝⎜
⎞
⎠⎟

1/n

= Gi

′r = r.

(i) ′q ′q (Ω) = 1.

′q (A | Fj ) = ′q (AFj ) / ′q (Fj ) = [g j p(AFj ) / g j p(Fj
j=1

m

∑ )] / [g j p(Fj ) / g j
j=1

m

∑ p(Fj )]= p(A | Fj )

′q p Bp
′q (Fj : Fk ) = g j / gk

Bp
′q (Fj : Fk

k=1

m

∏⎛⎝⎜
⎞
⎠⎟

1/m

= (g j
m / g1 ⋅⋅⋅ gm )

1/m = g j (ii)

!

q(A) = ei
i=1

n

∑ p(A | Ei )

q(A) = Ri
i=1

n

∑ p(AEi ) Ri = Rp
q (Ei )



 13 

formulas for  and  as , , and 

,  where , , and . It follows that 

(5.1)                  and    . 

So if the relevance quotient identities 

(5.2)                 ,      and      ,   

hold, then   

     Again, it is important to keep in mind here that the above commutativity result depends 

on the assumption that and  are fully defined probability measures on the algebra 

A, that  has come from , and  from , by PK on E, and that  has come from  

and  from , by PK on F.  Then, if it is determined that  and , it follows 

that   But suppose that only  and  have been assessed and the relevance 

quotients  and have been evaluated. Can we then design PK revisions of  to on 

F, and of to on E, so that we are guaranteed to have   Jeffrey proposed setting  

 equal to , and  equal to . That this may sometimes fail to do 

the trick can be seen from the example in Table 2 of Jeffrey (1988, 236; 1992, 134).  In this 

example, , , and  The prior p is 

defined by  for   The probability measure  comes from  by PK on 

r, ′q , ′r r(A) = ρ j
j=1

m

∑ q(AFj ) ′q (A) = ′ρ j
j=1

m

∑ p(AFj )

′r (A) = ′Ri
i=1

n

∑ ′q (AEi ) ρ j = Rq
r (Fj ) ′ρ j = Rp

′q (Fj ) ′Ri = R ′q
′r (Ei )

r(A) = Ri
i, j
∑ ρ j p(AEiFj ) ′r (A) = ′Ri

i, j
∑ ′ρ j p(AEiFj )

′Ri = Ri i = 1,...,n ′ρ j = ρ j j = 1,...,m

′r = r.

p,q,r, ′q ′r

q p ′r ′q r q,

′q p ′Ri = Ri ′ρ j = ρ j

′r = r. p,q, r

Ri ρ j p ′q

′q ′r ′r = r ?

′q (Fj ) ρ j p(Fj ) ′r (Ei ) Ri ′q (Ei )

Ω ={1,2,3,4}, E1 ={1,2},E2 ={3,4} F1 ={1,4} F2 ={2,3}.

p(i) = i / 10, i = 1,...,4. q p
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 with , and the probability measure  comes from  by PK on 

 with  In Table 1 below, the distracting arithmetic mistakes in 

Jeffrey’s table have been corrected (with corrected values in parentheses) so that the error in 

his proposal for defining  and  stands out more clearly. 

 Table 1. 

 
                     p                                                                                 q    

                                    

                        
 
                  “ ”                                                                           = r 

                             

 
 

{E1,E2}, q(E1) = q(E2 ) = 1/ 2 r q

{F1,F2}, r(F1) = r(F2 ) = 1/ 2.

′q (Fj ) ′r (Ei )

F1 F2

E1
1
10

2
10

3
10

R1 =
5
3

E2
4
10

3
10

7
10

R2 =
5
7

1
2

1
2

1

F1 F2

E1
1
6

1
3

1
2

E2
2
7

3
14

1
2

19
42

23
42

1

ρ1 =
21
19

ρ2 =
21
23

⎛
⎝⎜

⎞
⎠⎟

′q ′r

F1 F2

E1
21
190

21
115

⎛
⎝⎜

⎞
⎠⎟

1281
4370

⎛
⎝⎜

⎞
⎠⎟

E2
42
95

63
230

⎛
⎝⎜

⎞
⎠⎟

3129
4370

⎛
⎝⎜

⎞
⎠⎟

21
38

21
46

⎛
⎝⎜

⎞
⎠⎟

441
437

!
⎛
⎝⎜

⎞
⎠⎟

F1 F2

E1
7
38

7
23

⎛
⎝⎜

⎞
⎠⎟

427
874

⎛
⎝⎜

⎞
⎠⎟

E2
6
19

9
46

⎛
⎝⎜

⎞
⎠⎟

447
874

⎛
⎝⎜

⎞
⎠⎟

1
2

1
2

(1)
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     Note that we do in fact arrive at  This was of course predictable, in view of the  
 
commutativity of ordinary multiplication. But an odd thing occurs on the path from  to  
 
For we pass through what we have labeled  which fails to define a probability measure,  
 
since its entries do not sum to 1. This is simply an illustration of the fact, remarked upon in  
 
section 2 above, that the relevance quotient  contains implicit constraints on the prior  

 
probability  So while the positive real numbers   might function as a sequence  
 
of relevance quotients, in the sense that there exist probabilities  with  
 

 and ,  this need not be the case for every sequence of  
 
probabilities that sum to 1, just as we saw in Table 1. 
 
      Upon becoming aware of this problem, Jeffrey proposed to repair the array marked  

by normalizing, i.e., by dividing each of its entries by 441/437, which then defines, by the 

array marked  in Table 2 below, a genuine probability measure. But now if the entries in 

the first row of  are multiplied by 5/3, and the entries in the second row are multiplied by 

5/7, the resulting array fails to define a probability measure, since its entries, predictably, 

sum to 437/441. Dividing every entry in that table by 437/441 then defines, by the array 

marked  in Table 2 below, a genuine probability measure. Moreover, , as intended. 

 

 

′r = r.

p ′r .

" ′q ,"

Rp
q (A)

p(A). ρ1,...,ρn

π1,...,π n

π1 + ⋅⋅⋅+π n = 1 ρ1π1 + ⋅⋅⋅+ ρnπ n = 1

" ′q "

′q

′q

′r ′r = r
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Table 2.                                

 

 =                                  =                                                                  

                                                                           

                                                                                                           

                                                                    

 =                  =   =                                                                                                                                                

p

F1 F2

E1
1
10

2
10

3
10

R1 =
5
3

E2
4
10

3
10

7
10

R2 =
5
7

1
2

1
2

1

F1 F2

E1
1
6

1
3

1
2

E2
2
7

3
14

1
2

19
42

23
42

1

q

′ρ1 =
23
21

′ρ2 =
19
21

ρ1 =
21
19

ρ2 =
21
23

′q

F1 F2

E1
23
210

437
2415

61
210

′R1 =
735
437

E2
46
105

19
70

149
210

′R2 =
315
437

23
42

19
42

1

′r

F1 F2

E1
7
38

7
23

427
874

E2
6
19

9
46

447
874

1
2

1
2

1

r
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Notice that the commutativity in the above table is, contrary to what Jeffrey had hoped for, 3 

no longer accounted for by relevance quotient identities. What we get instead are the 

relevance quotient proportionalities    and   , with 

 (5.3)           ,    and   ,    

As we will see in section 7 below, analogous proportionalities prove to be the rule, rather 

than the exception, in the most general parameterization of JC.  

 

6.  The Jeffrey-Hendrickson Parameterization of JC.  It is ironic that while Jeffrey 

sought to simplify Field’s analysis of commutativity by employing relevance quotients, he 

had in hand, in Jeffrey and Hendrickson (1988/89), the perfect parameterization of JC for 

accomplishing that task.  The Jeffrey-Hendrickson transformation of the classical formula 

(3.1) takes the form 

(6.1)                , where    

Similarly, 

(6.2)              , where , 

(6.3)              , where ,  and 

 
3 “Updating is always commutative when taking a step is a matter of setting ratios…of new 
to old cell probabilities…” (Jeffrey 1988, 236; 1992, 134). 

′ρ j ∝ ρ j ′Ri ∝ Ri

′ρ j = (437 / 441) ⋅ρ j j = 1,2 ′Ri = (441/ 437) ⋅Ri i = 1,2.

q(A) = Bi
i=1

n

∑ p(AEi ) / Bi p(Ei )
i=1

n

∑ Bi : = Bp
q (Ei : E1).

r(A) = bj
j=1

m

∑ q(AFj ) / bj
j=1

m

∑ q(Fj ) bj : = Bq
r (Fj : F1)

′q (A) = ′bj
j=1

m

∑ p(AFj ) / ′bj
j=1

m

∑ p(Fj ) ′bj : = Bp
′q (Fj : F1)
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(6.4)              , where ,  

from which it follows that 

(6.5)                and 

(6.6)           .  

Theorem 6.1.   The Jeffrey-Hendrickson parameter identities   

(6.7)               , for      and     , for  , 

are sufficient and, under the regularity conditions,  

(6.8)              :   and 

(6.9)                : , 

necessary for .  

Proof. See Wagner (2002, Theorems 3.1 and 4.1).   

     Here again, commutativity depends on the assumption that and are fully 

defined probability measures on the algebra A, that  has come from , and  from , 

by PK on E, and that  has come from  and  from , by PK on F.  Suppose, however, 

that only  and  have been defined, and the parameters  and  have been 

determined.  As in the case of Field’s parameterization, we can then design probability 

measures  and  by means of the definitions  

′r (A) = ′Bi
i=1

n

∑ ′q (AEi ) / ′Bi
i=1

n

∑ ′q (Ei ) ′Bi : = B ′q
′r (Ei : E1)

′r (A) = ′Bi
i, j
∑ ′bj p(AEiFj ) / ′Bi

i, j
∑ ′bj p(EiFj )

r(A) = Bi
i, j
∑ bj p(AEiFj ) / Bi

i, j
∑ bj p(EiFj )

′Bi = Bi 1≤ i ≤ n, ′bj = bj 1≤ j ≤ m

∀i1∀i2∃j p(Ei1Fj )p(Ei2Fj ) > 0

∀j1∀j j∃i p(EiFj1 )p(EiFj2 ) > 0

′r = r

!

p,q,r, ′q ′r

q p ′r ′q

r q, ′q p

p,q, r Bi bj

′q ′r
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(6.5)                  

and 

 (6.6)                

so that the following analogue of Theorem 4.3 holds: 

Theorem 6.2.  The set function  defined by (6.5) is a probability measure on A, and 

comes from  by PK on F. Moreover,  .  The set function  

defined by (6.6) is a probability measure on A, and  comes from  by PK on E. 

Moreover, .  Hence,     

Proof. The proofs of  and  are straightforward, and  then follows from Theorem 

6.1.      

 

7. A Comprehensive Parameterization of JC 

     Consider the formula  where p is a probability measure on A, and the 

parameters  are any positive real numbers whatsoever.  It is easy to check that  is a 

nonnegative, additive set function on A. So  is a probability measure if and only if 

′q (A) : = bj
j=1

m

∑ p(AFj ) / bj
j=1

m

∑ p(Fj )

′r (A) : = Bi ′q (AEi
i=1

n

∑ ) / Bi
i=1

n

∑ ′q (Ei )

(i) ′q

p ′bj : = Bp
′q (Fj : F1) = bj (ii) ′r

′r ′q

′Bi : = B ′q
′r (Ei : E1) = Bi (iii) ′r = r.

(i) (ii) (iii)

!

q̂(A) = ui
i=1

n

∑ p(AEi ),

ui q̂

q̂



 20 

 Consequently, whatever the value of  turns out to be 

(whether equal to 1, or not), the set function , defined by 

(7.1)             , 

is a probability measure on A. Moreover, since , for all A and  
 

  comes from  by PK on E.  
 
     Suppose now that that E , F , and  and 

 are sequences of arbitrary positive real numbers.  Consider the following 
successive PK updating scenario: 
  
 
Figure 3. 
 
                                                       E,    
                                                                              
 
                        F,                                                        F,    
 
 
                                                                          
                                              E,   
 
In the above figure, the probability measure q comes from p by PK on E in accord with  
 
formula (7.1). Similarly, r comes from q by PK on F,  comes from p by PK on F, and  
  
comes from  by PK on E by the analogous formulas 
 

q̂(Ω) = ui p(Ei
i=1

n

∑ ) = 1. ui
i=1

n

∑ p(Ei )

q

q(A) = q̂(A) / q̂(Ω) = ui p(AEi
i=1

n

∑ ) / ui
i=1

n

∑ p(Ei )

q(A | Ei ) = p(A | Ei ) A∈

1≤ i ≤ n, q p

={E1,...,En} ={F1,...,Fm} (ui )1≤i≤n ,( ′ui )1≤i≤n ,(v j )1≤ j≤m ,

( ′v j )1≤ j≤m

ui
p q

′v j v j

′q ′r r
′ui

′q ′r

′q
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(7.2)                                ,   

 

(7.3)                               ,    

   
and     

(7.4)                                .    

 
It follows that  
 

(7.5)                                 ,  and    

(7.6)                                  . 

 
 
 From (7.5) and (7.6) a condition sufficient to ensure that is obvious. 
 
 
Theorem 7.1.  If there exists a constant  such that , for  (symbolized by  
 

), and there exists a constant d such that for   (symbolized by  
 

), then  
 
Proof. Straightforward.    
 
 
      The proportionalities  and  turn out to be equivalent to certain Bayes  
 
factor identities.  In order prove this assertion, however, we need to establish a few  
 
preliminary results. We begin by establishing a connnection between the rather abstract  
 

r(A) = v j
j=1

m

∑ q(AFj ) / v j
j=1

m

∑ q(Fj )

′q (A) = ′v j
j=1

m

∑ p(AFj ) / ′v j
j=1

m

∑ p(Fj )

′r (A) = ′ui
i=1

n

∑ ′q (AEi ) / ′ui
i=1

n

∑ ′q (Ei )

r(A) = ui
i, j
∑ v j p(AEiFj ) / ui

i, j
∑ v j p(EiFj )

′r (A) = ′ui
i, j
∑ ′v j p(AEiFj ) / ′ui

i, j
∑ ′v j p(EiFj )

′r = r

c ′ui = c ⋅ui 1≤ i ≤ n

′ui ∝ ui ′v j = d ⋅v j 1≤ j ≤ m

′v j ∝ v j ′r = r.

!

′ui ∝ ui ′v j ∝ v j
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quantities  appearing in formula (7.1) and certain Bayes factors. 
 
Theorem 7.2.  For all     . 
 
Proof.   By the definition of , along with formula (7.1), we have 

                .    

 
Remark. Analogous formulas for , as well as for and , should be obvious. 
 
Theorem 7.3.  In the successive updating scenario displayed in Figure 3, the proportionality  
 
  is equivalent to the Bayes factor identities  
 
(7.7)                                , for , 
 
and the proportionality  is equivalent to the Bayes factor identities 
 
(7.8)                                 , for . 
 
Proof.   Suppose first that , so that there exists a constant c such that , for  

 By Theorem 7.2, . By Theorem 7.2,  

(7.7) , with ,  yields  ,  whence , where .  The proof that  

 is equivalent to (7.8) is nearly identical .            
 
     The probability kinematical formulas (7.1) – (7.4)  encompass inter alia  Field’s  
 
parameterizations ( ,  Jeffrey’s parameterizations, after 
normalization  

ui

1≤ i,k ≤ n ui / uk = Bp
q (Ei : Ek )

Bp
q (Ei : Ek )

Bp
q (Ei : Ek ) =

q(Ei )p(Ek )
q(Ek )p(Ei )

=
ui p(Ei ) / ui p(Ei )

i=1

n

∑

uk p(Ek ) / ui p(Ei )
i=1

n

∑
×
p(Ek )
p(Ei )

=
ui
uk
!

v j / vk ′ui / ′uk ′v j / ′vk

′ui ∝ ui

B ′q
′r (Ei : Ek ) = Bp

q (Ei : Ek ) 1≤ i,k ≤ n

′v j ∝ v j

Bp
′q (Fj : Fk ) = Bq

r (Fj : Fk ) 1≤ j,k ≤ m

′ui ∝ ui ′ui = c ⋅ui i

= 1,...,n. B ′q
′r (Ei : Ek ) =

′ui
′uk
=
c ⋅ui
c ⋅uk

=
ui
uk

= Bp
q (Ei : Ek )

k = 1 ′ui
′u1
=
ui
u1

′ui = c ⋅ui c = ′u1 / u1

′v j ∝ v j !

(i)

ui = Gi ,v j = g j ,etc.) (ii)
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( , and the Jeffrey-Hendrickson parameterizations ( .  
 
In all of these cases, we have exhibited conditions sufficient to ensure commutativity. But  
 
conditions necessary for commutativity have only been stated for the Jeffrey-Hendrickson  
 
parameters. Bayes factor identities play a crucial role in formulating such  
 
conditions for other parameterizations, as follows:  
 
 
(1) Recall that, under the regularity conditions (6.8) and (6.9), commutativity implies  
 
the Jeffrey-Hendrickson parameter identities (6.7). 
 
 
 
 
(2)  Observe that the identities (6.7) imply the Bayes factor identities (7.7) and (7.8), since  
 

, etc.  
 
(3)  Observe that the Bayes factor identities imply the Field parameter identities  (4.9).  
 
(4)  Recall that, by Theorem 7.3, the Bayes factor identities imply the parameter  
 
proportionalities  and   
 
We conclude the case for the primacy of Bayes factors in the representation of what is  
 
learned from new evidence alone with the final observation that, in the elementary model of  
 
sequential PK revision represented in Figure 1, the Bayes factor identities turn out to be both 
 
necessary and sufficient for Jeffrey independence.  
 
 
 

ui = Ri ,v j = ρ j ,etc.) ui = Bi ,v j = bj ,etc.)

Bp
q (Ei : Ek ) = Bi / Bk

′ui ∝ ui ′v j ∝ v j .
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