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Abstract 

“The physics of representation” (Poldrack 2020) aims to (1) define the word “representation” as 
used in the neurosciences, (2) argue that such representations as described in neuroscience are 
related to and usefully illuminated by the representations generated by modern neural 
networks, and (3) establish that these entities are “representations in good standing”. We 
suggest that Poldrack succeeds in (1), exposes some tensions between the broad use of the 
term in neuroscience and the narrower class of entities that he identifies in the end, and 
between the meaning of “representation” in neuroscience and in psychology in (2), and fails in 
(3). This results in some hard choices: give up on the broad scope of the term in neuroscience 
(and thereby potentially opening a gap between psychology and neuroscience) or continue to 
embrace the broad, psychologically inflected sense of the term, and deny the entities 
generated by neural nets (and the brain) are representations in the relevant sense. 

 

1. Introduction 

As the title, “The Physics of Representation” suggests (Poldrack, 2020), this is a very ambitious 
paper that, ultimately, seeks to establish the claim that representations are necessary for 
intelligent behavior—a universal feature of behaving organisms. Although we won’t discuss this 
bold claim in much detail, we highlight it here because we think that, while it may well be true 
in some form—for instance, dimensional reduction, finding structure in signals, is at least a 
plausible candidate for a universal feature of perception—Poldrack’s overall analysis does not 
support the robust gloss he gives the claim.   

To show why, we focus instead on three more modest goals of the paper: (1) to describe how 
the term “representation” is used in neuroscience and characterize its referent; (2) to offer an 
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existence proof of such representations in an Artificial Neural Network (ANN); and (3) to argue 
that such representations are “legitimate representations” according to a widely endorsed 
philosophical account. We argue that he succeeds in (1); exposes some unwanted and 
unremarked dilemmas for himself in (2); and fails in (3).  The failure of claim (3) would appear 
to require embracing one horn of the dilemmas exposed in (2), with the interesting 
consequence that the existence of the representations described in (1) have yet to be 
definitively established, and the representations that have been established are of little use to 
psychology.  

A note on vocabulary: since “representation” is the central contested term at play here, we will 
adopt the following conventions: “representation” will remain the generic term, its meaning to 
be determined, although not stipulated in this response. “Neural representations” (NRs) will be 
used to designate the entities actually identified in the neurosciences as carrying information 
for cognitive/behavioral purposes. “Mental representations” (MRs) will refer to the entities 
posited in the representational/computational theory of mind and broadly referenced in 
psychology. And “Artificial representations” (ARs) will refer to the information carrying entities 
identified in artificial neural networks. A central question for this paper is the relation between 
“representations”, ARs, NRs, and MRs. There is a tension, as will become apparent, between 
the broad deployment of the term “representation” in neuroscience, and the entities 
designated as NRs. We will use the generic term “representation” when we are seeking to 
emulate this broad use. (Note these conventions are idiosyncratic to this current paper; we 
adopt them only to help maintain clarity.)  

2. “Representations” in neuroscience 

Poldrack’s account of representations centers on the undeniable fact that the term is in 
common use in the neurosciences, used “to describe the systematic empirical relationships that 
are often found to exist between neural activity and features of the external world” (Poldrack, 
2020: 1-2). An important question raised by this usage is what the relationship might be 
between the entities identified in the neurosciences and the mental representations posited by 
the Representational Theory of Mind (RTM), a position these days largely co-extensive with the 
Computational Theory of Mind (CTM) widely assumed (and endorsed) by psychologists and 
neuroscientists (Putnam 1967; Fodor 1975; 1981; Gallistel & King 2009). Indeed, the 
widespread assumption that the brain is a certain sort of computational system is what licenses 
the analogy with Artificial Neural Networks (ANNs) that drives an important aspect of 
Poldrack’s treatment. 

To explore this question, Poldrack attempts to flesh out the nature of neuroscience 
representations (NRs) in the following way:  
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The presence of neural responses that are organized in a way that is structurally 
isomorphic with the external world has been known for more than a century… By 
“structurally isomorphic” I mean here that there is a systematic relationship between the 
activity of neurons and the structural (usually spatiotemporal) features of the world, such 
that the larger-scale organization of neural activity maps onto the structure of the world 
at the relevant scale. (Poldrack 2020: 2). 

Poldrack is of course well aware that a mere “systematic empirical relationship” between 
neural activity and features of the world isn’t going to support the case that NRs are 
“legitimate” representations, meeting Ramsey’s (2007) “job description challenge”, i.e., 
possessing the distinctive characteristics that qualify them for their special explanatory role in 
cognitive systems. After all, natural representations and indicators, which are ubiquitous in 
nature (tree rings, smoke), bear systematic empirical relationships to other things (tree age, 
fire), but are not generally taken to meet the challenge (although see Rupert 2018). In contrast 
(if there is a contrast, see Nirshberg & Shapiro 2021) structural representations generally are 
taken to be good candidates for legitimate representations because the preserved 
resemblance—the isomorphism—between the representation and its referent supports things 
like reasoning about properties of the target (Gladziejewski & Milkowski 2017; Swoyer 1991). 
For these reasons, Poldrack points us in the direction of the topographic organization of 
primary visual, somatosensory, and motor cortices as canonical examples of the sort of 
structural isomorphism that licenses the use of the term “representation”.   

There’s a great deal to unpack here. We might start by noting that isomorphisms can be 
misleading. Primary motor cortex was for decades thought to have a somatotopic structure, 
such that it might, on this reading, be said to represent the body’s effector organization. But 
contemporary work has shown that the apparent somatotopy is only approximate (Schieber 
2001). For instance, adjacent body parts are often spatially intermixed, so that although there is 
an overall somatotopic trend, it holds strictly only for the high-level body plan. More strikingly, 
microstimulation of local regions of the cortex evoke complex movements involving multiple 
effectors and muscle systems (Graziano et al. 2002a). The apparent somatotopy was in fact a 
side-effect of the most efficient organization of a whole-body control system (Schieber 2001; 
Graziano et al., 2002b; Graziano 2011). While it is of course true that there is a systematic 
empirical relationship between local activity in M1 and bodily movements, that relationship 
would appear to be more naturally interpreted as a causal-functional one. Structural 
isomorphisms don’t always license representational glosses.    

A focus on structural isomorphism is also going to potentially rule out a number of neural 
systems that one might wish to include. Another putative example Poldrack offers of a 
representation in good standing is the activity of hippocampal place cells (O’Keefe & Dostrovsky 
1971) which are said to represent particular locations in an animal’s environment. As Poldrack 
notes, in this case we are missing the structural/spatial isomorphism that we see in the other 
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examples. Indeed, the most natural interpretation of hippocampal place cell activation is as an 
indicator or detector.1 This would appear to threaten its status as representational. A related 
case is activity in the olfactory bulb, which has an extremely complex relationship to odor 
stimuli; it would be difficult to even identify straightforward correspondences between activity 
and odor (Freeman 1988). In sum, although it is widely acknowledged that an entity must meet 
criteria beyond having “a systematic empirical relationship” to a thing to represent it, the initial 
candidate suggested by Poldrack, structural isomorphism, appears neither sufficient 
(isomorphisms don’t always indicate representation) nor necessary (representations needn’t be 
strictly isomorphic) to earning the label “representation” in neuroscience. And here Poldrack 
faces the first of some important dilemmas raised by his account: he uses structural 
isomorphism to ground his case that NRs are legitimate representations, but insisting on 
structural isomorphism as a necessary feature of NRs would rule out some (perhaps many) of 
the things that neuroscientists in fact call representations. He is caught, that is, between 
developing a defensible account of NRs, and being faithful to the vocabulary of neuroscience.  

Thus, although it is certainly true that neuroscientists are “comfortable” (Poldrack 2020:5) using 
the term “representation” to refer to the full range of examples canvased by Poldrack, it is 
equally clear that this usage does not—indeed, probably cannot—by itself establish the 
relevant legitimacy of this use, and “structural isomorphism” cannot do the necessary work, 
either. So how might we establish that NRs are indeed representations in good standing? 
Poldrack suggests that one way is to examine a class of systems—ANNs—where there are 
provably representations, because the system is designed to generate them, to argue that 
these artificial representations (ARs) are relevantly similar to NRs, and to establish that ARs are 
representations in good standing. By transitivity, this would support the claim that NRs are 
representations in good standing. In the next sections, we turn to this argument. 

 

3. Representation learning in ANNs 

As Poldrack notes, modern deep learning systems—he primarily discusses Hierarchical 
Convolutional Neural Nets—are the descendants of connectionist models and work according 

 
1 And perhaps not even this. For there is a larger issue raised by the assertion that activity in hippocampal place 
cells represents locations in the environment, one that is obliquely raised by Poldrack’s discussion of receptive 
fields: hippocampal place cells are not in fact selective for places in any straightforward way. For instance, they fire 
not just when an animal is at a location, but also before an animal enters and after it leaves the location, with the 
difference being a matter of the relative timing of the activity with respect to background theta oscillations 
(Buckner 2010); this property might play a role in supporting spatial navigation (Stachenfeld, Botvinick & 
Gershman 2017). Moreover, they have been long known to often show odor selectivity, or a mixture of place and 
odor responsivity (Wood et al. 1999). The apparent straightforward correspondence between cells and spatial 
locations is in fact context dependent, and the activity of these cells is only interpretable given a known and 
constrained setting (Brette 2019). Here we merely flag this issue, but we will return to the point that the 
constraints imposed by environmental context go unrecognized here, and weaken Poldrack’s case overall.  
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to some of the same principles, with some important twists. The basic idea is to have a set of 
input nodes to which one feeds the data to be processed, some number of layers of “hidden” 
nodes that do the processing, and a set of output nodes from which the results of the 
processing can be read. In the example described here, the input is an image, and the output is 
a label for the content of that image. Such systems are extremely successful at a number of 
useful tasks, including image classification, and the usual account given for their success is that 
they are able to learn (or “extract”) the relevant features in the input data needed for the task. 
These features are the representations in representation learning. Poldrack offers us some 
examples of the features relevant to image classification in his Figure 3, panel a. We  reprint a 
version of that figure from the original source. 

 

Figure 1: Features extracted by an image classification HCNN.  Reprinted from Olah et al 2018, 
licensed under CC-BY. 

These are some of the feature representations that the HCNN learned during training, and that 
aid it in making classification decisions. As Poldrack notes, these are, at root, useful 
mathematical abstractions “ultimately defined by the numeric values of the parameters in the 
network.” And yet, he writes, “[i]t is nonetheless difficult to resist the natural tendency to view 
these putative representations as having interpretable semantics falling at levels intermediate 
between the raw input and the final object category decision.” (2020: 8-9) He offers such 
interpretations as “floppy ears” and “furry legs”.   

Here it is instructive to recall that, like the word “representation”, “feature” has a long history 
in philosophy and psychology, and just as with “representation” it is far from clear that 
“feature” is more than a homonym when uttered by a psychologist and by a computer scientist. 
In the mouth of Anne Triesman, perhaps the most prominent of the psychologists investigating 
feature-based object perception, a “feature” refers to one of a number of identifiable elements 
into which an object might be decomposed (Triesman 1986; 1988). Examples she investigated 
included verticality, curvature, slant, color, intersection and the like. To be sure, some of her 
discoveries of basic features were surprisingly abstract, such as closure2, and raise interesting 
questions of exactly what it means for an object to be “composed” of such features. 

 
2 The difference between a C and a O, both of which possess “curvature”, is “closure”. 
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Nevertheless, they are all (and possibly necessarily) introspectively available elements of our 
perception of objects. The features on display in Figure 1 above are nothing like this; those 
images are neither captured by, nor do they capture the meaning of phrases like “floppy ears”. 
Even assuming that “floppy ears” is a good candidate for a feature of the human beagle 
representation, the HCNN that generated the features in Fig. 1 has not in fact extracted it.  

Let us be clear on a point we are not making here: One of the reasons the HCNN-extracted 
features work so well, and there is a deep lesson here, is that they escape the naïve 
decomposition of the image that human scientists have long relied on to design experiments 
and build classification systems. The early classification system Pandemonium, for instance, 
relied on a naïve decomposition of letters into features like “vertical bar” and “slanted line” 
(Selfridge and Neisser 1960). It worked passably well for a narrow range of stimuli, but was 
extraordinarily brittle. Similarly for other early visual discrimination systems rooted in our 
common-sense analysis of the elements of our experience. We’d wager that this is a necessary 
feature: no system that used the analyzable features of our experience as its elemental units 
could possibly work. 

And this gets us to the point we are making: the features on display in Fig 1 may be ARs, (and 
they may even be relevantly similar to NRs; more on this, below), but they are not structural 
representations. They do not bear a recognizable isomorphism to the images from which they 
were developed, and they are not semantically interpretable (Poldrack’s reported temptation 
notwithstanding). Indeed, they are not in any straightforward way features of the images at all 
in that they cannot be described as being a part or element of that image the way curvature 
and closure are elements—features, properties—of a circle3. There is in fact nothing in the 
physical world to which these machine learning features correspond (although there are, of 
course, things in mathematical reality to which they correspond). 

Now, and this is important, these features do bear a “systematic empirical relationship” to the 
images; and they do comprise images in the sense that a given feature vector can be used to 
reproduce an image. They have an absolute claim to being a crucial part of the mechanism for 
image recognition. And this brings us to the next of the dilemmas facing Poldrack, here. The 
more he wants to hold up ARs as the paradigmatic case of representation, the less claim he has 
that they illuminate the sorts of things that neuroscientists have in fact identified as 
representations such as tonotopic and somatotopic “maps”, which are semantically 
interpretable and isomorphic to their referents, or even hippocampal place cell activation 
which is at least semantically interpretable.4 But the more he hopes to hold on to these 

 
3 And given the importance of convolution to HCCNs there may be principled reasons to deny that this kind of 
compositional relationship is even possible.  
4 Again, under known, constrained conditions 
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common-sense characteristics of representations, the less claim there is that ARs are 
representations in good standing at all. 

The problem is deepened by his clever argument that AR-like features can indeed be found in 
the brain, as illustrated in his Figure 3, panel b. To remind the reader, these features were 
generated by a deep-learning image synthesis process, and found to maximally stimulate 
neurons in primate temporal lobe. If that’s what actual NRs look like, this opens a gap between 
them and the use of the term in neuroscience—and, not incidentally, between neuroscience 
and psychology. One as yet unremarked feature of hippocampal place cells and retinotopic 
maps is that they retain an intuitive and obvious relationship to—they can usefully illuminate—
experience and observable behavior. The more the discoveries of neuroscience lead us towards 
endorsing AR-like features as the drivers of neural mechanisms, the less use they will be in 
illuminating experience and behavior. If those are the sorts of features that underly our 
perception of dogs, it’s pretty odd that dogs look like dogs. But they exactly do. 

Thus, granting that Poldrack has correctly described the linguistic practices of neuroscience, the 
account he develops of actual NRs—the features in his Fig. 3—appears to exclude things 
neuroscientists typically refer to, and furthermore undermines the main attraction of 
representational explanations in psychology, that they offer explanatory entities that can be 
related to elements of our experience. This does not mean that Poldrack is wrong that the brain 
trucks in entities of the sort he describes (be they representations or no); it was always a bad 
bet to expect the mechanisms of the brain to be isomorphic to our analytic breakdown of 
experience (Dennett 1989; Uttal 1979). But if we grant that NRs are in fact relevantly similar to 
ARs (and therefore have equal claim to being representations in good standing), this may 
suggest that neuroscientists are generally searching for the wrong thing when they go in search 
of representations. It may also mean that the current relationship between psychology and 
neuroscience (especially in cognitive neuroscience) needs to be rethought.  

 

4. Do ARs meet the job description challenge? 

Let us assume for the sake of this argument that actual NRs are in fact like ARs. Do they meet 
the job description challenge? Poldrack structures his argument that AR/NRs do meet the job 
description challenge around Nicholas Shea’s criteria for representational explanation (2013, 
503).  

A representational explanation requires: 

(a) An explanandum concerning how the system operates or 
behaves in relation to its environment.  
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(b)  A putative explanation of (a) that relies in part on attributing 
representational properties to the system (e.g., keeping track of p, 
aiming at q, etc.).  

(c)  An account of how the explanation in (b) succeeds (remaining 
open to there being no such account). 

(d)  If there is a positive answer to (c), a characterization of the kind 
of properties the representational properties of the system would 
have to be for the explanation in (b) to succeed in explaining (a) in 
accordance with the account (c). 

He uses these criteria to give an account of the work of the primate inferior temporal cortex and 
HCNNs in object detection as follows:  

(a) The Object Recognition Question: How does the system perform 
object recognition on input images? The explanandum is the system’s 
ability to attribute a name to a specific object in an input image (2020: 
12)  

(b) The Feature Detection Answer: The system does representational 
work by decomposing the visual input into a hierarchy of features that 
enable object recognition. (2020: 12)  

(c) Architectural Suitability: Feature detection is successful since the 
hierarchical convolutional architecture of the system reflects the 
“compositional and hierarchical structure of the macroscopic world 
that gives rise to visual images.” (2020: 12) More generally, Poldrack 
asserts the: 

(d) Inductive Bias Claim: Artificial neural networks such as HCNNs are 
successful at complex problems because a set of inductive biases “are 
built into the architecture, which are well-matched to the underlying 
function that relates visual images of objects to their category 
membership.” (2020: 10)  

 

Poldrack argues that criterion (d) in particular “encapsulates” Ramsey’s “job 
description” challenge (2020: 12-13). He suggests the properties of the 
representations that enable object detection are required to meet the:  

I. Reliable Stimulation Condition: The representation should be 
causally triggered by the presence of the stimuli. This is a 
necessary but not sufficient condition of the criterion (2020: 13).  

II. Structural Isomorphism Condition: The structure of the content 
of the representations should match the “hierarchical and 
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compositional structure of the visual world” (2020: 13). He argues 
this condition is satisfied because of the: 

III. Dimensionality Reduction Claim: The representations do the 
mathematical work of reducing the size of the problem space, 
from a high-dimensional manifold to a low-dimensional one.  

IV. Decouplability Condition: The representations should be 
decouplable from the triggering stimuli, because it is difficult to 
explain the results of ontogenetic or (non-environmental) 
stimulation otherwise (2020: 13).  

We will stipulate that that the AR/NRs detailed by Poldrack meet conditions I and III.5 However, 
they fail to meet the job description challenge because they fail to meet conditions II and IV. 
We’ve already discussed our issues with Condition II. The features extracted from the input 
images are not imprints of structures of the physical world, nor are they straightforward 
decompositions of those objects into parts with preserved spatial relationships, etc. Nor has it 
been in any way established that that there is some higher-order isomorphism between the 
hierarchy of object features and the hierarchy of features extracted by the HCNN, sufficient to 
establish a representational relationship between these domains (Roskies 2021).6  There is, of 
course, a mathematical mapping between the features and the original stimulus, but it would 
require a separate argument to show that such a mapping does the work that “isomorphism” is 
intended to do for representations. There is, after all, an available mathematical mapping 
between any two things. The question is whether this mapping has the characteristics required 
to support the representational claim.  We doubt it. (We don’t doubt this would be a deeply 
interesting discussion, but we will not pursue it further here.)  

As for decouplability, Poldrack argues that the behavioral responses triggered by optogenetic 
technologies (which directly stimulate certain sets of neurons) are similar enough to responses 

 
5 Claim III may be problematic for some of the reasons we raise in section 5, but following out that intuition is a 
topic for another paper. (Literally: Champion, 2021).  
6 An anonymous reviewer suggests that it’s just such a higher-level isomorphism that Poldrack is in fact arguing for, 
and on which his claims that NRs are representations in good standing depend. To be sure, one can use the 
similarity of representation spaces to argue that one thing, say Infero-Temporal cortex (IT), potentially or 
provisionally represents another, say object categories. This is the strategy followed in Mur et al. (2013) (see also 
Kriegeskorte et al. 2008) to argue that IT represents object categories, because the representational space 
generated by IT while participants were shown a variety of objects was highly correlated with the categorical 
representational space generated by analyzing similarity judgments made between the same objects, But this isn’t 
the strategy Poldrack follows, here. Instead, he demonstrates the similarity between the hierarchies generated by 
primate cortex and the HCNN in the service of establishing that the intermediate representations—the ARs and 
NRs—are relevantly similar: “Thus, the intermediate representations learned by an HCNN…are likely to be very 
similar to the representations present in biological neurons…” (Poldrack 2020: 11). That is, Poldrack’s explicit 
argument for the relevant similarity between ARs and NRs rests on comparing the feature representations; the 
similarity of the representational spaces helps establish this claim. It is this argument, that ARs (and NRs) are 
similar abstract feature representations, that we are critically evaluating here. This being said, all three anonymous 
reviewers noted that Poldrack’s arguments can be a bit difficult to pin down—so we may certainly have gotten 
them wrong. Still, even a misunderstanding can promote eventual understanding if openly discussed. 
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elicited in the presence of real, present objects that these behaviors would be difficult to 
explain without offering a representational explanation. Clearly, in such cases a behavior is 
being performed in the absence of the relevant environmental target. True enough. But we’d 
like to dub this the “why are you hitting yourself?” account of decouplability, after the game 
that all older brothers played with their younger siblings. The sort of neural intervention in the 
mechanical order that Poldrack describes is of course more subtle than that, or at least requires 
more expensive technology, but it has that same flavor: a brute force causal intervention that 
compels a behavioral outcome. What isn’t clear is why a representational explanation is called 
for. “Why are you hitting yourself?” has a perfectly straightforward answer: because you are 
making me! One needn’t posit the errant representation of a mosquito being slapped.  

There’s a broader issue with this sort decoupling that is perhaps worth bringing to the fore, in 
part for its own sake, and in part because it reinforces one of the themes of this commentary. 
The letter of the decouplability requirement is simply that a representation can be 
triggered/tokened in the absence of its proper cause. But the spirit of the requirement 
showcases the autonomy of the agent: if I so choose, I can just think of my grandmother, 
though she has been dead for many years now. As Sarah Robins (2018) points out, one can use 
optogenetic intervention to cause mice to “recall” a location, but arguably real recollection is a 
mental act of retrieval performed by an animal for a behavioral purpose. Only the latter 
appears to naturally invite representational explanation. Two things follow: first, the letter-of-
the-law formulation of decouplability may be too broad; second, and in keeping with the theme 
here, brute force interventions of this sort represent a neuroscientific, and not a psychological, 
version of decouplability. 

 

5. Are representations necessary and universal? 

Poldrack ultimately seeks to establish that representations are necessary for intelligent behavior. 
As we mentioned at the outset, this is an extremely bold claim that is not supported by his 
treatment of representations in neuroscience, ANNs, and his response to the “job description 
challenge.”  

1) Our first point along these lines is simple and straightforward: Representations in good 
standing cannot be universal and necessary to successful cognitive outcomes like classification, 
because ANNs use ARs, and ARs are not representations in good standing. 

2) Furthermore, whether ARs are necessary and universal even in deep learning contexts is itself 
an open question. In particular, Hasson et al. argue that overparameterized “direct-fit” deep 
learning models make effective predictions while remaining “effectively agnostic to the 
underlying [generative] structure of the world” (2020: 423). Whereas Poldrack takes 
representation of a generative process as necessary for effective generalization (15), 
overparameterized “direct-fit” models make effective predictions by interpolation, rather than 
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extrapolation, on big data (418). Thus, the question of whether representation learning is 
necessary for deep learning requires further investigation.  

3) The Dimensionality Reduction Claim undertakes too much. While ARs do help with 
dimensionality reduction, they are not the source of physical constraints producing “natural 
images” (13). Poldrack acknowledges the role of physical constraints elsewhere (10) but fails to 
pay them any substantial dues in his account of object detection via ARs. ARs are not needed to 
reduce the dimensionality of the space of all possible pixel values, since environmental 
regularities already significantly reduce the size of the problem space. 

4) For all the reasons canvassed here, we don't think that the success of "representation 
learning" implies that RTM has been vindicated, as it might be thought to, especially if it had 
been established that representations were necessary and universal. Even if AR-like entities 
turn out to be necessary and universal, these are apparently very different from the entities 
posited by RTM. The term “representation” has rather different meanings in its different 
contexts, and inferences from one domain—computation—to the other—mind—are severely 
curtailed. Nevertheless, as new technologies and techniques from computer science continue 
to be developed, it is certain that they will continue to have an impact on how we understand 
and study the brain and mind. 

6. Concluding remarks 

Here we hope to have shown that Poldrack has indeed accurately characterized the scope of 
the term “representation” as it is deployed in the neurosciences. However, in endeavoring to 
solidly establish the existence of such entities, he identifies a narrower class of things, NRs, that 
neither answer to the term as used, nor meet the “job description challenge”. This would 
appear to lead to the conclusion that NRs are not MRs, nor in any straightforward way related 
to them (beyond what one achieves by hand-waving about causal underpinnings). Contrast this 
outcome to the hope behind the empirical relationships identified early in the paper: this 
neural activity means “I am here”, and this “hearing a 120Hz tone”, or “seeing an edge”. Actual 
NRs as identified just don’t seem to be interpretable in terms of experience or knowledge, and 
this appears to open up a gap between neuroscientific and psychological explanation. This was 
probably not Poldrack’s intention, but we find it to be an interesting consequence of his 
project, worth noticing. 

Still, if we are going to rekindle the “representation wars” (Clark 2015) we should appreciate 
the context that gave rise to them and note how different the current situation in fact is. It is 
true on anyone’s theory of the brain (or the brain-body complex, or whatever the “cognitive” 
system turns out to include) that it is a machine for turning perception into adaptive – correct 
by some measure – behaviors, which behaviors also, for living organisms, and perhaps also for 
some artificial agents, involve generating further perceptions. What is at issue is the nature of 
the mechanism that modulates this reciprocal perception-action coupling. Where 
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representations came into the picture, canonically in Fodor’s work on the Language of Thought 
Hypothesis and RTM (Fodor 1975; 1981), was with the idea that rationality needed special 
explanation, and that explanation was the existence of representations and predicates and 
rules and the rest of the cumbersome baggage of cognitivism. But what Dennett (1981) shows 
us is that rationality isn’t super-added to adaptive behavior; it is its necessary condition. In this 
sense, you get rationality for free, and its presence provides no bias toward any potential 
answer to the question of mechanism.  

Putting our bets on the table, we suspect that few of the elements of the mechanisms 
responsible for adaptive behavior will be best understood as MRs (of the sort posited by RTM), 
for they will act as both information-carrying and control structures. Such structures needn’t be 
isomorphic to the world in the way that remains central to accounts of “representations in 
good standing”, and to Poldrack’s account of representations (although not NRs) here.  What 
they need to be, and what Poldrack’s NRs are, are information-carrying patterns of neural 
activity that play a role in the control of adaptive behavior. Poldrack, in his way, recognizes this 
when he adopts the apparently ecumenical position that dynamic systems explanations may 
well be what’s needed for motor control, but that, nevertheless, representations and 
representational explanations are indispensable to perception. In fact, this position simply 
accepts and reinforces the perception/action dichotomy at the center of RTM, which more 
ecologically-oriented proposals reject. 

In the end, we rather like this account of NRs, because even a Gibsonian neuroscience can take 
them fully on board (Raja & Anderson 2019). These “patterns of activity that bear a systematic 
relationship to the structure of the external world and play a causal role in behavior” (Poldrack 
2020: 16) simply have no implications for the shape of our psychology; since NRs do not imply 
MRs, we are free to follow ecological principles of looking for multi-level constraints and law-
like relationships between environments, organisms and behavior, knowing that the 
mechanisms making adaptive behavior possible are more surprising than we had anticipated.  
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