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Abstract: Neuroscientists have in recent years turned to building models that aim to generate 

predictions rather than explanations. This “predictive turn” has swept across domains including 

law, marketing, and neuropsychiatry. Yet the norms of prediction remain undertheorized relative 

to those of explanation. I examine two styles of predictive modeling and show how they 

exemplify the normative dynamics at work in prediction. I propose an account of how predictive 

models, conceived of as technological devices for aiding decision-making, can come to be 

adequate for purposes that are defined by both their guiding research questions and their larger 

social context of application. 
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1. The Return of Prediction  

Scientific explanation has flourished as a research topic in the past several decades. Its 

ascendence, however, has come at the expense of attention to prediction (Douglas 2009). Within 

the philosophy of science, competing theories of explanation and extensive case studies of 

explanatory practices have proliferated. The neglect of prediction has not been universal; 

constructive empiricists in the tradition of van Fraassen have championed empirical adequacy as 

the main desideratum of scientific theorizing, and there have been a handful of other recent 

exceptions (e.g., Northcott 2017). The asymmetry is nevertheless real and somewhat hard to 

account for, particularly since many sciences, including celestial mechanics, hydrology, 

economics, and climatology, have historically been organized around generating and refining 

predictions (Oreskes 2000).  

In recent years demand has increased sharply for the scientific community to produce 

actionable predictions that can inform policy choices and justify public spending on basic 

research (Hofman, Sharma, and Watts 2017). Within neuroscience in particular, there is a 

marked shift underway towards building predictive models. This predictive turn is attested not 

just in various theoretical manifestos (e.g., Bzdok and Yeo 2017) but also in a host of new 

experimental, applied, and clinical practices. This trend arguably traces back to the emergence of 

neurolaw, where promises that neuroscience could inform sentencing decisions were 

underwritten by studies using brain biomarkers to predict criminal recidivism (Aharoni et al. 

2013). Interest in neuroprediction has since spread to practitioners in consumer marketing, 

psychiatry, and addiction intervention. 

The predictive turn can be defined in terms of a commitment to the autonomy of 

prediction vis-à-vis other organizing scientific principles. Consider this concise formulation: 
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“Perhaps the biggest benefits of a prediction oriented [approach] within psychology are likely to 

be realized when psychologists start asking research questions that are naturally amenable to 

predictive analysis. Doing so requires setting aside, at least some of the time, deeply ingrained 

preoccupations with identifying the underlying causal mechanisms that are mostly likely to have 

given rise to some data” (Yarkoni and Westfall 2017, 18). Echoing this point, Bzdok and 

Ioannadis say that “[s]uch predictive approaches put less emphasis on mechanistic insight into 

the biological underpinnings of the coherent behavioral phenotype” (2019, 3). Key in this 

statement of aims is the separation of prediction from explanation: the goals, methods, and 

products of predictively oriented science are assumed to be distinct and valuable in their own 

right. Prediction is not pursued primarily for the sake of confirming or deepening explanations, 

or for elucidating causal structure, but rather for its own sake. This represents not simply a return 

to the tradition of seeing prediction as a complement to explanation, but a novel call for scientific 

practices that pursue these distinct goals in parallel. 

The predictive turn can be seen as a part of a large-scale reorientation involving both 

social and technological aspects. Its main drivers include changes in the culture of statistical 

analysis—primarily a shift to multivariate rather than mass univariate analysis—and 

straightforwardly technological improvements, such as computational resources for handling 

large datasets. Innovations in the social structure of scientific fields also contribute, most notably 

the emergence of multinational consortiums to create and manage platforms for distributed 

sharing of neural datasets. Finally, as noted above, there is pervasive pressure from government 

and industry to generate usable scientific results, as well as the novelty factor of adopting tools 

that have attracted attention and funding in the machine learning community.  
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Here I analyze several examples of how these new styles of predictive modeling are 

deployed in neuroscience. Attending to these cases will help to illuminate the larger normative 

structure of prediction. Starting from the idea that predictive models are tools for guiding 

decisions and action, I sketch an account of predictive norms that treats them as a species of 

technology assessment. Key to this account is the interplay between high-level norm schemata 

that govern prediction and how these norms are situated within practical and investigative 

contexts. Such contexts both concretize norms and generate dynamic trade-offs among them. The 

upshot is that norms of prediction, like other forms of technology assessment, involve highly 

situated interactions among epistemic, practical, and ethical concerns.  

 

2. Bringing Prediction into Focus 

Before turning to cases, two core senses of prediction first need to be distinguished.1 

Logical prediction is the use of a theory or model to infer some as-yet unobserved state of the 

world, without restrictions as to whether this state lies in the past, present, or future. Logical 

predictions frequently center on counterfactuals: were the system in a certain state, or intervened 

on in a particular way, this would be the result. The sense captures the use of models to draw 

inferences about potentially observable states and measurements. It also covers what is meant in 

calling one variable in a model a predictor of another: their relationship is such that the value of 

one reliably allows inferences to the value of the other. The logical sense of prediction is at issue 

in the claim that theories and models are tested via the predictions that they make or 

distinguished from each other on the basis of their consequences.  

 
1 The terms used here follow Oreskes (2000), but similar distinctions are made elsewhere. 
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Temporal prediction, by contrast, is the use of a model to infer a future event, event 

probability, or event probability distribution. In temporal prediction, as Sarewitz and Pielke 

(1999) note, scientists “use suites of observational data and sophisticated numerical models in an 

effort to foretell the behavior or evolution of complex phenomena… These predictions of 

complex phenomena seek to ascribe time, place and characteristics to events” (p. 123). Other 

researchers agree in this usage: prediction is “the anticipation of a future outcome based on 

information available in the present” (Poldrack et al. 2018). “Forecasting” is the common term 

for the art of producing temporal predictions in a particular domain: hurricane paths, 

earthquakes, disease prognosis, elections, epidemics, sales revenue, advertising success, and so 

on. Temporal prediction is a species of logical prediction insofar as it involves deriving 

consequences from a model. But not all models that make logical predictions can make temporal 

predictions, nor can they necessarily do so with any kind of ease or utility. 

A final point of clarification. Contemporary model assessment techniques increasingly 

rely on prediction, as opposed to measurements of how well models accommodate existing data. 

Strong fits to past data notoriously risk failing to generalize to new observations (Varoquaux and 

Poldrack 2019). Assessing a model in terms of its performance on out-of-sample prediction tasks 

involves procedures such as cross-validation: dividing the data set into two subsets, 

parameterizing the model on the training subset, and calculating its performance on the test 

subset. In this context, prediction once again means logical prediction, i.e., generalization to the 

unobserved. Insofar as temporal prediction is future-oriented it is of course also a form of out-of-

sample generalization. However, not all models assessed by their out-of-sample performance 

generate temporal predictions. If the data used in out-of-sample prediction has already been 

collected, this practice technically constitutes retrodiction rather than temporal prediction. 
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The salient feature in the studies examined here is that predictions are the main intended 

product of the investigation rather than just a means for testing a model. An investigation’s 

intended products can be pinned down by elucidating the research question that it responds to. 

Questions concerning why or how something happened or tends to happen are typically 

explanatory demands for a causal or etiological account. Questions concerning what will happen, 

by contrast, demand answers that link current observables to future conditions. Not only do 

different kinds of models answer each of these questions, but the norms governing what counts 

as a satisfactory answer differ in each case. These points can be brought out through some brief 

case studies. 

 

3. Two Varieties of Predictive Modeling 

The first set of cases draws on a cluster of emerging fields that take prediction of large-

scale extraneural events as their targets. “Neuromarketing” involves the use of information 

extracted from brain activity to sharpen predictions concerning the success of a product 

advertisement, public relations campaign, or other large-scale social phenomenon such as the 

success of a government anti-smoking initiative or the rise of a pop single. “Consumer 

neuroscience” and “communication neuroscience,” by contrast, focus on the theoretical study of 

neural processes involved in consumer behavior divorced from applications in the advertising 

industry. 

These studies exemplify what Berkman and Falk (2013) call a “brain-as-predictor 

approach”: to treat “neural measures (e.g., activation, structure, connectivity) as independent 

variables in models that predict longitudinal outcomes as dependent variables” (p. 45). The 

neural measures in question are typically chosen on the basis of existing theory about the 
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psychological function of particular features; however, it is also common to uncover predictors 

in a more theory-free way by looking for patterns in the data. Following the logic of temporal 

prediction in advertising and polling, inferences in these studies aim to forecast social or 

population-level events. 

In an early study, Falk, Berkman, and Lieberman (2012) scanned 30 participants, all 

heavy smokers who intended to quit, while they passively watched a series of TV ads for a stop 

smoking campaign. fMRI measures were collected from a pre-specified ROI in ventromedial 

PFC hypothesized to play a predictive role. This activation was compared with control ROIs and 

with self-reported ratings of ad effectiveness. Ad effectiveness itself was measured by increase in 

the call volume to the quit helpline after each ad ran. Each potential predictor was assessed for 

how well it captured the relative ordering of the three different ad campaigns screened. 

Activation in the target ROI was the best predictor of this ranking; notably, it outperformed the 

traditional survey self-report measures.  

Changes in neural activation in a handful of people, then, can predict the outcome of 

population-level events and interventions happening months later. This makes it tempting to see 

the main innovation of predictive models as confined solely to increases in accuracy over 

traditional methods such as surveys or focus groups. Further studies refine this picture, however. 

Genevsky, Yoon, and Knutson (2017) investigated neural markers that could forecast which 

online crowdfunded projects would be most successful. Thirty individuals underwent fMRI 

while viewing images and text from different crowdfunding campaigns. They were then 

surveyed for their attitudes about the campaigns and whether they personally would fund them. 

The main results of interest are, first, that activity in nucleus accumbens (NAcc) and medial PFC 

predicted individual funding choices; second, that NAcc but not mPFC predicted aggregate 
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crowdfunding performance; and third, that neural measures were better aggregate funding 

predictors than were survey responses. Neural predictors of aggregate choice can contribute to 

forecasting accuracy over and above behavioral ones without always accurately predicting 

individual choices well.  

The second set of cases centers on the prediction of individual neural, cognitive, or 

behavioral outcomes, drawing on the tradition of searching for biomarkers of psychiatric or 

neurological conditions (Gabrieli, Ghosh, and Whitfield-Gabrieli 2015; Jollans and Whelan 

2018; Woo et al. 2017). Existing research has focused on early diagnosis of conditions such as 

schizophrenia and Alzheimer’s dementia (AD), mood disorders, and alcoholism. Here the 

inferences point in the opposite direction, from models trained on large population-level samples 

to individual-level predictions.2 The overall research framework of single-subject prediction is 

translational, driven by the need to find clinically deployable tests that will rapidly, cheaply, and 

accurately facilitate classifying and treating patients. Ideally, early diagnosis or monitoring can 

lead to better outcomes. 

In a landmark study, Whelan and a multinational team (2014) looked at data from 692 

adolescents for predictors of binge drinking from ages 14-16. These included life history, 

personality traits, and various neural measures. The model they built, at its best, successfully 

predicted 77% of future binge drinkers and 67% of non-binge drinkers. Many of the chosen 

behavioral and personality measures, such as sexual activity and low conscientiousness, 

 
2 Predictive models of this kind primarily generate group-level predictions, but they are often 

used as proxies to forecast individuals’ behavior. As Poldrack et al. (2018) note, this raises the 

“group-to-individual” inference problem; here, though, I will assess these models as they are 

often used in practice, namely as devices for specifically individual prediction. 
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predicted both future and current binge drinking well.3 Among the brain measures, the most 

robust predictors were a combination of structural and functional indices across regions 

including right middle and precentral gyri, bilateral superior frontal gyrus, and premotor cortex. 

Notably, good predictors of future binge drinking were not always the same as good classifiers of 

current binge drinking: e.g., parenchymal volume and grey-to-white matter ratio was a predictor 

but not a classifier, and vmPFC and left lateral PFC classified current binge drinkers but were 

poor predictors. 

Studies aiming to make such individualized predictions continue to proliferate, and 

generalizations about their scope and limits can now be ventured. For instance, a recent meta-

analysis of 116 studies predicting transition to AD from mild cognitive impairment (MCI) 

revealed accuracies of 74.5% for fMRI and 76.9% for PET-based methods (Grueso and Viejo-

Sobera 2021). In terms of the kind of classifier used, support vector machines were 75.4% 

accurate and convolutional neural networks were 78.5% accurate. Prediction of progression to 

AD, however, was always a harder task than sorting of patients according to their current status 

as normal vs. AD. There are obvious reasons why these tools might be of interest within 

biomedicine, despite their present limitations. 

These sets of models are in many ways complements of each other. They differ in the 

evidential base on which they are each built (small group samples vs. population level samples), 

in the targets they aim to predict (socioeconomic events vs. individual outcomes), and in the 

contexts of their plausible use (corporate or state policymaking vs. clinical guidance). These 

differences aside, they draw on similar analytic and computational resources to produce their 

 
3 Smoking, however, is so strong that it swamps the remaining predictors and was therefore 

removed from later analyses. 
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predictions. As we will see, the practice of normative assessment requires taking all of these 

factors into account. 

 

4. Completing the Predictive Turn 

We can now revisit the question of what makes something a good predictive model. This 

first needs to be separated from the issue of whether predictive power is an added epistemic 

virtue of theories and models that already do some explanatory work; that is, whether an 

explanatory theory that generates novel predictions thereby warrants more of our confidence 

relative to one that just fits existing data. This latter topic has been at issue in debates over 

predictivism (Douglas and Magnus 2013), but the models surveyed here are not explanatory 

models that also generate predictions. Rather, they are specifically tailored to answer predictive 

questions. Models such as these do not become worse at their job simply because they don’t also 

do explanatory work. Instead, their success or failure turns on how closely they mesh with the 

sorts of decision contexts in which the models will prospectively be applied. 

To see this, begin with the fact that prediction questions are generally asked because their 

answers are meant to be action-guiding. The choice of predicted targets—drawn from domains of 

social, clinical, and commercial importance—suggests that this consideration is at the forefront 

of modelers’ minds. While some might pursue prediction for reasons of sheer intellectual 

curiosity, knowing possible futures is notably a way of pre-empting or planning for them. The 

need for action and the goals of clinicians and policymakers combine to determine the specific 

ways in which models are assessed. If a model is regarded as providing input to decisions 

concerning action, how well or poorly it does that should factor into its assessment. 
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For this reason, predictive modeling provides an exemplary illustration of how a range of 

values shape representational and modeling practices in science. The question, in short, is what 

makes neuropredictions “adequate for purpose” in the sense of Wendy Parker (2009): “the 

model, when used in accordance with specified methodologies, will convey information about 

the target system that allows model users to infer correct answers to the target questions” (p. 

236). This perspective on prediction takes models to be technologies: devices for helping to 

achieve particular ends. Like other technologies, their assessment turns not just on how well they 

perform the functions for which they are designed, but also on how well or poorly they work as 

components of larger sociotechnical networks. 

Completing the predictive turn, then, will depend on achieving greater clarity concerning 

how the settings in which these questions are asked also contribute to generating norms. To 

begin, consider some candidate dimensions of normative assessment such as accuracy, 

actionability, generalizability, interpretability, and informational economy. These criteria 

function more like norm schemata than providers of specific guidance to modelers. A norm 

schema is an abstraction that points towards clusters of ideal properties that a model might have. 

Each element in these clusters represents a way of making the norm more concrete and specific 

in its guidance. “Be accurate,” “Be able to potentially guide actions,” and “Use the least amount 

of informational input possible” are exhortations that commend agreement only insofar as they 

are platitudes. What is needed to make them substantive is an idea of what it means to comply 

adequately with that norm in this situation. Importantly, the investigative context per se does not 

necessarily give a complete or comprehensive set of clues concerning the right way to flesh out 

these schemata. Making them concrete requires looking at the wider ends to which the predictive 

questions are directed, and to the environment in which the technology will be deployed. 
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Take a norm such as informational economy. Roughly, this enjoins modelers to make use 

of the least amount of informational input necessary to generate predictions. In the real world, 

information isn’t free. As the expense of taking measurements increases, models generally 

become less desirable. Within neuromarketing, this manifests as an emphasis on striking a 

balance among accuracy, cost, and ease of deployment (Hakim and Levy 2019). Similarly, while 

information-hungry multimodal imaging methods are in some cases the most accurate for 

predicting future disease states, they require costly equipment that takes special skill to operate, 

as well as unfamiliar analytic techniques. It is possible, given certain assumptions, to estimate 

the economic cost and participant burden imposed by using a diagnostic predictive tool (Petrone 

et al. 2019). While minimizing both of these factors (relative to existing predictive methods) is 

most desirable, clinical deployment may, for example, prioritize minimizing the burden on 

patients. What it means to be economical with information depends as well on what the 

predictions will be used for: the costs of error (e.g., a misdiagnosis) may be sufficiently high that 

the added expense of gathering more inputs is overall warranted. 

Actionability refers to the usefulness of a prediction in formulating and ranking various 

candidate plans of action. The need for action-relevant information in fields such as marketing is 

clear from the sheer amount of waste generated by failed products, estimates of which range 

from 70-95% of all new products, and advertising of unknown efficacy, which consumes tens of 

billions of dollars per year in the US alone (Spence 2019). Neuropredictions that one advertising 

campaign rather than another is likely to succeed may influence whether that campaign is funded 

(all else being equal). But the relationship of prediction to action is highly indirect. In particular, 

action does not always take the form of intervention on the target. A prediction that assigns to a 

patient a moderately high risk of developing autism cannot, at the moment, lead to any course of 
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treatment that will cure the disorder or prevent it from emerging. The same is unfortunately true 

for many other neurological conditions. Interventions in neuropsychiatry may instead come in 

the form of situational changes such as increased monitoring of symptoms and provision of 

support services. How actionable a model is turns on properties that extend outward to the 

overall decision-making context. As a consequence, a “good” predictive model that provides 

highly accurate information may still be unsuitable or inadequate for purpose if it there is no way 

that it can usefully shape our choice of actions (Lane, Hunter, and Lawrie 2020). 

Interpretability (also called transparency) is another widely discussed norm of prediction 

(Chirimuuta 2020). Interpretable models are, roughly, those whose operations can be articulated 

and understood by their human users. Interpretability can also be unpacked in more local ways: 

e.g., it might be required that models should be interpretable specifically in terms of plausible 

biological mechanisms. Predictors that use “unbiological” or neurally opaque features would fail 

by this criterion (Woo et al. 2017, 372). Interpretability, too, is a norm whose application 

depends on specific contexts of inquiry, and uninterpretable models can sometimes be adequate 

for purpose. For example, in predicting progression to Alzheimer’s dementia, less interpretable 

models developed by merging complicated multimodal data sets may be acceptable if no 

differences in treatment depend on why someone is classified one way rather than another. This 

can be the case when filtering patients to take part in drug trials (prior to random assignment to 

conditions), where maximizing the number who will convert to AD is highly desirable. This use 

would minimize costs to the drug developers while not negatively affecting participants. 

By the same token, neuromarketers may have little desire to open the black box of an 

EEG-based predictor that bears at best an opportunistic relationship to background theory or 
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ground truths.4 Contrast this attitude with that of consumer neuroscientists, who have an interest 

in understanding the causal basis of the model’s predictions (Scholz et al. 2017). Here, predictive 

models are useful because they provide potential new targets of explanation. In a synergistic 

setting like this where predictive and explanatory investigations work in tandem, biological 

interpretability matters far more. These cases indicate that both the degree and kind of 

interpretability at issue are parameters that need to be set by these different purposes, depending 

on what is taken to be sufficient to ground the attitude of trust towards a model. 

Similar points could be made concerning the other candidate norms above. Collectively, 

they show that when answering research questions that require building predictive models, we 

need to take into account a dynamic set of normative criteria. These dynamics show up in two 

ways. The first is in norm instantiation: the descent from norm schemata to particular, concrete 

instances of norms. The second is in norm interaction: the specification of how those norms are 

ranked in terms of their relative priority to one another. In norm instantiation we move from 

abstract schemata to more particularized forms of guidance. A norm such as “Be actionable” gets 

transformed in this process into a specific set of prescriptions for how the model should be 

assessed as to its action-guiding potential relative to a context of use. What it means for a model 

to be actionable depends on where and how it is embedded into a sociotechnical nexus—the 

same model embedded elsewhere may not be positioned to feed into decision making in the same 

ways, and hence should not be assessed relative to the same criteria. Norm interaction then takes 

these precisified norms and determines how they are to be weighted, ordered, or traded off 

against each other. In one context, being transparent might be of paramount importance, while in 

 
4 Devices such as this are now being marketed. See, e.g., the iMotions platform: 

https://imotions.com/neuromarketing 
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others it might be most important to achieve an optimal mix of informational economy and 

actionability, with transparency being a marginal benefit at best.  

In the current literature, predictive models are routinely and rigorously assessed on the 

usual methodological criteria such as whether they employ correct cross-validation techniques or 

are trained on an appropriately representative (unbiased) dataset. But these internal conditions do 

not capture the full range of relevant assessments, since these models are also situated within 

action-guiding systems. Both of the processes described here (instantiation and interaction) 

provide potential channels for wider values to shape how models should be assessed. The values 

in question have to do with whether the predictor is adequate for purpose. Whether or not it is 

depends in turn on the policy and decision-making procedures within which the predictive model 

is embedded. This flows directly from the technological perspective on models. New or existing 

technologies are assessed by measuring them against a set of criteria established through broad 

consultation with experts and ordinary citizens. A model’s adequacy, by the same token, is 

determined by how well it measures up to the concrete and ordered structure of norms 

established by its overall situation of use. 

 

5. Conclusion 

At the moment, predictive modeling in neuroscience is best conceived of as an 

exploratory field. Nevertheless, it has had no shortage of critics who have attacked it on practical 

grounds as well as ethical ones. The approach taken here has been to suspend the attitudes of 

neuroskepticism and neurohype with an eye not towards judging the field’s prospects, but rather 

towards considering what insights these cases might offer about prediction more broadly. It is 

too early to say how fruitful the predictive turn will turn out to be and to what research questions 
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and problems it might best be applied. But the development of ever more sophisticated models 

provides an opportunity to pay renewed attention to prediction as a distinct scientific goal. This 

shift is laudable and overdue. Future work may shed greater light on prediction by bringing it, at 

last, out of explanation’s shadow. 
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