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Abstract

We report a solution to an open problem regarding the axiomatization of the convex
hull of a type of nonclassical evaluations. We then investigate the meaning of this result
for the larger context of the relation between rational credence functions and nonclassical
probability. We claim that the notions of bets and Dutch Books typically employed in
formal epistemology are of doubtful use outside the realm of classical logic, eventually
proposing two novel ways of understanding Dutch Books in nonclassical settings.

1 INTRODUCTION

We would like to believe true propositions and avoid believing false ones. In formal episte-
mology it is typical to represent an agent’s belief state by means of a credence function which
assigns real numbers—usually taken from the [0,1] real segment—to propositions. Ideally,
then, we would want our credences in true propositions to equal 1, and our credences in false
propositions to equal 0. However, due to our cognitive and evidential limitations, leading
to the typical human condition of imperfect information, we have to settle for something
else. It is one of the basic tenets of formal epistemology that credences of a rational agent are
weighted means of classical truth evaluations; this is the same as saying that they belong to
the “convex hull” of classical evaluations, and, seen from yet another angle, it means that
these credences satisfy the classical Kolmogorov probability axioms.

All this assumes, usually implicitly, that the underlying logic is classical. How does the
situation change if this assumption is removed? At first glance, it might be intuitive to hold
e.g. that if an agent knows, say, that some proposition A has the truth value 1/2, their credence
in A should be 1/2. And more generally, just as classical probabilities are weighted means
of classical evaluations, the term “nonclassical probability” can be taken to refer, to a first
approximation, to a weighted mean of nonclassical ones.1 Paris (2005) initiated the project
of axiomatizing nonclassical probabilities, tying it also to the issue of Dutch-bookability: for

*Correspondence: leszek.wronski@uj.edu.pl .
1This is the intended meaning of the term employed in a portion of the literature to which this paper aims

to contribute, e.g. in Williams (2016) and Bradley (2017). Williams (2012a) uses the term “generalized probabil-
ities”. In the paper which serves as a foundation for this research, Paris (2005) writes about “probabilities” and
“analogs of probability functions for non-standard propositional logics”; Williams (2016) uses the term “nonclassical
probabilities” to refer to such functions; earlier suggesting in (Williams, 2012b) that they are functions which are
“nonclassically coherent”. The project of axiomatizing nonclassical probabilities thusly conceived should not be
confused with those aiming to give some alternative formalization of the probability calculus, via Popper functions,
Rényi axioms, etc.
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a variety of nonclassical settings, credences satisfy Paris’ axioms if and only if they are not
Dutch-bookable (and thus avoid at least one source of irrationality).

However, as already mentioned, the above is only a first approximation of the issues
to be discussed. This is because a proposition’s truth value may by itself not be enough
to fix the degree of belief an omniscient agent should invest in it. For example, various
three-valued logics, employing the truth values of T, F and, say, O, may come with different
interpretations of the “Other” value O. For some logics, if a proposition has the truth value
O, then an omniscient, or even just a rational agent should better not a have a credence
in that proposition at all, and so their credence function should be appropriately gappy.
According to other logics the credence should be defined in such a case, but should be set
to 0; that is, for an omniscient agent a proposition with truth value O is as good as a false
one. According to still other logics, in such cases the agent’s credence should be 1; for still
others, 0.5 (specific examples will be given later). These “credences an omniscient agent
should invest in a proposition given its truth value” are called cognitive loads; it is typically
assumed that each truth value has “its” cognitive load2, and so each valuation, considered as
a vector of truth values, generates a vector of cognitive loads. With this notion in hand, given
a nonclassical (propositional) logic, instead of axiomatizing the convex hull of the valuations
permitted by that logic, we can turn to axiomatizing the convex hulls of the corresponding
vectors of cognitive loads (which we will call “cognitive evaluations” later on3). Members of
that set are, after all, weighted means of credences of omniscient agents. It is in that vein that
Paris’ project has been continued by J.R.G. Williams and S. Bradley.

The paper is structured as follows. In the next Section we recall the basic results in this
field which will come of use later. In Section 3 we report a solution to the problem (posed
in Williams (2016)) of axiomatizing the convex hull of the set of cognitive evaluations of
an intuitive 3-valued calculus called Symmetric Logic. We then turn to the issue of why
one should be interested in such nonclassically probabilistic credences at all. As already
mentioned, it is typical to use some sort of Dutch-book-related considerations to claim that
such credences avoid at least one source of irrationality. In Section 4 we argue that, if such
arguments are to be fruitful, they need to use different notions than the ones employed
heretofore. We suggest two proposals going in that direction. Both of them call for modifying
the formal details of what is to be called a Dutch Book: in the first case (labelled “real
Dutch-bookability”) this results from employing a different notion of credence, and in the
second (“truth-value Dutch-bookability”, Subsection 4.1.1) from using a different notion of
bet altogether.

Shortly speaking, it is important to distinguish between the logical goal of axiomatizing
certain convex hulls and the epistemological goal of arguing that satisfying those axioms is a
matter of rationality. Section 3 reports on the former; Section 4 on the latter.

2 CONVEX HULLS OF EVALUATIONS AND NONCLASSICAL PROBA-
BILITY

The project of axiomatizing convex hulls of nonclassical evaluations has its ultimate goal
in describing credence functions which would be rational in nonclassical settings. Let us
postpone the discussions of rationality to Section 4 and focus now on the aforementioned
convex hulls.

We shall begin by stating Paris’ initial result in the framework introduced in the recent
handbook article by Williams [2016]. It requires a finite propositional language L with the set
of sentences SentL built using a set of connectives which includes ∨ and ∧ (but possibly also
other ones, including modalities). V is a certain subset of the set of all functions from SentL

2That is: gappy frameworks have, it seems, not been investigated yet in the literature on cognitive loads.
3The term has been introduced in Bradley (2017), and we intend to keep the intuitions behind the concept.
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into a finite nonempty set of truth values T V . Williams introduces the term “cognitive load”:4

a cognitive load of a truth value is the supposed “ideal cognitive state” associated with it;
in other words, it is the degree of belief an omniscient agent should invest in a proposition
having that truth value. In the classical case, cognitive loads directly correspond to truth
values 1 (true) and 0 (false), while in the general case the cognitive load function c is an
arbitrary function from T V into [0,1]. For any valuation V we can speak of “its” cognitive
evaluation cV : SentL → [0,1] defined as, for any ϕ ∈ SentL, cV (ϕ) = c(V (ϕ)). Williams’s idea
is, in the context of some logic, to inquire about the convex combinations of something
else than valuations. The reason for this is that two different logics, defined on the same
language and having the same set T V of truth values, may give rise to exactly the same set of
valuations. And yet, for example due to how the consequence relation differs between the
two logics, the epistemic status of these valuations might be different.

Let us note that according to both Williams and Bradley the logics themselves are “cogni-
tively loaded”, in that each truth value has “its” cognitive load (Williams, 2016, 255)5. For the
purposes of stating the formal results we can therefore treat the cognitive load function to be
a definitional element of the given logic. The logics are also “semantically driven”; we have
our doubts as to what exactly this means6, but at the very least it seems to entail:

• first, that a logic expressed in a language carries with itself the information about
what the possible valuations of the sentences of that language are (i.e., if a logic is
semantically driven, it’s not something for which we could find different semantics: if
you change the semantics, you change the logic);

• second, that truth values are categorical properties of sentences (as opposed to, say,
uninterpreted formal devices used in achieving a different goal; see Field (2009));

• and third, that the logic involves a consequence relation defined so that whether a
sentence entails another depends only on facts regarding valuations (and not, for
example, on any syntactic considerations).

Before we state the starting result, let us note that we have made a conscious decision to
depart from Paris’ original assumptions, to the effect that all languages under consideration
here will include only truthfunctional operators. This is just for reasons of presentation. The
main system under discussion, the Symmetric Logic, only includes operators of this kind
anyway. But nonetheless, doing so allows us to simplify some statements of theorems based
on Paris’ results. The languages in question have finitely many propositional variables and
operators and the logics admit only finitely many possible valuations. Thanks to this we
can speak of the function “B”7 as opposed to “every finite restriction of B” being a convex
combination of some vectors. More complicated variants of the relevant results, taking into
the account also non-truthfunctional operators, can be provided after the inspection of Paris
(2005).

Without further ado, here’s the generalized version of Paris’ theorem:

2.1 THEOREM (PARIS (2005), THEOREM 5 GENERALIZED).8 Fix a sentential language L consist-
ing of a finite set of propositional variables P and a finite set of logical connectives which

4Let us note here that Williams (2012b) uses a slightly different language to refer to essentially the same notions.
We will not introduce that language in the current paper.

5One might be tempted by the examples in Section 3 in Williams (2016) (which are the three logics discussed
below) to think that the given logic’s cognitive load function is somehow “generated” by its consequence relation.
That, however, does not seem to be the intended interpretation; also, the function �·�, which in Williams (2012b)
plays the role of the cognitive load function, is defined for numerous logics and seems to have no straightforward
connection to their consequence relations.

6For example: Bradley writes (op. cit, p. 88) “it is facts about ways the truth statuses could be distributed that
determine the logic”. This seems a radically strong thesis, since on a reading which seems the most natural to us it
equates all logics which share truth tables; for example, the three logics K L, LP and SL discussed below. (We of
course do not wish to claim that Bradley had this in mind.)

7To be interpreted as a function specifying degrees of belief.
8The crucial insight about the ’no drop’ consequence is due to Williams (2012b).
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includes ∨ and ∧. Take SentL to be the set of all sentences of L. Let a logic be given by
L = (V,⊨,c), where valuations V ∈ V are functions from SentL into a finite nonempty set
of truth values T V , ⊨ is a consequence relation, and the cognitive load function c is an
arbitrary function from T V to [0,1]. The logic’s “cognitive evaluations” are all functions
cV : SentL → [0,1] defined as, for any ϕ ∈ SentL, cV (ϕ) = c(V (ϕ)).

Let B be a function from SentL to [0,1]. Then, if:

(*) the image of c is {0,1};

(**) ∨ and ∧ operate classically with respect to the cognitive loads; that is, for any cognitive
evaluation cV ,

cV (ϕ∨ψ) = 0 iff cV (ϕ) = cV (ψ) = 0

and
cV (ϕ∧ψ) = 1 iff cV (ϕ) = cV (ψ) = 1;

(***) the consequence operation satisfies the ’no drop’ condition on the cognitive evalua-
tions, that is,

ϕ⊨ψ iff for any valuation V , cV (ϕ) ≤ cV (ψ);

then the following are equivalent.

(A) B is a convex combination of the cognitive evaluations from {cV |V ∈V};

(B) B satisfies the axioms below.

(L1) If ⊨ϕ then B(ϕ) = 1, and if ϕ⊨ then B(ϕ) = 0,
(L2) If ϕ⊨ψ then B(ϕ) ≤ B(ψ),
(L3) B(ϕ∨ψ)+B(ϕ∧ψ) = B(ϕ)+B(ψ).

Already in three-valued cases the situation becomes non-trivial. If the set of truth values
is, say, {T,O,F } (for “true”, “other”, and “false”), the ideal cognitive state associated with O can
be one of a number of things. If, for example, the logic dictates that O be read as “half-true”,
then the cognitive load of O can be naturally taken to be 1/2. (This will be main case under
discussion in the current paper.) For other logics, as we will see below, the ideal degree of
belief invested in a proposition which has the truth value O might be 0 (if believing such a
proposition should, according to the logic, be avoided), or 1 (if it is as belief-worthy as a true
proposition). And, correspondingly, what rational credences are should depend on which
logic governs the possible worlds: even if the set of valuations may be exactly the same.9

If we use the term “L-probabilities” for the elements of the convex hull of L’s cognitive
evaluations, Theorem 2.1 says in effect that if L satisfies (*)-(***), then L-probabilities are ax-
iomatized by (L1)-(L3). The general problem is to give axiomatizations of M-probabilities
for logics M which do not satisfy at least one of the conditions (*)-(***), and we will consider

9A sidenote on generalization: Theorem 2.1 does not carry over to infinite sets P of propositional variables,
not even in the classical propositional logic case. For if P is infinite, then the Lindenbaum-Tarski algebra of the
classical propositional logic L is the countably generated free Boolean algebra B. Each evaluation V ∈V corresponds
to an ultrafilter of B. It is enough to show that there exists a (probability) function B : B→ [0,1] that satisfies the
axioms L1−L3, but still B is not a convex combination of the cognitive evaluations. To this effect, take a countable
partition {ϕi : i ∈N} of B and let B be an arbitrary probability function such that B(ϕi ) > 0 for each i ∈N. By way of
contradiction assume that

B = r1cV1 +·· ·+ rn cVn

for cognitive evaluations cVk
and convex coefficients rk . As each cVk

(ϕi ) is either 1 or 0, by the homomorphism
property of the Vk ’s and that the ϕi ’s form a partition, there must exist some i such that cVk

(ϕi ) = 0 for every k. But
then

0 ̸= B(ϕi ) = r1cV1 (ϕi )+·· ·+ rn cVn (ϕi ) = 0

is a contradiction.

4
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here a particular case in which it is just the condition (*) that is violated: that is, the logic in
question admits more than two cognitive loads.

A straightforward application of (a version of) Theorem 2.1 is noted by Williams in the
context of the well-known three-valued logics K L (Kleene’s “strong logic of indeterminacy”)
and LP (Priest’s “logic of paradox”). In fact, the Strong Kleene truth-tables used by them
serve as the basis of probably the least complicated examples of the issue under discussion.10

The three-valued logics K L and LP along with the Kleene truth tables are introduced and
discussed in detail in Section 7.3 of (Priest, 2001).

Consider, then, a sentential language L consisting of a non-empty finite set P of propo-
sitional variables and the three connectives ∧, ∨ and ¬. A valuation V assigns to each
propositional variables one the three possible truth values: T , O, and F . It is then extended
to a mapping V :SentL → {T,O,F } by the rules given by the Kleene truth tables as follows:

∧ T O F
T T O F
O O O F
F F F F

∨ T O F
T T T T
O T O O
F T O F

¬ T O F
F O T

The logics K L, LP and the “Symmetric Logic” SL use these truth tables; however, they
differ in how their consequence relation ⊨ is defined:

KL: ϕ⊨K L ψ iff for every evaluation V we have

if V (ϕ) = T, then V (ψ) = T. (1)

LP: ϕ⊨LP ψ iff for every evaluation V we have

if V (ϕ) = T or O, then V (ψ) = T or O. (2)

SL: ϕ⊨SL ψ iff for every evaluation V we have

if V (ϕ) = T, then V (ψ) = T ; and (3)

if V (ϕ) =O, then V (ψ) = T or O. (4)

That is, ⊨SL is ⊨K L and ⊨LP “taken together”: ϕ⊨SL ψ iff ( ϕ⊨K L ψ and ϕ⊨LP ψ). K L has no
tautologies, a fortiori the principle of excluded middle ϕ∨¬ϕ also fails to be one. LP is a
paraconsistent logic, where ϕ∧¬ϕ is not explosive, i.e., it does not entail everything. SL
allows us to enjoy both of these features.

In the 2016 handbook article Williams claims that the following are the cognitive loads of
the three logics:

Truth value: T O F
The K L cognitive load function cK L : 1 0 0
The LP cognitive load function cLP : 1 1 0
The SL cognitive load function cSL : 1 1/2 0

Note that, indeed, if we grant this assumption, then the logics K L and LP satisfy the
conditions (*)-(***) and thus Theorem 2.1 can be applied to them directly.11 Williams notes

10These examples appeared already in Williams (2016), but we include them here for the paper’s completeness
and because we will eventually voice some doubts about Williams’ interpretation of them.

11We are not convinced that merely the fact that the intended interpretation of “has the truth value O” is “is
both true and false” shows that cLP (O) should be set to 1. However, we plan to revisit this point in a future study,
using the complex notion of credence introduced here in Section 4.3.

Note also the standard fact that there will be many logics under the K L name due to the various possibilities in
which the set of variables might be chosen, which determines the set of valuations. That is, for two different sets of
valuations V1 and V2 satisfying the Kleene truth tables, (V1,⊨K L ,cK L ) and (V2,⊨K L ,cK L ) will be different Kleene
Logics, to both of which Theorem 2.1 directly applies. (All this applies to LP and SL too, of course.)
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further that “it is a matter of hard graft to see whether similar completeness results can
be derived for settings that fail the Parisian conditions (one representative of which is our
Symmetric logic)”. As already mentioned, Paris himself extends the result so that it applies
to finitely-valued Łukasiewicz logics, while Mundici (2006) achieves a similar goal for the
infinitely-valued version.12 Bradley (2017) continues the “hard graft”, covering some exam-
ples involving languages with non-truthfunctional operators.13 Our main goal here is to
investigate how such nonclassical axioms can be argued to be requirements of rationality
using Dutch Book considerations, an idea frequently mentioned, but one that has not, it
seems, been so far put under sufficient scrutiny. Our point of departure will be the relatively
uncomplicated example of Symmetric Logic, to which we now turn.

3 AXIOMATIZING CONVEX HULLS OF SYMMETRIC LOGIC

We have recently put forward the following solution of the problem of axiomatizing SL-
probabilities in (Gil Sanchez et al., ms):

3.1 THEOREM (GIL SANCHEZ ET AL., MS). Let a sentential language L consist of a nonempty
finite set P of propositional variables and the three connectives ∧, ∨ and ¬. Take SentL to be
the set of all sentences of L. Let the logic SL be given as (V,⊨SL ,cSL), where valuations V ∈V
are given by the Kleene truth tables. Let B be a function from SentL to [0,1]. The following
are equivalent.

(A) B is a convex combination of the cognitive evaluations cSL
V for V ∈V.

(B) B satisfies the axioms below.

(SL1) If ϕ⊨ψ then B(ϕ) ≤ B(ψ),
(SL2) B(¬ϕ) = 1−B(ϕ),
(SL3) B(ϕ∨ψ) = B(ϕ)+B(ψ)−B(ϕ∧ψ),
(SL4) B(ϕ) = B(ψ∧ϕ)+B(¬ψ∧ϕ)−B(ϕ∧¬ϕ∧ψ∧¬ψ).

In other words, SL-probabilities are axiomatized by the conditions (SL1)-(SL4).14

12The reader might be interested in why this shouldn’t be straightforward, at least in the three-valued version
of the Łukasiewicz logic, since it shares the truth tables for ∧, ∨ and ¬ with the three logics under discussion here.
Note, however, that its language contains also → as a non-derived connective.

13See, however, footnote 16 below: we think that lattice-theoretic approach leads Bradley to some unfortunately
phrased conclusions already in the truthfunctional cases.

14For those yearning to nibble at a morsel of additional formalism: the new axiom (SL4) is related to the
presence in the Lindenbaum-Tarski algebra for SL logics of join-irreducible elements, which appear already once
two propositional variables are admitted in the language. If we consider the Lindenbaum-Tarski algebra for the
Symmetric Logic with two propositional variables x and y , then this will be the principal ideal generated by x ∧¬y :

x ∧¬y

(x ∧¬y)∧ (y ∨¬x)

x ∧¬x ∧¬y x ∧¬y ∧ y

x ∧¬x ∧ y ∧¬y

As we can see, (the equivalence class of) x ∧¬y cannot be arrived at as a join of two different elements. Therefore,
even if the value of a credence function were fixed on all the atoms (literally: on all the elements of all the atoms) of
the Lindenbaum-Tarski algebra, it wouldn’t be possible to use the additivity axiom (SL3) to calculate its value for
x ∧¬y . It is in such cases in which (SL4) is employed. For the gruesome details of this please refer to the technical
paper (Gil Sanchez et al., ms).
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x ∨¬x

x ¬x

x ∧¬x

1

1 0

0

1/2

1/2 1/2

1/2

1

0 1

0

Figure 1: The leftmost picture displays the Lindenbaum-Tarski algebra of the single-variable version of
SL. The others display the three valuations possible in this context.

For an extended proof of this Theorem, see (Gil Sanchez et al., ms). One aspect of SL
we’ve made use of is that, of the three logics K L, LP and SL, it is only the Symmetric Logic that
is algebraizable: that is, only in that case the relation of mutual entailment is a congruence,
and so the logic has its Lindenbaum-Tarski algebra.15 (Also, for similar reasons as in the
classical propositional logic case above, the condition that P is finite cannot be dropped
without significant modifications. The papers (Paris, 2005) and (Williams, 2012b) contain
an exhaustive list of similar results for other logics and the issue of compositionality is also
discussed therein.)

Notice that if the language has just a single propositional variable, all credences satisfying
(SL1)-(SL4) are convex combinations of the three valuations displayed in Figure 1; that is,
they are credences of this form:

β

α 1−α

1−β

The following is an example of such a credence:

3/4

x ∨¬x

3/4x 1/4 ¬x

1/4

x ∧¬x

It is important to distinguish two goals: the logical one of axiomatizing certain convex
hulls, and the epistemological one of arguing that credences satisfying those axioms, or,
equivalently, belonging to those convex hulls, are in some sense rational. With regard to the
cognitive evaluations of Symmetric Logic, we’ve just described the achievement of the first of
those two goals. We now turn to the second one.16

15If a logic is given semantically, with the entailment relation ⊨, then its Lindenbaum-Tarski algebra is a partition
of the set of its sentences into equivalence classes (inside each of which, for every ϕ and ψ, ϕ⊨ψ and ψ⊨ϕ) on
which the operators of the logic’s language behave “nicely”. Take [ϕ] to be the equivalence class of ϕ and assume
the language has (only) the operators ∧, ∨ and ¬. In the Lindenbaum-Tarski algebra we require that, if α ∈ [ϕ] and
β ∈ [ψ]:

• ¬α ∈ [¬ϕ];

• α∧β ∈ [ϕ∧ψ]; and

• α∨β ∈ [ϕ∨ψ].

Take, however, the two formulas ϑ1 = p ∧¬p ∧q and ϑ2 = p ∧¬p ∧¬q . They entail each other according to both
⊨K L and ⊨LP (so ϑ1 ∈ [ϑ2] in both cases), but there are valuations in which their truth values differ (which can be
used to show that, again in both cases, ¬ϑ1 ∉ [¬ϑ2]. Therefore no Lindenbaum-Tarski algebras for K L or LP exist.
Their existence in the case of SL is exactly what allows us to draw the diagrams in this paper!

16This footnote is aimed at those readers who are familiar with Bradley (2017). The just provided simple examples
of elements of the convex hull of cognitive evaluations of SL directly relate to one of the points made in that paper.
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4 CONVEX HULLS, DUTCH BOOKS AND RATIONALITY

It is one thing to axiomatize the notion of a convex hull of cognitive loads in the context
of some logic. It is another one to argue that these axioms should be satisfied by rational
credence functions; in fact, it is achieving this goal that for epistemologists is probably the
main allure of these considerations. Let us now turn to this task.

The chief reason stated in Paris (2005) for investigating axiomatizations of convex hulls
of sets of valuations was that it is exactly the elements of such convex hulls that are not
Dutch-bookable with respect to those valuations.17 One assumption was that the valuations
are {1,0}-valued; however, Paris himself noted that this restriction could “clearly be relaxed”.
Section 3 of (Williams, 2012a) contains a somewhat informal proof of a generalization of Paris’
result to finite “non-classical truth value distributions of truth values”18. Once cognitive
loads are introduced, matters become a little bit more subtle. Assume possible worlds are
governed by a logic with three truth values: True, Other, and False. Suppose a bet is bought
for a proposition A with the stake S; and that it turns out that the truth value of A is Other.
What portion of S should be paid out—what Williams (2016) calls the “pragmatic load” of
the Other value—depends on how Other is to be interpreted; it can be argued, e.g., that if
the logic is K L, then the buyer should get nothing, if it is the LP , (s)he should receive the full
S, and if it is the SL, then (s)he should end up with one half of S. In Section 5 of the 2016
handbook paper Williams points out that the demands belong to the convex hull of cognitive
evaluations and don’t be Dutch-bookable might be inconsistent if cognitive loads differ from
the pragmatic ones. To discuss the Paris-motivated connection between Dutch Books and
convex hulls we thus assume that these two types of loads coincide.

Some comment regarding cognitive and pragmatic loads is in order. Williams (2016)
takes them, in the context of some logic, to be properties of truth values19. This allows a
hypothetical situation in which two different truth values share their cognitive load (say,
1) but differ in their pragmatic load (say, 1 vs. 1/2). In such a case, even though there is no
difference in the credence an omniscient agent should invest in a proposition depending
on which of the two truth values it has, one of them is “worth more” in a betting situation.
Similarly, truth values with differing cognitive loads might share their pragmatic load. One
could certainly contemplate a different approach, in which one of the two types of loads
was fundamental to the other; for example, pragmatic loads could be taken to “generate”
cognitive loads, on the assumption that what omniscient agents care about can be reduced

Bradley aims to apply the Krein-Milman theorem, which says—under some assumptions about compactness
and closedness—that the convex hull of the extremal elements of some convex set is that same convex set. His
goal is to extend a theorem by Choquet which describes the extremal elements of the set of monotonic functions
on a distributive lattice which satisfy the additivity axiom (SL3). The result he gives as his Theorem 3 is that, if we
restrict our attention to functions which assign 1 to the top and 0 to the bottom element of the lattice, those extremal
elements are indicator functions of ultrafilters.

Bradley states that in “nonclassical case[s] there can obviously be evaluations that aren’t indicator functions of
ultrafilters (...) But (...) those evaluations will be non-extremal elements: they will be in the convex hull of the
indicator functions of ultrafilters. So, as long as the indicator functions of ultrafilters are among the admissible
evaluations, the convex hull of the evaluations will be equal to the convex hull of the indicator functions of ultrafilters”
(p. 95). We believe it is important to note that this can be false e.g. if functions which assign something else than 0 to
the bottom element of the lattice are considered. Take the single-variable version of SL: the three extremal elements
of the set of evaluations are displayed in Figure 1. And while, indeed, the indicator functions of the two ultrafilters
are there, the convex hull of the evaluations is decidedly not equal to the convex hull of the indicator functions of
ultrafilters: for example, the “give-everything-1/2” evaluation displayed in the middle of Figure 1 cannot be obtained
as a weighted mean of the two indicator functions of ultrafilters; one reason is that it has something else than 0 as
the value of the bottom element. Therefore, despite the air of generality conveyed by Bradley’s ultimate conclusion
that “as far as non-classical probability goes, it is only the lattice structure (encoded in the ultrafilters) that matters
to what counts as probabilistically coherent”, we should take note that the claim has to be taken as holding only in
the specific conditions in which the assumptions of Bradley’s Theorem 3 are satisfied.

17For introduction to Dutch Book arguments, see Vineberg (2016) and Pettigrew (2020).
18The result is not formally stated anywhere in (Williams, 2012a).
19That is: truth values as the term is used in the current paper. Williams (2016) writes about “truth statuses”

here, explicitly using the term “truth value” so that its reference varies; see e.g. p. 262:”the ‘truth value’ of a sentence
refers to the pragmatic loading of the relevant truth status, whereas in the previous results it referred to the cognitive
loading of the truth statuses”. This leeway allows Williams to speak of “convex combinations of truth values”, even
when what he calls “truth statuses” are not numerical in nature.
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to betting profits. Since our project is to begin investigating how Dutch Books could be made
to actually work in nonclassical settings, we shall put these issues aside here; matters will
already be nontrivial if we stick to the identification of cognitive loads and pragmatic loads
for the time being. And so, even if we will eventually argue that in nonclassical contexts the
notion of Dutch Book needs to be modified, we shall now state the following generalization
of Paris’ result using just the cognitive loads.

Assume, again, that we are given a propositional language L with finitely many proposi-
tional variables and finitely many operators which include ∨ and ∧.

4.1 DEFINITION (DUTCH BOOK). In the context of a logic with the set of valuationsV, and the
set of cognitive evaluations {cV |V ∈V}, a function B :SentL → [0,1] permits a Dutch Book iff
there are ϑ1, . . . ,ϑn ∈ SentL and s1, . . . , sn ∈R such that for all elements of {cV |V ∈V} we have

n∑
i=1

si
(
cV (ϑi )−B(ϑi )

)< 0. (5)

4.2 THEOREM ( VARIANT OF THEOREM 2 OF PARIS (2005)). In the context of a logic with the
set of valuationsV, and the set of cognitive evaluations {cV |V ∈V}, B does not permit a Dutch
Book if and only if B is a convex combinations of the elements of {cV |V ∈V}.

The shape of Formula (5) should be familiar to any reader of formal epistemology. The
usual interpretation of the terms involved is as follows (assume, for brevity, that you can read
“B” as “an agent with the credence function B” whenever you feel it would be natural):

• si – the prize (stake) associated with the bet for ϑi ;

• si ·B(ϑi ) – the cost of that bet;20

• si · cV (ϑi ) – the payout if ϑi has the truth value V (ϑi );21

and, crucially, it is understood that according to B , si ·B(ϑi ) is the fair price for a bet with
such a payout.22 A Dutch Book against B , then, is a collection of bets all of which B considers
to be fairly priced but which taken together inevitably lead to loss.

Dutch Books are to be a sign of irrationality. Assume, then, that possible worlds are
governed by the Symmetric Logic; for simplicity, suppose the language only has two variables,
x and y . What’s wrong with not satisfying the (SL1)-(SL4) axioms? Since the first three
conditions have been widely discussed in the literature23, let us consider a B which violates
(SL4) and construct a Dutch Book against it.

For convenience, let us label the sentence x∧¬x∧y∧¬y—whose cell of the Lindenbaum-
Tarski algebra for our logic is its bottom element—as ⊥. Consider a B such that B(x) =
1/3,B(y∧x) = B(¬y∧x) = 1/4 and B(⊥) = 1/12. Note that it does not follow from this assignment
that any of the first three SL axioms be violated; however, (SL4) fails, since

1/3 = B(x) < B(y ∧x)+B(¬y ∧x)−B(⊥) = 5/12.

To create a Dutch Book against this B we set the values for use in Formula (5) as per Table
1. Those values, according to the interpretation given above, mean that B considers it fair to:

• sell the bet for x for 4;

20For a positive si , “how much B would pay for the bet had (s)he wanted to buy it”; for a negative si , “how much
B would receive for the bet had (s)he wanted to sell it”.

21For a positive si , “how much B receives if she bought the bet and ϑi has the truth value V (ϑi )”; for a negative
si , “how much B has to pay if she sold the bet and ϑi has the truth value V (ϑi )”. Remember also that we identify the
pragmatic loads with the cognitive ones.

22Why it should—or should not—be called so will be discussed below.
23Although actual Dutch Books illustrating the violations of them are typically presented under classical assump-

tions.
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i ϑi si B(ϑi )
1 x −12 1/3

2 y ∧x 12 1/4

3 ¬y ∧x 12 1/4

4 ⊥ −12 1/12

Table 1: The values for use in Formula (5), to create a Dutch Book against the B defined in the text.

k cVk (x) cVk (y) cVk (y ∧x) cVk (¬y ∧x) cVk (⊥) Profit from bets Total profit
1 1 1 1 0 0 0 −1
2 1 1/2 1/2 1/2 0 0 −1
3 1 0 0 1 0 0 −1
4 0 1 0 0 0 0 −1
5 0 1/2 0 0 0 0 −1
6 0 0 0 0 0 0 −1
7 1/2 1 1/2 0 0 0 −1
8 1/2 1/2 1/2 1/2 1/2 0 −1
9 1/2 0 0 1/2 0 0 −1

Table 2: The payout table for the bets against a B violating the axiom (SL4) as discussed in the text.

• sell the bet for ⊥ for 1;

• buy the bet for y ∧x for 3;

• buy the bet for ¬y ∧x for 3.

Should all these bets go through, B would suffer a prior loss: −1. The payouts from the bets
in various worlds are given in Table 2. As we can see, the whole situation is a Dutch Book
against B : no matter what happens, B ends up losing 1.

However, we find it highly doubtful that the existence of this Dutch Book is a sign of B ’s
irrationality. Bluntly put, why should B even care about this particular sets of bets? Why
should we stipulate that the values from Table 1 encode numbers which B would take to be
fair prices for the corresponding bets? For example, B(x) = 1/3. Why would B consider it to be
fair to sell the bet for x—which pays 12 if the cognitive load of x is 1, pays 6 if it is 1/2, and
pays 0 otherwise—at the price of 4, that is, at one-third of the highest possible prize?

This assumption, which lies at the foundation of applying the Dutch Book idea in non-
classical settings, seems not to have received sufficient scrutiny in the relevant literature.
Williams (2012a) writes “[a]s is standard in Dutch Book arguments, we assume that the fair
price for an individual bet with unit prize for an individual with belief state b is specified
by the degree of belief that b assigns to the proposition bet upon” (p. 817). He continues
that he’s “not interested in whether the argument works”, and would rather investigate the
“geometric structure of the argument”. However, from an epistemological point of view, in
order to transform the formal insights into some conclusions regarding norms of rationality,
we should definitely be interested whether the argument works. And on the most prevalent,
indeed canonical, way of cashing out the notion of “fair price”, it just does not work.

The most common way of thinking about “fair price” in Dutch Book contexts, recall,24

is to use the notion of expected value, and to think of bets which are fair according to B as
those which B expects to favour neither buyer nor seller; that is, those which according to
B have the expected value 0. Classically, to calculate the expected value of a bet for A from
the perspective of B , we use the credence in that A is true, that is, B(A), and the credence in
that A is false, which we equate with B(¬A).25 Since these alternatives exhaust the available

24Consult Vineberg (2016) as a departure point.
25This is problematic on its own; see Hedden (2013), Wroński and Godziszewski (2017), and Pettigrew (2021). (For

starters, when arguing for probabilism it is a mistake to assume that B(¬A) = 1−B(A); this should be a conclusion,
not an assumption.)
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options, we can calculate B ’s expected profit from the given bet, assuming the price and
the prize are provided. However, it should be clear that already in a three-valued setting
this approach will not work. If the payout—whether ’cognitive loads’ are considered or
not—depends on the truth value of A, then we are lacking the required information about
the credence in that A obtains the ’third’ truth value. The values of B for A and ¬A, even
assuming that the latter denotes the degree of belief in that A is false, are simply not enough
to calculate B ’s expected profit from the bet.

We will now propose a fix thanks to which we can, in nonclassical settings, consider
Dutch Book arguments that indeed work.26 It involves a modification of the usual notion
of credence. On our proposal it will assign to propositions not single numbers, but rather
vectors of numbers: as many as there are truth values according to the logic which governs
the space of possible worlds. The approach will be similar to the one used in Janda (2016) in
the context of accuracy measures. It will turn out that some results obtained using the usual
notion of credence—for example, the axiomatization of the convex hulls of evaluations of
SL—can be transformed so that their variants hold also when the new notion is used.

4.1 CREDENCES AS COMPLEX ATTITUDES

The idea is to treat credence in a proposition as a complex attitude, with as many dimensions
as there are truth values. If, say, propositions can be True, False, or Half-True, one’s credence
in A is a triple of numbers: degrees of belief in that A is True, in that A is False, and in that A
is Half-True.

More generally, assume a logic L is given in a language L with valuations assigning to
sentences elements from a finite set of truth values T V .27 In such a context, credences
are functions B : T V ×SentL → [0,1]. We will use the expression B∗(A) to denote B(∗, A);
it is to be read as "credence in that A has the truth value ∗". If there are n truth values,
we could equivalently be talking either about B or about n functions from SentL to [0,1];
for example, in the case where T V has three elements—whatever they are—it might be
convenient to speak about a credence function by referring to the indexed set of functions
{B1(·),B1/2(·),B0(·)}.28

While the ideas here are meant to be general, so that a variety of nonclassical logics and
corresponding notions of credence can be considered, all examples illustrating our points
will be given using the Symmetric Logic. As the Reader is well aware, it has three truth values,
and three cognitive loads; while we noted that, under the assumptions that pragmatic loads
are identical to cognitive loads, it is the cognitive loads which determine payouts from bets,
in this particular case we can assume without loss of generality that it is the truth values
that are doing the job. We will thus dispense with the notion of cognitive loads for the time
being (we will come back to it in the general Definition 4.5). Let us also think of valuations as
possible worlds, not because we wish to put any deep philosophy behind this choice, but so
that we can conveniently speak of propositions having a certain truth value “at” a valuation
V , and of agents “having profits” or “sustaining losses” at various V ’s.

For convenience we assume that for any proposition all credences in that proposition
having one of the various truth values sum up to 1; nothing formally important hangs on that,
but without this assumption some formulas below would have to be more complicated. The
idea is that there’s some quantity of credence that’s distributed among the possible options
(the proposition in question having the various truth values); the convenient assumption

26At least, that work as well as can be expected from a Dutch Book argument.
27We would like to reiterate that in general we place no restrictions on what truth values are.
28Note, again, that this way of writing is not meant to imply that the three truth values are 1, 1/2, and 0. Below

this notation is used so that B1(A) is to be understood as “credence in that A has the truth value associated with the
pragmatic load 1”, since it is the pragmatic loads—which, recall, determine the payout from a bet for a proposition
enjoying a truth value with that pragmatic load—that are crucial for Dutch Book considerations. However, the
convenient context of the Symmetric Logic allows us to equate truth values, cognitive loads, and pragmatic loads,
which simplifies presentation. This will all be explained shortly.
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amounts to a normalization of that quantity. We will write it out explicitly, since it does give
us a philosophical bonus at one point, which some might find to be debatable:

Convenient Assumption (CA). For any A ∈ SentL,
∑

∗∈T V B∗(A) = 1.

Let us see how we can connect our modified concept of credence with the notion of bet
assumed in Definition 4.1 and Theorem 4.2 to obtain examples of Dutch Book arguments in
non-classical settings which actually work.

Following, for now, the lead of Williams (2012a), let us generalize the idea that a bet for A
with the prize S pays out S if A is true and nothing if A is false. In other words, a bet for A
pays out the portion of S given by the truth value of A.29 That is, for a valuation V , a bet for
A with the prize S pays out V (A) ·S at V . For an agent who buys such a bet at cost C , then,
the profit in V is w(A) ·S −C . We’re after capturing the essence of Dutch-bookability, that is
exploitability via fair bets: a Dutch Book against an agent (a credence function) is a collection
of fair bets (that is, bets which are fair according to the agent’s credence function) which
ultimately lead to inevitable loss on part of any agent which would partake in all of them.

Which bets does a credence function consider fair? Given a proposition and a prize, a fair
bet is that which has a fair price. We have already mentioned that, especially non nonclassical
contexts, the formal epistemology literature has largely avoided extensive commentary on
this issue. Typically, a price is considered to be fair according to B if under that price B
expects the bet to favour neither buyer nor seller: according to B , the bet has the expected
value 0.30

Let us try to formulate a definition of a Dutch Book, suitable for nonclassical contexts,
based on this notion of a fair price. How to cash it out formally? In our opinion the following
idea is natural: given a prize S and proposition A, the expected value of a bet for A which
costs C according to the credence function B = {B∗}∗∈T V is∑

∗∈T V
B∗(A)(∗·S −C ).

We’re not the first to use the word ’expected’ in this way: what we’re doing here is essentially
the same thing as e.g. what is proposed in Section 2 of Leitgeb and Pettigrew (2010), where the
authors define ’expected inaccuracy’, with the expectation calculated from the perspective
of functions which are not assumed to be probabilities.31 (Our B∗(A)’s sum up to 1 for
each A, so the formula looks like the classical expected value, but this is just because of our
Convenient Assumption, made only for the purpose of simplifying the formulas involved.)

As already mentioned, we will be using SL to illustrate the proposed ideas. Assume,
then, that the set of truth values is T V = {1, 1/2,0}, and that a bet for A with prize S pays out
∗·S where ∗ is A’s truth value. It is then immediate to note that if B(·) = {B1(·),B1/2(·),B0(·)},
then B ’s fair price for a bet for A with prize S is (B1(A)+0.5 ·B1/2(A)) ·S.32 We can thus now
put forward the following definition of what it means for a credence to be Dutch-bookable,
assuming it is the Symmetric Logic that governs the possible worlds.

29Recall: for purposes of presentation only, since our primary topic until Definition 4.5 is the Symmetric Logic,
we are identifying cognitive loads with truth values until we start discussing that definition. And in general, in
this paper, we identify pragmatic loads with cognitive ones. So, to sum up: what actually determines the payout
from a bet for A, given its prize S, is the pragmatic load of A’s truth value (which, in general, might be any object
whatsoever). This load we assume in the current article to be identical to the value’s cognitive load. And in the
particular case of SL there is no harm in identifying it also with the truth value itself.

30Cf. (Howson and Urbach, 2006, p. 54, our emphasis): “The condition of equal (and hence zero) risk is, of course,
equal to that of equal (and hence zero) expected gain (. . . ); thus fair odds are those also that confer equal, meaning
zero, advantage on each side of the bet”. At a fair price “you are indifferent between buying and selling the bet, and
thus you see no advantage to either side” (Hájek, 2008, p. 795).

31Cf. p. 214 of Leitgeb and Pettigrew (2010): “while probability theory is the usual context in which expectations
are defined, there is no objection in principle to extending the definition to cover the case of belief functions that
may not be probability measures.”

32Without (CA), this formula would have to involve a fraction:
(

(B1(A)+0.5·B1/2(A))·S
)
/
(

B1(A)+B1/2(A)+B0(A)
)
. The

situation is similar whenever fair prices are encountered below.
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Table 3: A ’complex’ credence function such that B1(·)+0.5 ·B1/2(·) gives the values of the credence
function defined in Table 1, against which a Dutch Book exists as evidenced by Table 2.

function
Proposition

x y ∧x ¬y ∧x ⊥
B1(·) 9/36 6/36 6/36 2/36

B1/2(·) 6/36 6/36 6/36 2/36

B0(·) 21/36 24/36 24/36 32/36

4.3 DEFINITION (SL-REALLY-DUTCH-BOOKABLE). B = {B1(·),B1/2(·),B0(·)} is SL-really-Dutch-
bookable if there are ϑ1, . . . ,ϑn ∈ SentL and s1, . . . , sn ∈R such that for all v ∈Vwe have

n∑
i=1

si

(
V (ϑi )− (

B1(ϑi )+0.5 ·B1/2(ϑi )
))< 0. (6)

That is, assuming that SL governs the possible worlds, B is really-Dutch-bookable if there
is a series of bets B considers to be fair which inevitably lead to B ’s loss: and thus the main
intuition behind the notion of a Dutch Book is indeed captured.

It turns out we can use the result reported earlier, the axiomatization of convex hulls
of evaluations of SL logic, to precisely specify which credences are not SL-really-Dutch-
bookable:

4.4 FACT. {B1(·),B1/2(·),B0(·)} is not SL-really-Dutch-bookable iff B1(·)+0.5 ·B1/2(·) : SentL →
[0,1] satisfies (SL1)-(SL4).

Proof. Define an ’old-style’ credence function b : SentL → [0,1] as follows: b(ϕ) :=
B1(ϕ)+ 0.5 ·B1/2(ϕ). Then proceed through the following equivalences: B1(·)+ 0.5 ·B1/2(·)
satisfies (SL1)-(SL4) iff b satisfies (SL1)-(SL4) iff b is not Dutch-bookable (in the sense of
Definition 4.1, due to Theorem 4.2) iff there are no ϑ1, . . . ,ϑn ∈ SentL and s1, . . . , sn ∈R such
that for all V ∈V (5) is satisfied (with b in place of B) iff there are no ϑ1, . . . ,ϑn ∈ SentL and
s1, . . . , sn ∈R such that for all V ∈V (6) is satisfied iff {B1(·),B1/2(·),B0(·)} is not SL-really-Dutch-
bookable.

We thus have an example of a nonclassical setting and a Dutch Book argument that
actually works in it: a function B = {B1(·),B1/2(·),B0(·)} is not susceptible to an SL-real-Dutch
Book only if B1(·)+0.5 ·B1/2(·) satisfies (SL1)-(SL4); otherwise there is a set of bets B considers
to be fair which inevitably leads to B ’s loss.

By way of illustration, let us see an example of a real Dutch Book in the SL setting. We will
recreate the previous example in the new, ’complex’ setting. Consider a credence {B1,B1/2,B0}
with the values as given in Table 3. It is routine to check that (CA) is satisfied and that

1/3 = B1(x)+0.5 ·B1/2(x) < B1(y ∧x)+0.5 ·B1/2(y ∧x)+B1(¬y ∧x)+
+0.5 ·B1/2(¬y ∧x)−B1(⊥)−0.5 ·B1/2(⊥) = 5/12,

that is, B1 +0.5 ·B1/2 does not satisfy (SL4). The Dutch Book presented before shows that
{B1,B1/2,B0} is really-Dutch-bookable; in Table 1 it suffices to substitute B1(ϑi )+0.5 ·B1/2(ϑi )
for B(ϑi ).

Having illustrated the idea behind real Dutch-bookability in the case of SL, let us give
the general definition, involving cognitive loads (but sticking with the assumption that
they are to be identified with pragmatic loads and continuing to assume (CA)). Suppose,
then, that a logic L is given in a language L as (V,⊨,c) with the valuations obtaining values
in a finite set T V . Suppose that for each ∗ ∈ T V , c(∗) ∈ [0,1]. If L is to be considered as
governing the possible worlds, then credence functions B should be considered as being of
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the form B = {B∗(·)}∗∈T V . Then B ’s expected profit from a bet for A which costs C and pays
off c(V (A)) ·S at world V is ∑

∗∈T V
B∗(A)

(
c(∗) ·S −C

)
(7)

The fair price of such a bet from the perspective of such a B is the unique C which makes
the expression (7) equal 0, that is, C = ∑

∗∈T V B∗(A) · c(∗) ·S. (Note that this does indeed
give back the classical “the fair price is the proportion of the prize which corresponds to the
degree of belief” idea once enough assumptions are in place.)

With this in hand we can formulate the following general definition.

4.5 DEFINITION (L-REALLY-DUTCH-BOOKABLE). Suppose a logic L is given in a language L as
(V,⊨,c) with the valuations obtaining values in a finite set T V . Suppose that for each ∗ ∈ T V ,
c(∗) ∈ [0,1], and that credence functions B are of the form B = {B∗(·)}∗∈T V .

B is L-really-Dutch-bookable if there are ϑ1, . . . ,ϑn ∈ SentL and s1, . . . , sn ∈R such that
for all v ∈Vwe have

n∑
i=1

si

(
c(V (ϑi ))− ∑

∗∈T V
B∗(ϑi ) · c(∗)

)
< 0.

Note that if L is the classical logic, with T V = {Tr ue, F al se} and c(Tr ue) = 1, c(F al se) =
0, then the above gives us the ’typical’ notion of a Dutch Book. For a credence function
B = {B1(·),B0(·)}, the expected value of a bet for A which costs C and whose prize is S is equal
to B1(A) · (S −C )−B0(A) ·C ) (so, just like it should be, credence in ¬A is not involved) and a
variant of the norm of Probabilism can be recovered.

We hope L-real-Dutch-bookability will be studied for various logics L and that it will be
possible to establish more connections between this notion and axiomatizations of sets of
the given logic’s cognitive evaluations—an example of which is our Fact 4.4.

In the future it might also be fruitful to consider ’complex’ cognitive loads. We’ve already
mentioned our uneasiness with Williams’ proposal that in the case of LP the cognitive load
of the truth value Other should be set to 1 just because its intended interpretation is “is
both true and false”. Perhaps a more natural reading would be to say that, assuming LP , the
credence an omniscient agent should assign to a proposition A with the truth value Other is
{B1(A) = 1,B1/2(A) = 0,B0(A) = 1}. We leave this topic for future research.

In most discussions of credential norms we find in formal epistemology, we can point to
three aspects which are in a sense ’classical’: the credence functions (considered as assigning
single numbers to propositions), the (sometimes implicitly) classically conceived semantics,
and the notion of a bet which is usually used in the literature. This paper contributes to the
discussion in which the starting assumption is that the second element should be varied:
the semantics under consideration may be nonclassical. In this Section we have so far been
discussing varying the first element, so that we end up using some nonclassical version of
the credence notion. However, one might not be happy with us keeping the notion of bet
as employed by Williams. For example, if more than two cognitive loads are involved, a
bet will have more than two possible payouts; some may find it unfortunate that it is no
longer apparent what counts as winning or losing such a bet.33 And one might have the
intuition that a bet for A should be understood as a bet for that A is true, which should
have two outcomes: it should be won if A is true and lost otherwise. We will now propose
a formal generalization of this intuition, even though we believe that the presented notion
of L-real-Dutch-bookability may be fruitfully used to deliver valid arguments for norms of
rationality in various nonclassical settings. We will illustrate the idea using the classical and
Symmetric logics, where cognitive loads (which we assume to be identical to pragmatic loads)
directly correspond to truth values; in the following subsection we thus forego any mention
of cognitive and pragmatic loads, assuming that is the truth values which straightforwardly
determine the payouts.

33We’d be happy with saying that “losing” and “winning” refer to the special case when a bet has only two
possible payouts. Alternatively, “losing” may refer to receiving nothing and “winning”, which may then be a matter
of degree, to any other outcome.

14

[April 25, 2022 at 23:02]



4.1.1 Truth-value bets

Traditionally, then, we seem to assume that a bet for A is a bet for that A is true. Let us once
again tear off the classical shackles and stipulate that for a “truth-value bet” four things are
needed: a proposition A, a truth value ∗, a prize S, and a cost C . We can then speak of a
truth-value bet for that A has the truth value ∗. Note that no matter how many truth values
there are, uncovering A’s truth value leads to one of just two possible outcomes: either the
bettor was right, or (s)he was wrong. It is thus natural to assume that such a bet, which costs
C , pays out S if A has the truth value ∗, and pays out 0 otherwise. Where T V is a nonempty
and finite set of truth values, the expected value of a truth-value bet for that A has the truth
value ∗ according to the credence B = {B∗(·)}∗∈T V is

B∗(A)(S −C )+ ∑
#∈T V ,# ̸=∗

B#(A)(−C ). (8)

Sticking with the idea that the fair price of a truth-value bet is the cost C for which the above
expression equals 0, we note that regardless of what T V consists of, a fair price for the
truth-value bet for that A has the truth value ∗ is B∗(A). A truth-value Dutch Book against
a credence B is then a set of truth-value bets which are fair from the perspective of B , but
which lead to B ’s inevitable loss.34

4.6 DEFINITION (L-TRUTH-VALUE-DUTCH-BOOKABLE). Suppose a logic L is given in a lan-
guage L with the valuations obtaining values in a finite set T V ⊊ [0,1]. Assume credence
functions B are of the form B = {B∗(·)}∗∈T V .

B is L-truth-value-Dutch-bookable if there are ϑ1, . . . ,ϑn ∈ SentL, ∗1, . . . ,∗n ∈ T V , and
s1, . . . , sn ∈R such that for all V ∈Vwe have∑

i :V (ϑi )=∗i

si (1−B∗(ϑi ))+ ∑
i :V (ϑi )̸=∗i

si (−B∗(ϑi )) < 0. (9)

The left sum in (9) refers to the profit from those bets belonging to the Dutch Book which are
won at V , and the right one to the profit from those which are lost.

We will now consider two examples. For brevity, when we speak of (just) “a bet for A”, we
mean the bet as considered before the current subsection; when we speak of “a bet for that A
has truth-value ∗”, or “a bet for that A is True” (which is shorthand for “a bet for that A has
the truth-value 1”), etc., we obviously mean a truth-value bet.

Let us first consider classical logic C L with T V = {1,0}. Then a bet for that A is False with
prize S and cost C is equivalent to the bet for that A is True with prize −S and cost C . There-
fore C L-truth-value-Dutch-bookability is reducible to “C L-truth-value-Dutch-bookability
exclusively via bets on that propositions are True”. This, in turn, is equivalent to Dutch-
bookability (in the typical sense) of B1 as a classically conceived credence. So: B = {B1,B0} is
not C L-truth-value-Dutch-bookable iff B1 is a classical probability function.

Consider, now, the case of Symmetric Logic SL. Assume thus that T V = {1, 1/2,0}. A bet
for A with the fair price

(
B1(A)+0.5 ·B1/2(A)

) ·S has the same payout table as the following
pair of bets taken together:

• a bet for that A is true with prize S and cost B1(A) ·S; and

• a bet for that A has truth value 1/2 with prize 0,5 ·S and cost 0.5 ·B1/2(A) ·S,

both of which are truth-value bets which are fair according to {B1,B1/2,B0}.
Using this insight we can represent the previous Dutch Book as a truth-value Dutch Book.

Consider the credence function displayed in Table 3 (p. 13). In Table 4, the column labelled

34Recall that for ease of presentation the assumption of this subsection is that pragmatic loads coincide with
truth values, and so if you’d like to use the concept of betting proposed here in the context of e.g. K L and LP , the
definition would need to be suitably modified. Recall also that we continue assuming (CA).
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i ϑi ∗i si B∗(ϑi )
1 x 1 −12 9/36

2 x 1/2 −6 6/36

3 y ∧x 1 12 6/36

4 y ∧x 1/2 6 6/36

5 ¬y ∧x 1 12 6/36

6 ¬y ∧x 1/2 6 6/36

7 ⊥ 1 −12 2/36

8 ⊥ 1/2 −6 2/36

Table 4: A set of bets showing that the credence from Table 3 is SL-truth-value-Dutch-bookable.

’∗i ’ contains truth values. Each row i of that table defines a truth-value bet for that ϑi has
the truth value ∗i with the prize si , the fair price of which is B∗(ϑi ) · si . It is routine to check
that participating in all of these bets yields the loss of 1. It is also routine to check that, again,
Table 2 shows that this loss persists no matter what happens: therefore the whole situation is
a truth-value Dutch Book against the credence defined in Table 3.

A straightforward generalization of this insight leads to the conclusion that if a credence
function is SL-really-Dutch-bookable, it is SL-truth-value-Dutch-bookable.

However, the converse is not true. Assume the language has a single propositional
variable x and consider the following credence B (which satisfies (CA)):

x ¬x x ∨¬x ⊥
B1(·) 3/4 0 1/2 1/4

B1/2(·) 0 1/2 1/2 0
B0(·) 1/4 1/2 0 3/4

That this function is SL-truth-value-Dutch-bookable can be easily seen just from inspec-
tion of the top row of that table. Assume unitary prizes. From the perspective of the displayed
credence the fair price for the bet for that x is true is 3/4, and the fair price for bet for that
x ∨¬x is true is 1/2. Buying the first and selling the second bet establishes prior loss of −1/4.
In each of the three possible worlds B ends up with a loss:

• if V (x) = 1, then both bets are won, and so the ultimate loss is the same as the prior
loss;

• if V (x) = 1/2, then both bets are lost, and so the ultimate loss is the same as the prior
loss;

• if V (x) = 0, then V (x ∨¬x) = 1, and so the ultimate loss is −5/4.

Therefore B is SL-truth-value-Dutch-bookable. However, notice that B1 +0.5 ·B1/2 is the
following credence:

3/4

x ∨¬x

3/4x 1/4 ¬x

1/4

⊥

which we have already seen on p. 7 as a convex combination of two possible worlds (with
weights 0.5). By the result of the current paper, we know that B1+0.5·B1/2 satisfies (SL1)-(SL4),
and so is not SL-really-Dutch-Bookable.

We can therefore state the following Fact:
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4.7 FACT. SL-real-Dutch-bookability implies SL-truth-value-Dutch-bookability; however,
the converse does not hold in general.

In the context of truth-value bets we have discussed the classical and Symmetric logics.
This is because in these contexts it is easy to think that truth values directly determine bet
payouts. Generalizing Definition 4.6 so that it involved cognitive loads poses no formal
problems. However, it’s not evident for us what kind of betting we would then be modeling:
while we find betting for that a proposition has a certain truth value to be somewhat intuitive,
we would have to start thinking about betting that a certain proposition has this or that
cognitive load, which we are reluctant to do without giving the matter more thought. We
leave, then, investigating truth-value-Dutch-bookability in general for future research.

5 CONCLUSIONS

Continuing the “hard graft” proposed by Williams, we have reported a result concerning
a logic which does not satisfy Paris’ conditions: the axiomatization of the convex hull of
cognitive evaluations of Symmetric Logic (SL). We have then argued that it would be a
mistake to claim that it is exactly the credences satisfying those axioms that are rational if
SL governs the possible worlds, on the basis that the aforementioned convex hull coincides
with the set of un-Dutch-bookable credences. That is, we have pointed out that the usual
notion of a Dutch Book does not transfer immediately to nonclassical settings. To enable
rigorous Dutch-Book-based arguments in such contexts, we have offered the notion of
L-real-Dutch-bookability: what it means for a credence to be really Dutch-bookable on
the assumption that the possible worlds are governed by a logic L. We have pointed out
that in the case of Symmetric Logic the axiomatization of the convex hulls of the set of
evaluation can in fact inform us about real-Dutch-bookability, too (Fact 4.4). Our hope is
that L-real-Dutch-bookability can be fruitfully studied for various logics L.

Lastly, we have offered a modified—but also, we hope, intuitive—notion of bet, “truth-
value bet”, which leads to another concept of Dutch Book. We have shown that in the case of
SL this concept is weaker than the previous one. Its behaviour with regard to different logics
is an open matter.

Acknowledgments
This research was supported by the grant 2019/34/E/HS1/00044, ’Epistemic inaccuracy

and foundational issues in formal epistemology’, of the National Science Centre (Poland)
(recipient: Leszek Wroński).
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Gil Sanchez, M., Gyenis, Z., and Wroński, L. (ms). Probability and symmetric logic. Submitted.

Hájek, A. (2008). Arguments for-or against-probabilism. British Journal for the Philosophy of
Science, 59:793–819.

Hedden, B. (2013). Incoherence without exploitability. Noûs, 47(3):482–495.

17

[April 25, 2022 at 23:02]



Howson, C. and Urbach, P. (2006). Scientific Reasoning. The Bayesian Approach, third edition.
Open Court.

Janda, P. (2016). Measuring inaccuracy of uncertain doxastic states in many-valued logical
systems. Journal of Applied Logic, 14:95–112.

Leitgeb, H. and Pettigrew, R. (2010). An Objective Justification of Bayesianism I: Measuring
Inaccuracy. Philosophy of Science, 77(2):201–235.

Mundici, D. (2006). Bookmaking over infinite-valued events. International Journal of Ap-
proximate Reasoning, 43:223–240.

Paris, J. B. (2005). A note on the Dutch Book method. Proceedings of the 2nd Inter-
national Symposium on Imprecise Probabilities and their Applications, Ithaca, New
York, 2001, pp. 301-306. (The paper seems to have grown since its publication; see e.g.
http://www.stats.org.uk/why-probability/Dutch-book/Paris2002.pdf )

Pettigrew, R. (2020). Dutch Book Arguments. Cambridge University Press.

Pettigrew, R. (2021). On the Expected Utility Objection to the Dutch Book Argument for
Probabilism. Noûs, 55(1):23–38.

Priest, G. (2001). An Introduction to Non-Classical Logic. Cambridge University Press.

Vineberg, S. (2016). Dutch Book Arguments. In Edward N. Zalta (ed.),
The Stanford Encyclopedia of Philosophy (Spring 2016 Edition). URL =
<https://plato.stanford.edu/archives/spr2016/entries/dutch-book/>.

Williams, J. R. G. (2012a). Generalized Probabilism: Dutch Books and Accuracy Domination.
Journal of Philosophical Logic, 41:811–840.

Williams, J. R. G. (2012b). Gradational Accuracy and Nonclassical Semantics. The Review of
Symbolic Logic, 5(4):513–537.

Williams, J. R. G. (2016). Probability and non-classical logic. In Hájek, A. and Hitchcock,
C. R., editors, The Oxford Handbook of Probability and Philosophy, pages 248–276. Oxford
University Press.
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