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Abstract

This paper proposes a sender-receiver model to explain two large-scale
patterns observed in natural languages: Zipf’s inverse power law relating
the frequency of word use and word rank, and the negative correlation
between the frequency of word use and rate of lexical change. Computer
simulations show that the model recreates Zipf’s inverse power law and the
negative correlation between signal frequency and rate of change, provided
that agents balance the rates with which they invent new signals and forget
old ones. Results are robust across a wide range of parameter values and
structural assumptions, such as different forgetting rules and forgetting
rates. Analysis of the model further suggests that Zipf’s law relating word
frequency and rank arises because of language-external factors and that
frequent signals change less because frequent signals are less subject to
drift than rare ones. The paper concludes with some brief considerations
on model-based and data-driven approaches in philosophy.

1 Introduction

Lewis (1969) introduced sender-receiver models to argue that agents with no
common language could imbue signals with conventional meaning and thus give
rise to communication. His models were simple and elegant. But they also
made very stringent assumptions: interactions were thought to take place be-
tween agents that are perfectly rational and have common knowledge of the
entire game. For all these assumptions, his main result proved remarkably ro-
bust. Extending Lewis’ original framework to evolutionary and learning theory,
Skyrms (2010) established that communication also arises in the absence of full
rationality and common knowledge if natural selection or reinforcement learn-
ing are at work. Similar models went on to show that communication emerges
across a wide range of conditions, including diverse learning rules (Huttegger
et al., 2014), different levels of cooperation (Wagner, 2011; Zollman et al., 2013),
and various forms of population structure (Wagner, 2009; Zollman, 2005).

This is progress. Whereas early models made strict demands on the cognitive
capacity of agents, more recent incarnations à la Skyrms account for the origin
of communication under very different assumptions. But there are reasons to
worry about how much progress has been made. Recent gains in complexity
have been driven primarily by a concern with the formal structure of these
models, often to the detriment of empirical considerations. This is progress but
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of a type that is mostly “internal”, as Levy (2011) puts it in a related context.
In addition to results that are invariant across parameter values and structural
assumptions, part of what it takes to build a good model is to relate assumptions
and results to the real world.

Strides in this direction have already been made. Recent examples in phi-
losophy include experiments by Bruner et al. (2014) and Rubin et al. (2019).
Drawing on methods from behavioral economics, these studies test the sender-
receiver framework by offering participants incentives to play the roles of sender
and receiver in the lab. There is also a sizable and much older literature in
experimental economics that goes at least as far back as Blume et al. (1998,
2001). Experiments testing sender-receiver models of conventional communica-
tion have also been conducted with non-human animals—for an early study and
a recent review, see Silk et al. (2000) and Seyfarth and Cheney (2017). In all
these fields, results have been largely consistent with model predictions. This is
clearly valuable. By bridging the gap between reality and the lofty idealizations
that permeate modeling exercises, experimental studies help models advance.

But the lab is also not the real world. Experiments on signaling may there-
fore not be representative of what goes on in nature. If the sender-receiver
framework is to make empirical progress, then it is also important to assess
how well its assumptions and predictions hold up against observational data.
To this end, I present here a sender-receiver model that provides a possible
explanation of two striking patterns found in natural languages: Zipf’s inverse
power law relating the frequency of signal use and signal rank (i.e., the posi-
tion that a signal occupies in a frequency table), and the negative correlation
between the frequency of signal use and rate of signal change (Lieberman et al.,
2007; Moreno-Sanchez et al., 2016; Pagel et al., 2007; Zipf, 1949). Analysis of
the model suggests that real-world communication systems obey Zipf’s inverse
power law because of language-external factors. The model further suggests
that frequent signals change less because frequent signals are less subject to
drift than rare ones. Although sender-receiver models may not be an adequate
representation of natural languages (LaCroix, 2019), these results also indicate
that some of the patterns observed in full-fledged human languages emerge in
simpler communication systems as well.

The sender-receiver model in this paper present draws on Alexander’s (2014)
sender-receiver model of a dynamic state space. In his model, sender and re-
ceiver must learn to communicate at the same time that they discover new
states. When the number of states increases without bound and at a constant
rate, Alexander shows that communication cannot easily emerge and persist. In
the present model, however, the number of states increases without bound but
at a decreasing rate. This is because sender and receiver discover new states
according to Hoppe’s (1984) urn model—a model that has long been used to
represent discovery processes (Huttegger, 2017; Skyrms, 2010; Zabell, 1992).
The model also assumes that sender and receiver invent new signals and forget
old ones. In this setting, I show that sender and receiver quickly learn to com-
municate as long as they balance the rates with which they invent new signals
and forget old ones. I then show how the model makes contact with observa-
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tional findings in linguistics: it recreates Zipf’s inverse power law relating the
frequency of signal use and signal rank, and the negative correlation between
the frequency of signal use and rate of change.

The paper proceeds as follows. Section 2 begins by introducing a sender-
receiver model in which states are discovered at a decreasing rate. Section 3 then
presents results showing that agents learn to communicate with reinforcement
learning provided that they balance the rates with which they invent new signals
and forget old ones. Results also indicate that the model recreates Zipf’s inverse
power law, as well as the correlation between signal frequency and rate of change.
In Section 4, I discuss these findings and offer possible explanations for the two
patterns. Section 5 concludes with some methodological considerations about
model-based and data-driven approaches in philosophy.

2 Model

In its basic form, a sender-receiver model consists of nature, a sender, and a
receiver. Nature can be in one of several states given by the set S = {s1, ..., sn}.
The sender first observes the state of nature and then chooses a signal from
M = {m1, ...,mn}, the set of signals. The receiver does not observe the state
but observes the signal that has been sent. Upon receiving a signal, the receiver
picks an act from the set A = {a1, ..., an}. In each state, there is a unique
act that is successful in yielding a positive payoff to both agents; all other acts
result in a payoff of zero. On their own, the sender cannot act and the receiver
cannot observe nature. So agents must coordinate on a communication system
if they are to maximize their payoffs.

The basic model assumes that nature occupies a constant number of known
states. This is a plausible assumption to make in some cases. Sometimes we
have to communicate in a world that we already know a lot about, so that
states of nature are known in advance. However, this is not realistic in other
scenarios. The need for communication also arises when we do not know in
advance what or even how many states of the world there are. Sometimes we
have to communicate in a new or yet unexplored environment. In such cases,
we must first learn what states nature can occupy. Formally, this is analogous
to the “sampling of species problem”—the question of how to infer the total
number of species in an ecosystem from the number of species sampled so far
(Fisher et al., 1943).

Zabell (1992) and Huttegger (2017) offer a precise mathematical represen-
tation and detailed treatment of this problem. Their basic idea is that we
can represent the discovery of new species or categories by Hoppe’s (1984) urn
model. In this model, we suppose that there is initially an urn containing a
single black ball. This is the “mutator” ball. We pick a ball at random from the
urn. Whenever we pick the black ball, we return to the urn the black ball to-
gether with a ball of a novel color. This represents the discovery of a new species
or category. Whenever we pick a ball of a color other than black, we return the
chosen ball to the urn and add another ball of the same color to that urn. This
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represents the reinforcement of a category that is already known. Over time,
the urn becomes populated with balls of many different colors. Some colors
are more common in the urn, representing categories that are more likely to be
observed than others. The black ball is never destroyed. So there is always a
small probability that we pick the black ball and discover a new category.

In a signaling context, Skyrms (2010, pp. 118-135) proposes a similar model
to represent the discovery of new states, signals, or actions. Although Skyrms
uses this model to represent the invention of new signals, I assume here the same
mechanism for the discovery of new states. That is, sender and receiver discover
states of nature according to Hoppe’s urn model. The model is thus similar
to Alexander’s (2014) model in that the number of states increases without
bound. But unlike Alexander’s model, new states arrive at a decreasing rate.
In particular, I assume that no state is known in the beginning. Nature initially
chooses a state from S = {s0}, where s0 is the “mutator” state. Whenever
nature picks this state, sender and receiver discover a new state. The newly
discovered state is added to the set of states that nature can choose from in the
future. The sender can then observe this state at any subsequent point in time,
and the receiver can draw an act corresponding to that state from the set of
available actions. Whenever nature picks a state other than the mutator state,
the sender observes the state, and the state is reinforced.

Why should we think that nature discovers new states and reinforces them
when they are observed? The short answer is that we should not. To avoid
confusion, it is therefore worth emphasizing that it is sender and receiver who
discover new states and reinforce them whenever they are observed. The deci-
sion to model nature in this way is just a formal tool to represent more easily
what sender and receiver know. In fact, we could suppose that each agent makes
their own discoveries about nature. But this would require us to keep track of
two separate discovery processes: one discovery process for the sender, and an-
other for the receiver. It would also increase the complexity of the coordination
problem as agents would have to coordinate not only signals and acts, but also
what states of nature they know. Although it would be interesting to explore
such a dual-discovery process in more sophisticated versions of the model, for
simplicity I assume here that sender and receiver experience one and the same
discovery process. To say that nature discovers and reinforces states is thus a
shorthand for saying that sender and receiver discover new states in synchrony
and reinforce existing ones at the same pace. Given that this is a game of co-
operation, the assumption that agents discover and learn in tandem is not all
that unrealistic.

It is also important to clarify why, in the current model, sender and receiver
discover new states and reinforce them according to Hoppe’s urn model. Clearly,
Hoppe’s urn is not the only possible way to represent a process of discovery.
But for a number of reasons, it is a good starting point to represent discovery
processes in the real world. For one, there is a long tradition of using Hoppe’s
urn to model discovery processes in a decision- and game-theoretical context
that goes back to Zabell (1992), Skyrms (2010), and Huttegger (2017). Second,
Hoppe’s urn is a plausible model in that it is easy for agents to discover new
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states when they know little about the world and in that agents are more likely
to observe a particular state again once they have already observed it. For
example, children run up against many states that are new to them as they
explore the world—states that they are very likely to encounter again. Adults,
on the other hand, are less likely to make new discoveries. Or consider the
real-life scenarios that first motivated models of discovery: in the sampling of
species, the number of species discovered in a given ecosystem grows rapidly
at first but the rate of discovery decreases with the number of samples (Gotelli
and Colwell, 2001). Finally, I show below that this model of discovery gives
rise to state frequencies that approximate a Zipfian distribution. I also show
that signal frequencies tend to follow state frequencies. Although this may not
be the only way to get a Zipfian distribution of signals, Hoppe’s urn therefore
provides a plausible representation of discovery processes.

In nature, conventional systems of communication are often and in large
part acquired through learning. Given the goal of relating sender-receiver mod-
els to real-world data, I follow Skyrms (2010) in assuming that agents learn
according to Roth and Erev’s (1995) model of differential reinforcement. In
the simplest version of this model, the probability with which an agent chooses
to perform an action changes in proportion to the accumulated past reward of
that action. The agent starts out at time t by giving weight qi(t) = 1 to an
action i. Upon choosing an action, the weight given to that action is updated
to qi(t + 1) = qi(t) + 1 if the action is rewarded; the weight does not change
otherwise. Regardless of whether the action is rewarded, the weight given to
other actions remains unchanged. The probability with which the agent chooses
a particular action i is then given by dividing qi(t) by the sum of qj(t) for all
actions j.

But language users also invent new expressions and forget old ones. To
represent the invention of signals, I follow Alexander et al.’s (2012) model. This
model is also a version of Hoppe’s urn but it is Hoppe’s urn supplemented with
differential reinforcement. At first, the sender has no signals and so must choose
a signal from the set M = {m0}. The signal m0 is the “inventor” signal. If
the sender chooses the inventor signal, the sender invents a new signal. Upon
receiving the newly invented signal, the receiver picks an act. For simplicity,
I assume that there are exactly as many acts as states: whenever a state is
discovered, a new act is added to the receiver’s repertoire of acts. I also assume
that there is a single successful act with a positive payoff in every state. If
the sender invents a new signal and the receiver picks the successful act, then
the sender adds the new signal to the set of available signals. The sender also
reinforces the new signal, and the receiver reinforces the corresponding act. If
the sender invents a new signal and the act is unsuccessful, no signal is added
to the set of signals. When the sender sends a known signal and the act is
successful, sender and receiver again reinforce their choices; sender and receiver
do not reinforce their choices if the act is unsuccessful. The inventor signal is
never destroyed but also never reinforced. For every state, there is thus always
a positive and yet decreasing probability that the sender invents a new signal.

It is again helpful to think of an urn. Initially, the sender has no urns since
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there are no states. Whenever the sender discovers a state, the sender creates
an urn corresponding to that state. As an urn represents a known state of
nature, the sender eventually acquires an urn for each state of nature that has
been discovered. The sender then observes the state of nature, picks the urn
corresponding to that state, and draws a ball at random from that urn. If the
sender picks the black ball (i.e., the inventor signal), the sender invents a new
signal. Whenever the new signal leads to a successful act, the sender returns
the black ball and adds a ball of a novel color to the urn. If the urn already
contains balls other than the black, there is also a chance that the sender picks
a colored ball and sends the corresponding signal to the receiver. Whenever the
signal leads to a successful act, the sender reinforces that signal by returning
the original ball and adding another ball of the same color to the urn.

The receiver also starts the game with no urns. Whenever the sender invents
a new signal, the receiver creates a new urn. The receiver’s urns correspond to
the sender’s signals. In each one of the receiver’s urns, there are balls of different
colors. Each color represents a different type of act. Upon receiving a signal
(newly invented or otherwise), the receiver chooses the corresponding urn and
then picks a ball at random. If the color of the ball matches the color of the ball
that nature chose, then the act is successful. Whenever the act is successful, the
receiver returns the ball and adds another ball of the same color to the urn. If
the act is not successful, then the receiver returns the balls to the original urn
but does not add another ball.

To represent the forgetting of signals, I assume with Alexander et al. (2012)
that at the end of every round there is a certain probability (f) that a signal
is forgotten. Once the decision has been made to forget a signal, the sender
chooses to forget a signal according to a forgetting rule. Alexander et al. (2012)
consider two forgetting rules: Forgetting A, and Forgetting B. According to
Forgetting A, we first pick a sender’s urn at random, then select a ball from
that urn at random, and finally discard that ball. This partially decreases
the reinforcement level for that ball color, which corresponds to a signal type.
According to Forgetting B, we first pick a sender’s urn at random, then select a
ball color at random, and finally discard one ball of that color from the urn. This
again partially decreases the reinforcement level for that ball color. Alexander
et al. (2012) find that Forgetting B improves the efficiency of signaling between
sender and receiver. But Forgetting A does not promote efficiency, as it leads
to the proliferation of signals that are often left unused.

As agents should not be expected to store in memory signals that are hardly
ever sent, I ignore Forgetting A and consider instead Forgetting B. I propose
two variants of Forgetting B: Random Forgetting (B-RF), and Reinforcement-
Dependent Forgetting (B-RDF). As both B-RF and B-RDF are versions of For-
getting B, we first choose a sender’s urn at random, then select a ball color, and
finally discard one ball of that color from the urn. But the two variants diverge
as to how ball colors are chosen. According to B-RF, we choose a ball color at
random. This means that all ball colors—i.e., all signal types—are equally likely
to be chosen regardless of how many balls of that color there are in the urn.
According to B-RDF, we choose a signal to remove with probability inversely
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proportional to its reinforcement level in the chosen urn. That is, signals with
a high level of reinforcement are less likely to be chosen than signals with a low
level of reinforcement. According to both rules, a signal is completely removed
from the sender’s repertoire and the corresponding receiver urn is destroyed
whenever its reinforcement level reaches zero in all states. In either case, the
inventor signal is never destroyed and it is thus always possible for the sender
to invent a new signal.

Other forgetting rules are in principle possible (Barrett and Zollman, 2009).
To assess whether results are robust to changes in the forgetting rule, I also
consider another type of forgetting: Forgetting C. As with Forgetting B, a sig-
nal is forgotten with a certain probability (f) at the end of every round. But
according to Forgetting C, sender and receiver completely remove a signal from
their repertoire once the decision has been made to forget a signal. Completely
removing signals from their repertoire may seem too extreme, especially in com-
parison to the fact that Forgetting B destroys a signal only if its reinforcement
level reaches zero in all states. But I choose to implement Forgetting C in
this manner because we are interested in what happens when communication
breaks down. That is, we want to know whether results are robust to variations
in the forgetting rule that are so extreme that no communication takes place.
There are also two variants of Forgetting C: Random Forgetting (C-RF), and
Reinforcement-Dependent Forgetting (C-RDF). According to C-RF, the sender
chooses a signal to remove at random; according to C-RDF, the sender chooses
a signal to remove with probability inversely proportional to its reinforcement
level in the chosen urn. In both cases, once a signal is marked for destruction, it
is removed from the sender’s and the receiver’s repertoire. The inventor signal
is never destroyed, so it is always possible to invent new signals.

A few observations are in order before proceeding. First, it should be noted
that Forgetting C is an extreme type of forgetting in that it prunes signals very
severely. One consequence of this is that, unlike Forgetting A, Forgetting C
does not lead to the proliferation of signals that are often left unused. Another
consequence is that Forgetting C can even render communication impossible.
As I show in the next section, this is important because it allows us to compare
results that obtain with communication to those that obtain without it.

Second, the contrast between RF and RDF in both their B and C forms
is especially consequential for the purposes of this paper. This is because B-
RDF and C-RDF implement rules that are the reinforcement-learning analogs of
frequency-dependent selection. With frequency-dependent selection, the prob-
ability that an individual retains a copy of a trait depends on the frequency of
that trait. With RDF, the probability that sender and receiver retain a copy
of a signal also depends on the frequency of that signal since that probability
is proportional to the reinforcement level of that signal. In this respect, RDF
is therefore analogous to frequency-dependent selection. In the case of RF, on
the other hand, the probability that sender and receiver retain a copy of a sig-
nal does not depend on the reinforcement level and so does not depend on the
frequency of that signal. With RF, the probability that sender and receiver
retain a copy of a signal is distributed uniformly across signals. RF is therefore
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analogous to random drift. So whereas B-RDF and C-RDF represent the case
of frequency-dependent selection in a reinforcement-learning setting, B-RF and
C-RF represent a neutral baseline.

Third, it is important to keep in mind that despite representing invention,
forgetting, and learning in a dynamic state space, the present model contains
many idealizations. For one, it makes simplifying assumptions about how agents
discover new states: both sender and receiver always know the same states, the
rate with which they discover new states decreases over time, and observing
a state makes it more likely for the sender to observe the same state again.
For another, the model assumes a one-to-one correspondence between states
and acts since the receiver always has as many acts to choose from as there
are states of nature. It also assumes that there is a single act in every state
that yields a positive payoff. Finally, it assumes that agents have no conflicting
interests as they always receive the same payoff. The following results should
therefore be considered with these caveats in mind.

3 Results

It can be shown analytically that in the model studied here the number of
states increases without bound and at a decreasing rate. Consistent with this,
computer simulations show that the total number of states is a strictly increasing
function of time, that the rate of discovery increases very fast at first, and that
the rate slows down with time (Figure 1). The rate of discovery decreases
because even though the probability of nature choosing the mutator state is
never zero, nature chooses from an increasingly large set of states. This decreases
the probability with which nature chooses the mutator state, thus lowering the
rate of discovery. Nature also reinforces states other than the mutator state
after observing them, which increases the probability of nature choosing known
states and decreases the rate of discovery.

As for the number of signals, results differ slightly depending on the type of
forgetting. With Forgetting B, the number of signals currently in use increases at
first but eventually ceases to increase and plateaus at different levels depending
on the forgetting rate. For lower rates of forgetting (f = 0.1), agents are able to
maintain a higher number of signals than for intermediate and higher rates (f =
0.3 and f = 0.9). These results hold for B-RF and B-RDF. With Forgetting C,
on the other hand, similar results hold only for intermediate forgetting rates. For
lower forgetting rates (f = 0.00001), more signals are invented than forgotten.
As a result, the number of signals in use strictly increases over time. For higher
forgetting rates (f = 0.1), the number of signals does not increase monotonically
over time since agents forget old signals before they can invent new ones. Given
that Forgetting C prunes signals much more severely than Forgetting B, we
consider different forgetting rates—lower for the former, higher for the latter—
to ensure that results can still be compared across the two types of forgetting.

But regardless of forgetting type, forgetting rate, and number of signals,
the number of states increases over time. This increases the complexity of the
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Figure 1: Mean number of states (dotted lines) and signals (solid lines). Left
panel: Forgetting B with forgetting rules B-RF (top) and B-RDF (bottom) and
forgetting rates equal to 0.1 (cross), and 0.3 (circle), 0.9 (diamond). Right
panel: Forgetting C with forgetting rules C-RF (top) and C-RDF (bottom) and
forgetting rates equal to 0.00001 (cross), and 0.001 (circle), 0.1 (diamond).
Results are average of 100 runs, each with 50,000 iterations.

coordination problem that sender and receiver now face. As a result, sender
and receiver must keep a sufficiently high number of signals in their repertoire if
they are to communicate successfully. For a given forgetting rate and forgetting
type, the number of signals that sender and receiver maintain should therefore
affect their ability to communicate in the face of an increasingly complex state
space.

This is what we in fact observe. With Forgetting B, sender and receiver al-
ready attain a high success rate after about 5, 000 iterations (Figure 2). Success
rate is given here by the expected payoff of the agents. Although the success
rate is at first visibly higher when the forgetting rate is lower or intermediate
(f = 0.1 and f = 0.3), the success rate reaches a high level for higher forgetting
rates as well (f = 0.9). The success rate is also high with Forgetting C if the
forgetting rate is not very high. With Forgetting C and a higher forgetting rate
(f = 0.1), signals are forgotten all too often and communication collapses. No-
tice also that the success rate remains largely unaffected by the forgetting rule.
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That is, agents achieve similar success rates under B-RF and B-RDF; the same
holds for C-RF and C-RDF. But the success rate is sensitive to the forgetting
rate. In all forgetting regimes, the success rate goes down with increasing rates
of forgetting. In the case of Forgetting C, moreover, there seems to be a critical
threshold for the forgetting rate above which sender and receiver are no longer
able to communicate. This can be seen from the fact that sender and receiver
successfully learn to communicate for f = 0.00001 but perform no better than
chance for f = 0.1. At some intermediate rate of forgetting, communication
breaks down. A threshold effect is not observed for Forgetting B, as this is a
less severe form of forgetting than Forgetting C; sender and receiver therefore
perform much better than chance even for very high rates of forgetting.

Figure 2: Success rate. Left panel: Forgetting B with forgetting rules B-RF
(top) and B-RDF (bottom) and forgetting rates equal to 0.1 (cross), and 0.3
(circle), 0.9 (diamond). Right panel: Forgetting C with forgetting rules C-RF
((top)) and C-RDF (bottom) and forgetting rates equal to 0.00001 (cross), and
0.001 (circle), 0.1 (diamond). Results are average of 100 runs, each with 50,000
iterations.

These results stand in contrast to Alexander (2014). In a model in which
the correct state-action pair is randomly swapped, signaling evolves and per-
sists with reinforcement learning and discounting the past provided that the
swapping rate is kept to a minimum. But in a model in which new states arrive
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at a constant rate, Alexander shows that the success rate converges to zero if
new states are introduced at or above a certain rate. As agents encounter a
constantly growing number of states, this eventually overwhelms their capacity
to learn. In my model, however, the rate with which new states are discov-
ered goes down with time. Agents thus face an easier coordination problem.
This difference in modeling assumption makes it possible for communication to
emerge across a wide range of parameter values.

My model also recreates striking features observed in natural languages.
Since Zipf (1949), the frequency of word use has been known to be inversely
proportional to word rank. This relationship is robust across languages and
word categories, such as determiners, prepositions, verbs, and different classes
of nouns (e.g. number words, names of chemical elements, and taboo words)—
for a recent review, see Piantadosi (2014). Similar findings have been reported
in some cases of animal communication, although this remains controversial
(McCowan et al., 1999, 2005; Suzuki et al., 2005). In English, large-scale stud-
ies confirm that the frequency of word use approximates Zipf’s law (Moreno-
Sánchez et al., 2016). In particular, the frequency of word use has been found
to best approximate a distribution given by f(k) = 1

k(s−1) −
1

(k+1)(s−1) , where

f(k) is the frequency of the kth word, k is a word’s rank, and s is a parameter
in the interval [0,∞) that determines the concavity of the distribution (lower
values produce approximately uniform and higher values produce more concave
distributions).

To determine whether the present model can give rise to Zipf’s inverse power
law, two regimes for the reinforcement of states were considered. Under Pref-
erential Reinforcement (PR), a state is reinforced whenever it is observed. PR
assumes that once a state is observed it is more likely to be observed again,
just as in Hoppe’s original urn model. Under Random Reinforcement (RR), on
the other hand, every time a state is observed any state is just as likely to be
reinforced as the observed one. Clearly, RR is not a realistic scenario. But I
include it here to contrast it with PR, show how the distribution of signal fre-
quencies tends to follow the distribution of state frequencies in both the RR and
RF regime, and thus provide a possible explanation for the Zipfian distribution
of signal frequencies.

Results show that PR is remarkably successful at recreating Zipf’s inverse
power law, while RR is not (Figure 3). After collecting the frequency of all
signals used over 50, 000 rounds in the PR regime, signal frequency was indeed
inversely proportional to signal rank. In particular, the observed frequencies
of signal use closely followed the distribution predicted by the equation above.
Although estimates for the parameter s vary slightly across datasets, the dis-
tribution of signal frequencies observed in the model approximates well the
predicted distribution when s = 2 for a wide range of forgetting rates, different
forgetting rules (RF and RDF), and both forgetting types (Forgetting B and
C). This parameter value is close to estimates between 1.9 and 2.1 reported for
natural language corpora (Moreno-Sánchez et al., 2016).

As expected, the distribution of state frequencies is similarly Zipfian under

11



Figure 3: Observed (solid lines) and predicted (dotted lines) distribution of
signal frequencies. Left and middle-left panels: Forgetting B with forgetting
rules B-RF (top) and B-RDF (bottom) and forgetting rate equal to 0.1. Middle-
right and right panels: Forgetting C with forgetting rules C-RF (top) and C-
RDF (bottom) and forgetting rate equal to 0.00001. Results are average of 100
runs, each with 50,000 iterations.

PR but not under RR regardless of forgetting type. But sender and receiver
do learn to communicate under RR with both Forgetting B and Forgetting C,
even though the distribution of state frequencies does not approximate Zipf’s
law under this reinforcement rule (Figure 4). However, learning happens more
slowly and the success rate appears to be slightly more sensitive to the forgetting
rate than under PR. This is true with both Forgetting B and Forgetting C. For
both types of forgetting (Forgetting B and C), the forgetting rules RF and RDF
do not seem to affect the success rate.

Given that new signals can be invented and old ones forgotten, signals can
also change. When a signal is lost, a new signal may become associated with
the same state that the lost signal used to be associated with. This resembles a
process of linguistic replacement in which language users develop neologisms and
words fall into disuse. Empirical studies suggest that replacement rates follow
predictable patterns across languages. In an oft-cited paper, Pagel et al. (2007)
find that the replacement rate depends on the frequency of word use across
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Figure 4: Success rate with Random Reinforcement. Left panel: Forgetting
B with forgetting rules B-RF (top) and B-RDF (bottom) and forgetting rates
equal to 0.1 (cross), and 0.3 (circle), 0.9 (diamond). Right panel: Forgetting
C with forgetting rules C-RF (top) and C-RDF (bottom) and forgetting rates
equal to 0.00001 (cross), and 0.001 (circle), 0.1 (diamond). Results are average
of 100 runs, each with 50,000 iterations.

different languages. In particular, their study shows that words are replaced
in inverse proportion to their frequency of use, as more common words evolve
at slower rates. Lieberman et al. (2007) report similar results, with common
English verbs changing to regular forms at a slower rate than rare ones.

A consequence of these findings is that the average age of signals can be taken
as a proxy for their rate of change. That is, if frequently used signals change at
a slower rate than infrequently used ones, then frequently used signals should
be on average older than their less frequently used counterparts. This is in
line with Zipf’s (1949) original observation that word age seems to be inversely
proportional to the frequency of word use.

To find out whether the present model can recreate the relationship between
frequency of word use and word age observed in natural languages, the age
of each signal was recorded. In the model, signal age denotes the round in
which the signal was first introduced. After collecting the age of all signals after
50, 000 rounds of interaction, signal age was normalized to a scale in the unit
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interval and then scaled by the total number of iterations. In this scale, the
largest possible value denotes the age of a signal invented in the first round of
interaction (oldest) and the lowest possible value denotes the age of a signal
invented in the last round of interaction (youngest).

I then conducted a regression analysis of the resulting signal age on the fre-
quency with which each signal was used throughout the entire run. As expected,
commonly used signals were on average older than infrequently used ones for
both Forgetting B and Forgetting C (Figures 5 and 6). The association between
signal use and signal age was found to be robust across variations in the for-
getting rule, as both RF and RDF led to qualitatively similar results. But the
association depends on signals actually carrying information: with Forgetting
C and a forgetting rate that is too high for communication to take place, signal
age does not correlate with frequency of use.

Figure 5: Log-log regression of signal age on signal frequency with B-RF (top)
and B-RDF (bottom) and forgetting rates equal to 0.1 (left), and 0.3 (middle),
0.9 (right). Regression line is given by log(y) = a+rlog(x). Values are regression
coefficients (r), associated p-values (p), and adjusted R2 (R). Results are for
data from 100 runs with PR, each with 50,000 iterations.
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Figure 6: Log-log regression of signal age on signal frequency with C-RF (top)
and C-RDF (bottom) and forgetting rates equal to 0.00001 (left), and 0.001
(middle), 0.1 (right). Regression line is given by log(y) = a + rlog(x). Values
are regression coefficients (r), associated p-values (p), and adjusted R2 (R).
Results are for data from 100 runs with PR, each with 50,000 iterations.

4 Discussion

While it is reasonable to suppose that the need for communication sometimes
arises when agents inhabit a world with a dynamic state space, previous sender-
receiver models tend to ignore this issue. Alexander (2014) is an exception.
When the correct state-action pair is randomly swapped at a low rate, Alexan-
der shows that reinforcement learning with discounting the past allows for sig-
naling to evolve and persist. He also shows that the ability of agents to signal is
overwhelmed when the number of states increases without bound at a constant
rate. This may be taken to suggest that it is difficult for signaling to evolve
with a growing number of states. However, the present model shows that com-
munication can easily evolve even when agents face the two-fold challenge of
navigating an increasingly complex environment and learning to signal. In sit-
uations like this, successful communication depends on a fine balance between
the rate at which agents discover new states and their ability to maintain a
sufficiently large repertoire of signals. The balance can be achieved if the prob-
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ability of discovering a new state goes down with the number of known states so
that agents ultimately face an easier problem than in Alexander’s (2014) model.

More importantly, these results indicate that sender-receiver models can
be brought to bear on observational data. In particular, the model proposed
here recreates Zipf’s inverse power law—the pattern between frequency of word
use and word rank observed in natural languages. Additionally, the model
correctly predicts the relationship observed between frequency of word use and
word age. Given that sender-receiver models were first introduced to show how
referential meaning could emerge by convention, it is remarkable to find that
these models recreate features of human languages other than referentiality—
such as frequency of word use and evolutionary tempo. Not only does this
increase our confidence in the results that sender-receiver models sought to
provide in their original domain of application, but it also provides a possible
mechanism for how these features arise.

This is important because studies in evolutionary linguistics tend to focus
on large-scale patterns that are the product of biological and cultural evolution.
But this often means that the corresponding low-level processes remain poorly
understood. Pagel et al. (2007), Lieberman et al. (2007), and Moreno-Sánchez
et al. (2016) are cases in point: their studies describe large-scale patterns but
do not shed light on the underlying mechanism. In contrast, sender-receiver
models can offer insights into the processes that underpin the observed patterns.
This could ultimately contribute to the synthesis that Mesoudi (2011) rightly
advocates “between the microlevel, that is, those small-scale, individual-level
processes that act to change the frequency of culturally transmitted traits within
a single population, and the macrolevel, that is, large-scale patterns and trends
at or above the level of entire societies” (p. 51).

One of the most striking large-scale patterns in linguistics is Zipf’s inverse
power law: the inverse correlation between frequency of word use and word rank
first noted by Zipf (1949). Although ample empirical evidence supports it, there
is no consensus on a psychologically compelling and theoretically motivated ac-
count of its origin (Piantadosi, 2014). For example, several models show how
Zipf-like distributions can arise from purely random or stochastic processes (Li,
1992; Zanette and Montemurro, 2005). Such models successfully recreate Zipf’s
law but offer no reason to think that language users produce signs according to
random or stochastic processes. These accounts therefore lack any psychological
plausibility. Other attempts to explain Zipf’s law invoke principles of optimiza-
tion and efficiency in information transmission (i Cancho and Solé, 2003; Salge
et al., 2015). This is in line with Zipf’s (1949) original account. But these pro-
posals fail to account for the fact that words with similar meanings occur with
similar frequencies across distantly related languages (Calude and Pagel, 2011;
Dehaene and Mehler, 1992). A full account of Zipf’s law should therefore also
appeal to the semantic properties of language. The model proposed by Manin
(2008) attempts to do just that, as it derives Zipf’s law from the assumption
that meanings are arranged hierarchically and that there is pressure to avoid
excessive synonymy. But being designed to uniquely explain Zipf’s law, Manin’s
model is extremely narrow in scope.
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In contrast, the sender-receiver model proposed here provides a possible
mechanism for the emergence of Zipf’s law that is psychologically plausible, has
a very general scope, and takes into account semantic properties of language.
The model is psychologically plausible because it explicitly represents agents
following simple learning and forgetting rules to coordinate on signal-act pairs
and thus learn to communicate. Other existing accounts of Zipf’s law do not
explicitly represent language users. The present model is also very general in
that the sender-receiver framework has been used in a wide variety of contexts
to account for very disparate phenomena—for an overview of sender-receiver
models and some applications, see Skyrms (2010). Finally, the model takes into
account semantic properties of language to explain the emergence of Zipf’s law.

To see why, note that signals approximate Zipf’s law only when the distribu-
tion of states is similarly Zipfian. When states are reinforced according to PR,
the frequency of states and the frequency of signals follow Zipf’s distribution;
when states are reinforced according to RR, neither the frequency of states nor
the frequency of signals is Zipfian. Given that built into the PR regime is a
mechanism to generate state frequencies that follow a particular distribution,
the fact that the distribution of signal frequencies is roughly Zipfian in this
regime is by itself not very surprising. What is interesting, however, is that
signal frequencies mirror state frequencies in both regimes. This suggests that
a full explanation of Zipf’s inverse power law must account not just for word
frequencies, but also for features of the world that are external to language.
An explanation of Zipf’s inverse power law that appeals to language-external
features of the world would also be consistent with the finding that words with
similar meanings occur with similar frequencies across different languages: if
the distribution of word frequencies is not specific to a particular language,
then the distribution of word frequencies should reflect features of the world
that are shared across languages.

What could these language-external features of the world be? One possibility
is that the distribution of word frequencies simply follows the distribution of
frequencies with which language users encounter different states of the world—
see Barrett and LaCroix (2020) for a related point. In the present model, signal
frequencies directly follow state frequencies. This could be taken to indicate
that word frequencies are not tied down to language-specific factors because
they track the frequencies with which language users encounter their referents.
But the frequency of referents cannot be the only or even the main factor to
determine the frequency of the words used to pick out those refererents. In
natural languages, the frequency of words also seem to respond to the relevance
of their referents. As an anonymous referee for this journal points out, the
word “gold” occurs roughly three times more often than “dirt” in the Corpus
of Contemporary American English. It is unlikely that this is because most
of us encounter gold more often than dirt. This difference in word frequency
likely reflects a difference in the relevance of their referents, and not simply a
difference in their frequencies.

The present model, however, cannot easily distinguish between the relevance
and the frequency of different referents. A natural way to think of relevance in
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the context of a sender-receiver model is in terms of payoff, but the payoff that
sender and receiver get from communicating is the same in every state. As some
states occur more often than others, sender and receiver get an overall higher
payoff when they can communicate in common states as opposed to in rare
ones. So this model cannot determine whether signal frequencies track state
frequencies simply because of the frequency with which each state occurs or
because of the total payoff that sender and receiver get in each state. Yet, my
main point remains that a full account of the distribution of signal frequencies
should appeal to language-external factors. All else being equal, these factors
may be the raw frequency of states. When all else is not equal, they may include
relevance- or payoff-weighted frequencies of states—or, in the apt formulation
of the same anonymous referee, “pragmatically-motivated situations”.

The present model also provides a possible account of why common words
change less rapidly than rare ones. Recall the two forgetting rules used in the
model. Both B-RF and C-RF ignore reinforcement level, as every signal is
lost with the same probability regardless of reinforcement level. Given that
reinforcement level positively correlates with frequency of use, RF does not
make the rate with which signals are forgotten dependent on their frequency
of use. On the other hand, B-RDF and C-RDF take reinforcement level into
consideration as signals are forgotten depending on reinforcement level. As
reinforcement level positively correlates with frequency of use, RDF makes the
rate with which signals are forgotten dependent on their frequency. But the
observed correlation between frequency of use and evolutionary tempo does not
depend on the forgetting rule, as both RF and RDF give rise to the correlation.
This suggests that the correlation may not be due to frequency-dependent rates
of change. Contrary to what Pagel et al. (2007) claim, similar patterns in
natural languages may therefore not be due to “linguistic, frequency-dependent,
purifying selection” (p. 719) against lexical change. After all, both RF and
RDF give rise to a similar pattern in the model. But while RF makes the rate
of change dependent on the frequency of signal use, RDF does not.

An alternative explanation is that rare words change more rapidly because
they are subject to stronger drift. At this point, it is worth noting that Lynch
(2011) offers a similar mechanism to explain the high error rates observed in
infrequently used polymerases. In periods of cellular stress, rarely active and
error-prone polymerases are recruited to repair DNA lesions. As Lynch points
out, this has led many to hypothesize that natural selection may constrain the
efficiency of lesion-repair polymerases and thus increase rates of evolutionary
change during stressful periods. But as these polymerases are only infrequently
activated, Lynch proposes instead that their low frequency of use simply exposes
them to stronger drift as they are less often under the action of frequency-
independent selection. As a result, higher error rates and higher rates of change
can persist when these enzymes are at work. This accords with the expectation
that the rate of evolutionary change is likely to increase when evolutionary
forces are less pronounced (McShea and Brandon, 2010), as it is the case at low
frequencies.

In principle, then, it seems that both selection and drift could account for
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frequency-dependent rates of evolutionary change. When purifying selection is
stronger on more frequent traits, it can cause frequent traits to exhibit a lower
rate of change. But given that more frequent traits tend to be under weaker
drift as well, their lower rate of change could also simply be due to drift. In the
former case, the rate of change depends on selection that is frequency-dependent
in the sense that it is stronger on more frequent traits; in the latter, there is also
a frequency effect but this effect is the product of drift. Whether it is drift or
selection that is responsible for frequency-dependent rates of change is therefore
something that should be shown rather than assumed. Following Lynch’s (2011)
lead in the case of frequently and infrequently used polymerases, I have tried to
show here that a plausible explanation for why infrequently used words have a
higher rate of change is that they are under stronger drift. The same may be
true of other rare cultural traits that display a high evolutionary tempo.

5 Conclusion

This study proposes an extension of the sender-receiver model to account for the
emergence of communication in a dynamic world, validates the model against
observational data, and provides a possible mechanism for Zipf’s inverse power
law relating the frequency of word use and word rank and for the negative
correlation between the frequency of word use and rate of lexical change. In
the face of other empirical studies on large-scale features of natural languages
(Atkinson et al., 2008; Dunn et al., 2011), it also hopes to pave the way for future
attempts to integrate modeling approaches and empirical data in philosophy and
linguistics. For example, multiplayer versions of the sender-receiver model in
which populations of agents give rise to daughter populations could be used
to help us better understand large-scale patterns such as the “punctuational
bursts” reported in Atkinson et al. (2008).

More generally, studies of this sort also help underscore the importance of
integrating modeling techniques and data-based approaches in other areas of
philosophy. The history and philosophy of science is a particularly promising
case. In recent years, a large number of studies in this field have turned to
empirical data. Take, for example, Byron (2007), Wray (2010), Machery and
Cohen (2011), Overton (2013), or Weingart (2015). Common to these studies is
the use of data to address questions in the history and philosophy of science.1

At the same time, modeling techniques have also been extensively applied to
issues in the history and philosophy of science—for a few illustrative examples,
see Weisberg and Muldoon (2009), Zollman (2010), Alexander (2013), and Grim
et al. (2019). Yet, while data-driven and model-based approaches have for the
most part been pursued independently of one another, it is clear that models
should ultimately face the tribunal of experience (Martini and Pinto, 2017).
Ensuring that models make contact with real-world data is a straightforward
way of doing so. Conversely, data-driven studies stand to benefit from the use

1Pence and Ramsey (2018) offer an overview of data repositories, analytical tools, and
related challenges in this emerging field.

19



of agent-based and mathematical models that offer a deeper understanding of
empirical patterns. The present study thus hopes to encourage a closer dialogue
between data-driven and model-based approaches not only to the emergence of
meaning and the evolution of language, but also to questions in other areas of
philosophy as well.
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