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Abstract. This paper provides a formal treatment of the argument that syn-
tax alone cannot give rise to compositionality in a signalling game context. This

conclusion follows from the standard information-theoretic machinery used in
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1. Introduction

The signalling game (Lewis, 1969; Skyrms, 2010) is appealed to as a useful model

for explaining the evolution of conventional meanings for arbitrary signals. However,

there is a gap between the simple communication systems for which the signalling

game model accounts and the linguistic communication systems of Homo sapiens

(LaCroix, 2020a,b). Attempts to bridge this gap have focused on the evolution of

compositional signals on the assumption that, because compositionality is an appar-

ently unique feature of human-level linguistic communication systems, explaining

of the evolution of compositional signalling would constitute significant progress

toward explaining the evolution of language.

Several models have been proposed to explain the emergence of compositional

signals using the signalling-game framework (Barrett, 2006, 2007, 2009; Franke,

2016; Scott-Phillips and Blythe, 2013; Steinert-Threlkeld, 2016, 2020; Barrett et al.,

2020). However, these models often focus on the syntactic composition of individ-

ual signals. Some researchers have suggested that syntax alone cannot give rise to

compositionality (Franke, 2016; Steinert-Threlkeld, 2016; LaCroix, 2020a).

Using an information-theoretic approach to understand the meanings of syn-

tactically compositional signals, this paper provides a formal treatment of the ar-

gument that syntactic signalling cannot be compositional—at least in the robust

Department of Philosophy, Dalhousie University

E-mail address: tlacroix@dal.ca.

Date: Unpublished draft of June, 2022. Please cite published version, if available.

This paper has been accepted for presentation at PSA 2022.

1



2 INFORMATION AND MEANING IN THE EVOLUTION OF COMPOSITIONAL SIGNALS

sense required for an adequate explanation of the evolution of compositional sig-

nals. Section 2 provides some formal background for the main claim of this paper,

introducing the signalling game framework (2.1), some concepts from information

theory (2.2), and how the latter has been used to elucidate a notion of semantic

information—or informational content—in the context of a signalling game (2.3).

In Section 3, I provide a model that explains why syntactic signalling is not com-

positional. This model shows that the receiver still interprets syntactically compo-

sitional signals atomically. Therefore, the evolution of compositional syntax does

not give rise to systematicity, which is a requirement for linguistic compositionality.

Section 4 concludes.

2. Information and Meaning

This section provides some formal machinery that will be useful for the main

argument in Section 3. I introduce the signalling game (2.1) framework and a sim-

ple dynamic that is often employed to analyse the evolution of signalling. I then

introduce and discuss some formal concepts from information theory (2.2). Finally,

I highlight how the latter formalism has been used to provide a concept of semantic

meaning in the signalling game framework (2.3).

2.1. Signalling Games. The simplest signalling game is one in which there are

two players (called the Sender and Receiver), two states of the world (s0 and s1),

two possible signals or messages (m0 and m1), and two possible actions (a0 and a1).

This is referred to as a 2× 2 signalling game (Skyrms, 2010). The sender observes

the state and sends a signal to the receiver. The receiver observes the signal and

chooses an action. Both players receive some payoff if they coordinate on states and

actions. A formal definition is given in Definition 2.1.1

Definition 2.1: Signalling Game
Let ∆(X) be a set of probability distributions over a finite set X. A Sig-
nalling Game is a tuple,

Σ = 〈S,M,A, σ, ρ, u, P 〉,
where S = {s0, . . . , sk} is a set of states, M = {m0, . . . ,ml} is a set of
messages, A = {a0, . . . , an} is a set of acts, with S,M , and A nonempty.
σ : S → ∆(M), is a function from states to a probability distribution over
the set of messages that defines a sender, ρ : M → ∆(A) is a function from
messages to a probability distribution over actions that defines a receiver,
u : S ×A→ R defines a utility function, and P ∈ ∆(S) gives a probability
distribution over states in S. Finally, σ and ρ have a common payoff, given

1For further details, see discussion in Huttegger (2007); Steinert-Threlkeld (2016); LaCroix
(2020a).
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by

π(σ, ρ) =
∑
s∈S

P (s)
∑
a∈A

u(s, a) ·

(∑
m∈M

σ(s)(m) · ρ(m)(a)

)
.

♦

The payoff, π(σ, ρ), for a particular combination of sender and receiver strategies

gives an expectation of the utilities of state-act pairs (given by u(s, a)) weighted by

the relative probability of a particular state, provided by P (S). This is referred to

as the communicative success rate of the strategies σ and ρ. The extensive form of

the 2× 2 signalling game is given in Figure 1.

u(s0, a0)

a0

u(s0, a1)

a1

m0

u(s0, a0)

a0

u(s0, a1)
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u(s1, a0)
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ρ ρ

Nature

σ σ

Figure 1. The extensive form of the simple 2×2 signalling game.
Each node denotes a choice point for a given player, and each
branch denotes the possibilities available to her at that point. The
dotted lines indicate the receiver’s information set.

Following the notation of Steinert-Threlkeld (2016), we can introduce the fur-

ther definition of an atomic signalling game—where states, messages, and actions

are equinumerous, the utility function is 1 when the act matches the state and 0

otherwise, and nature is unbiased. See Definition 2.2.

Definition 2.2: Atomic n-Game
The Atomic n-Game is a signalling game, Σ, with the following restrictions:

(1) |S| = |M | = |A| = n,
(2) u(si, aj) = δij , where δij is the Kronecker delta,

δij =

{
1 if i = j
0 else

,

and
(3) P (s) = 1

n for all s ∈ S. ♦
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A signalling system describes a situation in which the sender and receiver strate-

gies lead to perfect coordination and maximal payoff. The atomic 2-game has ex-

actly two signalling systems, shown in Figure 2. Following the formal specification

s0

s1

m0

m1

a0

a1

(a) Signalling system 1

s0

s1

m0

m1

a0

a1

(b) Signalling system 2

Figure 2. The two signalling systems of the 2× 2 signalling game

in Definition 2.1, the signalling systems of a signalling game can be defined formally

as in Definition 2.3.

Definition 2.3: Signalling Systems
A signalling system in a signalling game is a pair (σ, ρ) of a sender and
receiver that maximises π(σ, ρ). ♦

In an evolutionary model, a dynamic explains how sender-receiver strategies

change over time. One common dynamic is simple reinforcement learning, described

by the following urn-learning metaphor. We assume the sender has urns labelled

s0 and s1. Similarly, the receiver has urns labelled m0 and m1. At the outset,

each sender urn is equipped with one ball for each message—labelled m0 and m1.

Similarly, each receiver urn contains a ball for each action—labelled a0 and a1. See

Figure 3. In each play, the state is chosen at random. The sender selects a ball

s0

m0 m1

s1

m0 m0

(a) Sender Urns

m0

a0 a1

m1

a0 a1

(b) Receiver Urns

Figure 3. Simple reinforcement learning model

at random from the urn corresponding to the state of the world and sends that

message to the receiver. The receiver then chooses a ball at random from the urn

corresponding to the message received. If the action matches the state of the world,

then the sender and the receiver both reinforce their behaviour by returning the

ball to the urn from which it was chosen and adding another ball of the same type

to the urn from which the original ball was chosen. If the action does not match

the state, each player returns the drawn ball to the urn from which it was drawn.

The game is then repeated for a newly chosen state.
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The dynamic shifts strategies to the extent that adding balls to an urn for a

successful action shifts the relative probability of picking a ball of that type on a

future play of the game. Adding balls to a particular urn changes the conditional

probabilities of the sender’s signals (conditional on the state) and the receiver’s

acts (conditional on the signal). Thus, the conditional probabilities of the sender’s

signals and the receiver’s actions change over time, and the players become more

likely to perform previously successful actions.

In the next section, I provide some formal background from information the-

ory before describing how a mathematical notion of information has been used to

elucidate the content of signals in the signalling game.

2.2. Shannon Entropy and Relative Entropy. Shannon entropy measures the

degree of randomness in some data set. Higher entropy means a higher degree

of randomness, and less entropy means higher predictability. Suppose X is a dis-

crete random variable (RV) with alphabet X and probability mass function p(x) =

pX(x) = Pr{X = x}, x ∈ X .2 The definition for Shannon entropy is given in 2.4.

Definition 2.4: Shannon Entropy:
The entropy, H(X), of a discrete random variable, X, is defined by

(1) H(X) = −
∑
x∈X

p(x) logb p(x).

♦

The base of the logarithm, b, determines the unit of measure. For b = 2, e, 10,

the unit of information is given by Bit, Nat, or Hart, respectively. We assume that

0 log 0 = 0. The entropy of a discrete RV does not depend on the alphabet since it is

a function of the distribution ofX; therefore, it depends solely upon the probabilities

underlying this distribution. The entropy of an RV, in general, is characterised as a

measure of how much information is required, on average, to describe the RV fully.

For example, if we consider the set of states in the atomic 2-game as a discrete RV,

S = {s0, s1} with p(s0) = p(s1) = 1/2, H(S) tells us that we need, on average, 1

bit of information to describe S.

Relative entropy—also known as Kullback-Leibler (KL) Divergence—is under-

stood as a measure of the similarity of two probability distributions, p and q.

2In this case, p(x) and p(y) refer to two different RVs—indeed, two different probability mass
functions, pX(x) and pY (y). See discussion in Cover and Thomas (2006).
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Definition 2.5: Relative Entropy (Kullback-Leibler Divergence):
The relative entropy, or the Kullback-Leibler distance, between two proba-
bility mass functions p(x) and q(x) is defined as

(2)

D(p ‖ q) =
∑
x∈X

p(x) · (logb p(x)− logb q(x))

=
∑
x∈X

p(x) logb

p(x)

q(x)

♦

With these definitions in place, the next section describes how KL-divergence

has been used to describe the semantic information of a signal in a signalling game.

2.3. Semantic Information and Signalling. Entropy (Definition 2.4) is not

equivalent to, or a measure of, information in the colloquial sense—e.g., the content

of a signal or message. Since entropy (H) is an average, every message in a repertoire

‘has’ the same entropy value. However, each message in the repertoire may be about

different things—i.e., messages may have different meanings or contents. Thus, the

entropy of distinct signals may be identical though the ‘information’ those signals

carry, in the colloquial sense, is different.

Entropy depends upon discrete RVs. However, we note that the elements of the

signalling game, described in Definition 2.1, can be understood as a set of discrete

RVs, {S,M,A}. S is a static RV with some probability distribution—uniform, in

the atomic case. At a signalling system, the signals are entirely informative, and

the receiver has complete information about the state. Therefore, she can act as

though she had observed the state directly. The ‘key quantity’, described by Skyrms

(2010), depends upon a comparison between the (conditional) probability that a

particular state obtains given that a signal was sent, and the likelihood that we are

in that state simpliciter:
p(si|mj)

p(si)

We can define the quantity of information a signal, mj , carries (i.e., about a par-

ticular state, si) as

H(mj) = log2

p(si|mj)

p(si)
.

When signals are random, they carry no information. At a signalling system in the

atomic 2-game, each signal carries exactly 1 bit of information, corresponding to a

reduction of uncertainty from two possible states to one, conditional on the signal.

Skyrms (2010) highlights that signals may carry information about different

states. Taking a weighted sum of the probabilities of being in any particular state

conditional upon the specific signal, we obtain the following measure of the quantity
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of information carried by a particular signal, mj , about the states:

(3) I(mj)
states

=

|S|∑
i=1

p(si|mj) · log2

(
p(si|mj)

p(si)

)
This is just the KL-Divergence (Definition 2.5) of the two probability distributions

P = p(s|m), Q = p(s). Signals can also carry information about the acts:

(4) I(mj)
acts

=

|A|∑
i=1

p(ai|mj) · log2

(
p(ai|mj)

p(ai)

)
In this context, the relative entropy of a particular signal can be understood as a

measure of additional bits gained by moving from a prior to a posterior distribution,

in a Bayesian sense. Equations 3 and 4 give the quantity of information in a signal.

On Skyrms’ (2010) account, the quantity of information carried by a signal can be

used to define the signal’s informational content; this is a vector that specifies the

information that the signal gives about each state. This vector is given by

(5)

〈
log2

(
p(s1|mj)

p(s1)

)
, log2

(
p(s2|mj)

p(s2)

)
, · · · , log2

(
p(sn|mj)

p(sn)

)〉
for the content about the states of a particular signal, mj .

Suppose there are four initially equiprobable states. In this case, the informa-

tional content about the states of each signal is given by the following vectors.

(6)

I(m1) = 〈0, 0, 0, 0〉

I(m2) = 〈0, 0, 0, 0〉

I(m3) = 〈0, 0, 0, 0〉

I(m4) = 〈0, 0, 0, 0〉

None of the signals carries any information about the states, so their content is

empty everywhere. If we further suppose that the sender and receiver evolve to

a signalling system where signal i is sent only in state i, then the informational

content of each signal at that signalling system is given by the following vectors.

(7)

I(m1) = 〈2,−∞,−∞,−∞〉

I(m2) = 〈−∞, 2,−∞,−∞〉

I(m3) = 〈−∞,−∞, 2,−∞〉

I(m4) = 〈−∞,−∞,−∞, 2〉

Now, each signal carries precisely 2 bits of information about the state of nature.

The −∞ components tell us which signals end up with probability 0, conditional on

the states. Skyrms (2010) suggests that the traditional account in the philosophy

of language—where the (declarative) content of a signal is a proposition, and a
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proposition is a set of possible worlds—is contained in this richer information-

theoretic account of the content of a signal.3

With the formal machinery of Sections 2.1, 2.2, and 2.3 in place, we are now able

to understand why syntactic signalling cannot be compositional.

3. Measuring Compositionality

Given the formal definition of semantic information discussed in Section 2.3,

we can make exact the argument that syntax alone does not give rise to composi-

tionality. This captures the complaints of Franke (2016); Steinert-Threlkeld (2016),

that composite signals are interpreted atomically and so cannot be compositional

in the sense that they do not capture intuitions about generalisability conditions

for compositional signalling.

Suppose we have a 4 × 4 syntactic signalling game (Barrett, 2006, 2007, 2009),

with two senders, σA and σB , and one receiver, ρ. Each sender can send one of two

messages, and the receiver is sensitive to which sender sent which message. Suppose

further that the senders and receiver have evolved a signalling system so that each

sender’s signal partitions nature into two sets—{s0, s1} and {s2, s3} for σA, and

{s0, s2} and {s1, s3} for σB . The signal combinations determine the state via the

intersection of these sets. See Figure 4.

mA
0

mA
1

mB
0 mB

1

s0 s1

s2 s3

Figure 4. Fully partitioning states via set intersection

3Note that some authors have criticised and extended this account. For example, the above char-

acterisation of informational content depends upon how probabilities are moved (Skyrms, 2010).

Godfrey-Smith (2011) suggests that the content of the signal should say something about the world
rather than how much the probability of a particular state was moved by the signal’s being sent.

Birch (2014) highlights that Skyrms’ account of informational content falls prey to the problem of
error (in the same way as the information-theoretic approach to content in Dretske (1981)), when

we consider what it means for a signal to have false propositional content; see also Fodor (1984);

Godfrey-Smith (1989); Crane (2003). Although these insights are theoretically valuable, we will
ignore them for now. However, see further discussion in Skyrms and Barrett (2019); Shea et al.

(2018); LaCroix (2020a).
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We know the maximal entropy of the system from Definition 2.4, given by

H(S) = −
∑
s∈S

p(s) log2 p(s)

= − log2

(
1

4

)
= 2 bits.

Thus, an entirely informative length-two signal carries 2 bits of information because

it reduces the possible states from 4 to 1.

We defined the informational content of a particular signal with respect to the

states as a vector. Therefore, we can give the entire informational content of all of

the signals explicitly as a matrix. Each row is the informational content, as described

in Section 2.3, of a particular message; see Table 1.

Table 1. Complete informational content about the states at a
signalling system in a 4× 4 syntactic signalling game.

States

s0 s1 s2 s3

mA
0 1 1 −∞ −∞

Informational mA
1 −∞ −∞ 1 1

Content mB
0 1 −∞ 1 −∞

mB
1 −∞ 1 −∞ 1

Further, we can see that a particular state is wholly determined by all and only

the messages that carry information about that state. Therefore, s0 is entirely

determined by the combination of mA
0 and mB

0 , rather than, e.g., the combination

of mA
0 and mB

1 , because the latter carries no information about state 0 when in

combination with mA
0 . The syntactic combination of a syntactic length-two signal

carries complete information about a particular state; see Table 2.

Table 2. Complete informational content in simple signals about
the acts at a signalling system in a 4×4 syntactic signalling game.

States

s0 s1 s2 s3

mA_
0 mB

0 2 −∞ −∞ −∞
Informational mA_

0 mB
1 −∞ 2 −∞ −∞

Content mA_
1 mB

0 −∞ −∞ 2 −∞
mA_

1 mB
1 −∞ −∞ −∞ 2

Now, suppose that σB spontaneously changes her signal mB
0 to a new signal,

mB
? . We might imagine two distinct explanations for this change:
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(1) σB simply uses a novel signal in lieu of mB
0 .

(2) B forgets the meaning of signal mB
0 .

These two situations might be modelled in various ways, but these will be function-

ally equivalent under the assumption that the meaning of the other signal does not

change for σB , as we shall see.

In case (1), the arbitrary signal, mB
? , has simply replaced mB

0 ; they mean the

same thing. Under the urn-learning metaphor described in 2.1, this can be modelled

by taking every ball labelled mB
0 in each of the state urns for σB and re-labelling

them mB
? . This re-labelling does not change that the senders already convened

upon a signalling system that perfectly partitions the states of nature; however, the

receiver must now learn the meaning of mB
? . This situation is a cue-reading game

(Barrett and Skyrms, 2017).

In case (2), σB needs to re-coordinate so the new signal successfully partitions

nature when combined with σA’s signal. This is similar to a normal signalling con-

text since the σB must re-learn when to send this novel signal (given the meanings

of all the other signals are fixed, the correct strategy is to send the new signal in the

same context as that in which the prior signal was used), and ρ must additionally

learn the meaning of the novel signal. ‘Forgetting’ the meaning of signal mB
0 , as in

case (2), can be modelled by ‘emptying’ all of the balls from the s0 and s2 urns for

σB and adding a novel ball labelled mB
? to those urns. However, since the meaning

of mB
1 is fixed, it follows that even if we ‘reset’ the urns for s0 and s2 with one each

of mB
? and mB

1 , the conditional probability that s0 obtains given that mB
1 is sent is

effectively 0. Therefore, the informational content vectors about the states remain

unchanged under either interpretation. This is shown in Table 3.

Table 3. Complete informational content about the states at a
signalling system in a 4× 4 syntactic signalling game with a novel
signal identical to the old signal.

States

s0 s1 s2 s3

mA
0 1 1 −∞ −∞

Informational mA
1 −∞ −∞ 1 1

Content mB
? 1 −∞ 1 −∞ ← Novel Signal

mB
1 −∞ 1 −∞ 1

However, the signals also carry information about the acts. Assuming that mB
0

is replaced with mB
? , this can be modelled by effectively throwing out the receiver

urns that have a token of mB
0 and creating new urns that are labelled identically to

the old urns, except with each token of mB
0 replaced with mB

? . Therefore, we can

calculate the information that each of the concatenated signals contains about the
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acts, as in figure 4. That is to say, any composite signal containing a token of the

Table 4. Complete informational content in simple signals about
the acts at a signalling system in a 4×4 syntactic signalling game.

Acts

a0 a1 a2 a3

mA_
0 mB

? 0 0 0 0

Informational mA_
0 mB

1 −∞ 2 −∞ −∞
Content mA_

1 mB
? 0 0 0 0

mA_
1 mB

1 −∞ −∞ −∞ 2

novel signal carries no information about the acts.

If the concatenated signals were compositional, this should not happen. Consider

that, regardless of the new signal’s meaning, mA
0 is only sent for a0 or a1. Therefore,

the conditional probability that a2 or a3 should obtain, given that the receiver has

received a length-two string starting with mA
0 , is 0. Similarly, for a3. The probability

of a particular act being appropriate simpliciter is still the chance probability, 0.25.

What does this mean for the informational content of the concatenated signal? It

is given by 〈
log2

(
p(a0|mA_

0 mB
? )

p(ai)

)〉
, i ∈ {1, 2, 3, 4}.

Substituting the values for the conditional and unconditional probabilities, we have〈
log2

(
1/2

1/4

)
, log2

(
1/2

1/4

)
, log2

(
0

1/4

)
, log2

(
0

1/4

)〉
,

which resolves to the informational content vector

〈1, 1,−∞,−∞〉 .

However, this makes no sense: mA
0 alone gives us 1 bit of disjunctive information—

namely, about a0 ∨ a1. If the ρ interprets the concatenation of mA
0 and mB

? compo-

sitionally, indeed, the second part of the length-two signal would not give her any

new information regarding the disjunction a0 ∨ a1—namely, unlike before, where

the novel signal provides disjunctive information so the union of the two signals

uniquely determines a single state. There is no reason why changing the second

signal should take information away from the entire composite signal. The receiver

interprets the signal as an atomic whole, which provides no information about the

act.

This shows that the signals are not interpreted compositionally. However, it also

highlights that they are compositional for the senders (or, for the states, if you pre-

fer). This is because there is a notion of independence—concerning the information
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that the signal carries about the states—that does not hold for the information

that the signal carries about the acts.

We assumed that the states were fixed in the previous example, and only one of

the signals changed its meaning. We saw that this has no effect on the informational

content of the signal concerning the states, but the receiver counter-intuitively loses

the information that should have been contained in the unchanged signal. The same

argument holds if, instead of supposing the lexicon is altered, it is merely extended—

i.e., if a novel state, a novel signal to represent that state, and a novel action to

perform in that state are introduced into the signalling game.

To tell an intuitive story, we might suppose that σA sends a verb, and sender B

sends a noun. Suppose there are two distinct action contexts and two distinct object

contexts. Thus, we have the 4×4 syntactic signalling game, as before. Suppose now

that a novel object context is added to the game. The noun-sender accommodates

this by adding a new signal to her lexicon and sending that in the novel context. The

receiver must learn what is appropriate given this new signal; however, given that

the verb context has not changed, she should gain some information. This argument

captures precisely the systematicity feature of compositional communication: if the

receiver knows the meaning of ‘pick up x’ and the meaning of ‘the book’, but not

the meaning of ‘put down x’, then she might understand the command ‘pick up the

book’, though she does not understand the meaning of ‘put down the book’. Even

so, she may still understand that the latter expression has something to do with

the book.

Though this argument specifically concerned the syntactic signalling model given

in Barrett (2006, 2007, 2009), the same considerations apply to the model for com-

binatorial systems of communication proposed by Scott-Phillips and Blythe (2013).

Since they explicitly focus on composition qua syntactic composition, this system

cannot give rise to a genuine notion of compositional signalling. The same is true for

spill-over reinforcement (Franke, 2016). If we add a novel signal to a pre-established

signalling system that has evolved via spill-over RL, the receiver loses information

in any string containing the novel signal; therefore, Brochhagen (2015) is correct

in pointing out that the agents are not sensitive to a generalisation condition for

compositionality—namely, the relations between constituent parts are not general-

isable.

4. Conclusion

The insights of Section 2.3 suggest that focusing exclusively on syntax in dis-

cussing the evolution of compositionality under the signalling-game framework is

misguided. Barrett et al. (2020); LaCroix (2022) show how compositional signalling

might evolve in a hierarchical signalling game with two basic senders, one executive
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sender, one basic receiver, and one executive receiver. Here, the executive sender

and receiver—called hierarchical agents—can learn to influence the behaviour of

the basic senders and receiver—called basic agents. However, it is not the com-

positionality of the signals that drives compositionality in this signalling system.

Instead, it is the reflexivity and modularity of the executive sender and receiver

that drives compositionality in this context, insofar as the ball that the executive

sender chooses refers to a component of the base game (LaCroix, 2020a). This can

be seen by the fact that the base game (constituted by the base senders and base

receiver) is functionally equivalent to the 4 × 4 syntactic signalling game, which

does not evolve compositional signalling, as we have seen. These formal insights

help to validate the claim from LaCroix (2021) that explanations of the evolution

of compositionality are too focused on syntax and will not furnish an evolutionary

explanation of the origins of language.
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