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Abstract. Gyenis and Rédei have demonstrated that any prior p on a finite algebra,

however chosen, severely restricts the set of posteriors accessible from p by Je↵rey

conditioning on a nontrivial partition. Their demonstration involves showing that

the set of posteriors not accessible from p in this way (which they call the Bayes

blind spot of p) is large with respect to three common measures of size, namely,

having cardinality c, (normalized) Lebesgue measure 1, and Baire second category

with respect to a natural topology. In the present paper, we establish analogous

results for probability measures defined on any infinite sigma algebra of subsets of

a denumerably infinite set. However, we have needed to employ distinctly di↵erent

approaches to determine the cardinality, and especially, the topological and measure-

theoretic sizes of the Bayes blind spot in the infinite case. Interestingly, all of the

results that we establish for a single prior p continue to hold for the intersection of

the Bayes blind spots of countably many priors. This leads us to conjecture that

Bayesian learning itself might be just as culpable as the limitations imposed by priors

in enabling the existence of large Bayes blind spots.
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1. Introduction

In a pair of groundbreaking papers, Gyenis and Rédei (2017, 2021) initiated a study
of the following important epistemological question: Given a prior probability measure
p, and a family R of possible methods for revising p in response to new evidence, how
large is the set of probability measures q that are inaccessible from p using any of the
stipulated revision methods? The authors call the set of probability measures that
are inaccessible from p its Bayes blind spot, denoted by BS(p). In their foundational
2017 paper, Gyenis and Rédei (henceforth, G&R) situate the accessibility problem
in the broadly comprehensive setting in which revision is conceptualized in terms of
conditional expectation. In their 2021 paper, they explore in detail the case in which
probability measures are defined on a finite algebra A of subsets of an arbitrary set
Y ,1 and R consists of all possible ways of revising p by Je↵rey conditioning on any
(necessarily finite) partition of Y consisting of members of A, at least one of which
has at least two elements. They prove in this case that the Bayes blind spot is large
with respect to three common measures of size, namely, having cardinality c, (nor-
malized) Lebesgue measure 1, and Baire second category with respect to a natural
topology. They observe that their result emphasizes the heretofore insu�ciently rec-
ognized crucial role of priors in Bayesian learning, and demonstrates that any prior,
however chosen, severely restricts the set of posteriors that are in principle derivable
from that prior by a single application of Je↵rey conditioning.2
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In the present paper, we establish analogous results for probability measures defined
on any infinite sigma algebra of subsets of a denumerably infinite set Y .3 However,
we have needed to employ distinctly di↵erent approaches to determine the cardinality,
and the topological and measure-theoretic sizes of the Bayes blind spot in the infinite
case. Interestingly, all of the results that we establish for a single prior p continue
to hold for the intersection of the Bayes blind spots of countably many priors. This
leads us to conjecture that Bayesian learning itself might be just as culpable as the
limitations imposed by priors in enabling the existence of large Bayes blind spots.
Before presenting our results, however, we o↵er a brief review of some essential features
of Je↵rey conditioning.

2. A primer on Jeffrey conditioning

Suppose X is any set of possible states of the world, A is a sigma algebra of subsets of
X, and E = {Ei} is a countable partition of X with each Ei 2 A. It will be convenient
throughout this paper to assume that every prior p is a strictly coherent probability
measure on A, in the sense that p(A) > 0 for all nonempty A 2 A.4 A probability
measure q on A is said to come from p by Je↵rey conditioning (henceforth, JC) on E
if

(2.1) q(A) =
X

i

q(Ei)p(A|Ei), for all A 2 A.

Theorem 2.1. Formula (2.1) is equivalent to the rigidity condition

(2.2) q(A|Ei) = p(A|Ei), for each i such that q(Ei) > 0 and all A 2 A,

and, if X is countable and A = 2X , to the following identities:

(2.3) For each i and all x, x0 2 Ei,
q(x)

p(x)
=

q(x0)

p(x0)
,

where we slightly abuse notation by writing, for example, q(x), instead of q({x}).

Proof. See Je↵rey (1992, pp. 117–118).

The partition {{x} : x 2 X}, in which each block is a singleton, is called the trivial

partition of X. All other partitions are nontrivial. It is easy to see that if X is
countable and p is strictly coherent on 2X , then every probability measure q on 2X

comes from p by JC on the trivial partition of X. In this case, JC amounts to total

reassessment, which is why we restrict consideration to JC on nontrivial partitions.

The following theorem is an immediate consequence of Theorem 2.1.

Theorem 2.2. If X is countable, p and q are probability measures on 2X , and p is

strictly coherent, then q comes from p by JC on a nontrivial partition E of X if and

only if there exist distinct x and x0
in X such that q(x)/p(x) = q(x0)/p(x0).

Proof. Necessity. Since at least one block of a nontrivial partition contains at least
two elements of X, this follows from (2.3) above. Su�ciency. By assumption, the map
x 7! q(x)/p(x) from X to [0,1) is not injective. For each member r in the range
R of this map, let Er := {x 2 X : q(x)/p(x) = r}. Clearly, E := {Er : r 2 R}
is a countable, nontrivial partition of X, and for each r 2 R, if x, x0 2 Er, then
q(x)/p(x) = q(x0)/p(x0) = r. So by Theorem 2.1, q comes from p by JC.
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Remark: The partition E introduced above in the proof of su�ciency is the coarsest

partition
5 of X on which q comes from p by JC. See Diaconis and Zabell (1982, 824)

and van Fraassen (1980).

From Theorem 2.2, the following characterization of BS(p) is immediate.

Corollary 2.3. The probability measure q belongs to BS(p) if and only if the ratios

q(x)/p(x) are distinct for all x 2 X.

In the following sections, the above corollary will be invoked repeatedly in determining
the size of BS(p) in terms of its cardinality, its Baire category and an appropriately
constructed measure.

3. The cardinality of BS(p)

Let X = {xi}i�1 be a countable set with |X| � 2. Since all probability measures q on
2X are completely determined by the values qi := q(xi), we may focus attention on the
associated probability distributions (i.e., mass functions), denoted by q = (qi)i�1. We
prove here a more general result concerning the cardinality of what we now denote by
BS(p). Given a nonempty set P of probability distributions on X, let BS(P) be the
Bayes blind spot of P defined as the intersection of BS(p) for all p 2 P.

Theorem 3.1. Let P be a nonempty countable set of probability distributions on a

countable set X with |X| � 2, where all probabilities in each distribution are positive.

Then the cardinality of BS(P) is equal to c.

Proof. We treat only the case when X is denumerably infinite, as the simple modifica-
tions required to accommodate the finite case of X will be apparent. We show first that
BS(P) is nonempty. Let P = {p(1),p(2), . . .}, where p(k) = (p(k)i )i�1 with

P
i�1 p

(k)
i = 1

and p(k)i > 0 for all i, for each k � 1. Let m1 be any positive real number. If i � 2,
and the positive real numbers m1, . . . ,mi�1 have been chosen, choose mi such that (i)
0 < mi < 2�i and (ii) mi

p
(k)
i

6= mj

p
(k)
j

for all 1  j  i � 1 and k � 1. Note that such a

sequence (mi)i�1 can be constructed, since at each step, only a countable number of
possible values for mi are being excluded from the (uncountable) set (0, 2�i). Further,
the series

P
i�1 mi is convergent, with, say,

P
i�1 mi = m. Define q = (qi)i�1 by setting

qi =
mi
m . Then the sequence qi

p
(k)
i

for i � 1 has all its terms distinct for each k � 1, by

construction, with
P

i�1 qi = 1, so q 2 BS(P).

Let ✏ = min{1 � q1, q2}. Given 0 < � < ✏, let s(k)� be the sequence defined by
q1+�

p
(k)
1

, q2��

p
(k)
2

, q3

p
(k)
3

, q4

p
(k)
4

, . . . for each k � 1. Note that q 2 BS(P) implies that there are

only a countable number of values of � for which s(j)� fails to have all its terms dis-
tinct for some j � 1. Then for all other values of � in the interval (0, ✏), we have
q� = (q1 + �, q2 � �, q3, q4, . . .) 2 BS(P). Hence, |BS(p)| � c, as it contains an un-
countable subset. On the other hand, BS(p) ⇢ [0, 1]P, where P = {1, 2, . . .}, and so
|BS(p)|  |[0, 1]P| = c, whence |BS(p)| = c.
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4. A topological analysis of BS(p)

In this section and the next, X represents a denumerably infinite set. Given a real
sequence s = (si)i�1, the `1-norm of s is defined as

P
i�1 |si|, with the distance between

s and t = (ti)i�1 given by |s� t| =
P

i�1 |si � ti|. A fundamental result from analysis
states that the subset of the real sequences for which the `1-norm is finite (i.e.,

P
i�1 |si|

converges) is a complete metric space (with metric d defined as d(s, t) = |s� t|); see,
e.g., Friedman (1982, Theorem 3.2.3). Let S denote the set of sequences summing to 1
with nonnegative entries, which are synonymous with the probability distributions on
X. Then S itself is complete (in the topology induced by the `1-norm), being a closed
subset of a complete metric space.

In this (and the following) section, let p = (pi)i�1 denote a member of S where pi > 0
for all i. We shall make use of the characterization of BS(p) supplied by Corollary 2.3
as consisting of those q = (qi)i�1 in S such that the qi

pi
values for i � 1 are all distinct

from one another.

Then BS(p) satisfies the following topological properties.

Theorem 4.1. Let p = (pi)i�1 2 S, with pi > 0 for all i. Then BS(p) in the `1-
norm topology on S (i) is of second category, (ii) is dense in S, and (iii) has an empty

interior.

Proof. (i) Given 1  i < j, let Si,j denote the subset consisting of those members
q = (qi)i�1 of S such that qi

pi
= qj

pj
. Note that Si,j is a closed subset of S having an

empty interior, as one can clearly find v 2 S�Si,j with |v�q| < ✏ for any given ✏ > 0
and q (upon perturbing the qi and qj entries of q slightly). Since the closure of Si,j

has empty interior, it is nowhere dense for each i and j and thus

BS(p)c =
[

1i<j

Si,j

is a countable union of nowhere dense sets. By definition, BS(p)c is of first category.
Now S complete implies it is of the second category, by the Baire category theorem,
see Friedman (1982, p. 106). But then S = BS(p) [ BS(p)c implies BS(p) must be
of the second category, for otherwise BS(p)[BS(p)c would be of first category being
a countable union of nowhere dense sets.

(ii) Let q 2 S. We will find a member of BS(p) whose `1-distance from q is arbitrarily
small. Let 0 < ✏ < 1

2 be given. Define a sequence r = (r1, r2, . . .) of nonnegative real
numbers as follows. Let r1 be given and for n > 1, let rn � 0 be such that rn

pn
is distinct

from all values of ri
pi

for 1  i  n� 1. Further, we may assume |rn � qn| < ✏
2n for all

n � 1. Then r is a convergent series with

|r� q| <
X

n�1

✏

2n
= ✏,
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and hence ||q|� |r|| < ✏ implies 1
2 < 1� ✏ < |r| < 1 + ✏. Let r0n = rn

|r| and r0 = (r0n)n�1.

Then r0 2 BS(p) and

|r0 � q| = 1

|r| |r� |r|q|  2|r� |r|q|

 2 (|r� q|+ |1� |r|| · |q|) < 2(✏+ ✏ · 1) = 4✏,

whence BS(p) is dense in S.

(iii) Let q = (qi)i�1 2 BS(p). We will find q0 = (q0i)i�1 2 S �BS(p) such that |q� q0|
is arbitrarily small. Let 0 < ✏ < q2, where we assume for now q2 > 0. Let n � 1 be
large enough so that max{qi, pi

p1
} < ✏ for all i � n. First assume qn

pn
� q1

p1
> 0 and let

� = qn � pnq1
p1

> 0. Let the (q0i)i�1 be given by q0i = qi if i 6= n, n + 1, with q0n = q1pn
p1

and q0n+1 = qn+1 + �. One may verify q0 2 S � BS(p). Then pnq1
p1

 ✏q1 < ✏ implies
|qn � q0n| < ✏, being the di↵erence of two nonnegative real numbers less than ✏, and
further |qn+1 � q0n+1| = � < ✏. Thus, we get |q� q0| = |qn � q0n|+ |qn+1 � q0n+1| < 2✏.

Now assume qn
pn

� q1
p1

< 0. Let ⇢ = pnq1
p1

� qn > 0 and note ⇢  pnq1
p1

 ✏q1 < q2. Define
the q0i in this case by q0i = qi if i 6= 2, n, with q02 = q2�⇢ and q0n = pnq1

p1
(note n > 2 since

✏ < q2, by assumption). Then we have |q2 � q02|, |qn � q0n| < ✏ and thus |q � q0| < 2✏.
On the other hand, if q2 = 0, then q 2 BS(p) implies q3 > 0, and one may proceed
similarly as before with q3 in place of q2, upon requiring 0 < ✏ < q3. This implies in
all cases that q cannot be an interior point of BS(p), whence BS(p) has an empty
interior.

The preceding result may be extended as follows.

Theorem 4.2. The blind spot BS(P), where P is a nonempty countable subset of S,
satisfies the same conditions (i)–(iii) given above with respect to the `1-norm as BS(p).

Proof. We make simple modifications to the preceding proof where required. For prop-
erty (i) concerning BS(P), note that the countable intersection of second category sets
each of whose complement is of first category is of second category. For (ii), observe
that the same proof applies when there are a countable number of p since for each
n > 1, one has an interval of potential values for rn wherein at most a denumerably
infinite number of values are excluded as possibilities. Property (iii) follows from the
fact that the interior operator respects subset inclusions.

Discussion: Due to (iii), Theorem 4.1 demonstrates that the infinite case of X di↵ers
fundamentally from the earlier comparable result from G&R (2021) when X was finite
where it was shown that BS(p) is an open dense subset in the set of all probability
distributions on X. For a more basic example of a subset T in a metric space Y such
that T is dense in Y and of second category, but yet has an empty interior, consider
the subset of irrationals within the set of reals. Further, it is seen that BS(p) is neither
open nor closed in the infinite case, as both BS(p) and BS(p)c have empty interior.

Recall that the `p-norm for each p � 1 is defined for s = (si)i�1 as
�P

i�1 |si|p
� 1

p ,
with the limiting case as p ! 1 denoted by `1 given by max{|si| : i � 1}. Since
the topology of the `p-norm strictly refines that of the `q-norm for 1  p < q  1,
with the `p-metric complete for each p � 1, the prior two theorems apply also to all
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of the `p-norms on S. Further, the results are seen to apply to the complete metric d
defined by d(u,v) = |u�v|

1+|u�v| for u,v 2 S, where | · · · | denotes an `p-norm. Note that
since the topology on S induced by d is bounded, it is seen not to be equivalent to the
topology induced by any of the `p-norms. It would be interesting to prove analogues
of Theorems 4.1 and 4.2 for other kinds of topologies on S by considering a greater
variety of metrics on S.

Finally, the result in (iii) from Theorem 4.1 can be generalized in another way as
follows. Consider the subset S` of S where ` � 1 consisting of those distributions
q = (qi)i�1 in which there are at least ` pairs (n,m) where 1  n < m such that
qn
pn

= qm
pm

. Then the set S` is dense in S for each ` � 1, the details of the proof we leave
to the reader. Note that the ` = 1 case corresponds to (iii).

Open question: To what degree can the results in Theorems 4.1 and 4.2 be extended
beyond the class of topologies on S corresponding to the `p-norms? In particular, is it
possible to find general su�cient (more desirably, necessary and su�cient) conditions
for a complete metric d on S which would ensure BS(p) is of second category in (S, d)
for all p?

5. A measure-theoretic analysis of BS(p)

Let S denote the set of all probability distributions on a countably infinite set X whose
associated mass functions are represented sequentially.

Theorem 5.1. There exists a probability measure on S such that BS(p) has probability
1 with respect to this measure for each p = (pi)i�1 2 S having all positive components.

Proof. Let X1 be a uniform random variable on the interval [0, 1). Define the random
variables Xi for i > 1 recursively by letting Xi be uniform on the interval [0, 1 �Pi�1

j=1 xj), where Xj = xj for 1  j  i�1. Then X1+X2+ · · · ! 1 almost surely, and
we consider the set of possible outcomes (x1, x2, . . .) wherein Xi = xi for all i, which
are synonymous with the members of the set S. Note that outcomes (x1, x2, . . .) which
are finitely nonzero have probability zero of occurring and hence the subset comprising
the corresponding members of S has measure zero.

Given integers 1  a < b, consider P (Xa = cXb), where c = ca,b is the constant defined
by c = pa

pb
. Then we have

P (Xa = cXb) =

Z Z
P (Xa = ct|

a�1X

i=1

Xi = s and Xb = t)

⇥ (Joint density of
a�1X

i=1

Xi and Xb evaluated at s and t)dsdt.

Note that the probability P (Xa = ct|...) in the prior integral is zero since for each s
and t, it can be shown that Xa has a (conditional) density, whence P (Xa = cXb) = 0.
Considering all pairs (a, b) where a < b (a countable number of possibilities) implies the
probability that some (x1, x2, . . .) is not in BS(p) is zero. Thus, BS(p) has probability
1 in this measure on S.
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Discussion: Since BS(p)c has probability 0 with respect to the measure M defined
on S in the preceding proof, then so does BS(P)c, where P consists of a countable
number of distributions p. Hence, BS(P) has probability 1 with respect to M .

Note that there is apparently not a straightforward extension to the infinite case of
the argument from G&R (2021) in the finite case of X which demonstrated that the
complement of BS(p) has measure zero with respect to the Lebesgue measure on Rn�1,
where n = |X|. This is due in part to the fact that there is apparently not an analogous
measure on R1 that permits a comparable analysis. It should be remarked that the
proof of Theorem 5.1 can be extended to the finite case ofX by settingXn = 1�

Pn�1
i=1 xi

and terminating the recursive procedure of defining random variables. Note however
that the resulting measure for the probability distributions on X di↵ers from that
supplied by (normalized) Lebesgue measure on Rn�1.

Further, di↵erent measures on S for which BS(p) has probability 1 can be obtained
by allowing the Xi to assume other continuous distributions on a finite interval. For
example, one could let X1 be a � distribution on [0, 1) and then subsequently define
the Xi for i > 1 as appropriate scaled versions of the X1 distribution on intervals of
decreasing length. Note that it is not a requirement that the Xi all have the same
kind of distribution, provided they are continuous and

P
i�1 Xi converges to 1 almost

surely.

Open Question: Is it possible to find a general criterion for a probability measure on
S to ensure that BS(p) has probability 1 for all possible p?

6. Summary and conclusion

We initiated this project to determine if Je↵rey conditioning on partitions of a de-
numerably infinite set might o↵er a degree of flexibility su�cient to ameliorate the
limitative results established by G&R in the finite case. On a superficial level, the
answer turns out to be negative. For the Bayes blind spot of a prior distribution on a
denumerably infinite set X has cardinality c, is of second Baire category in the set S
of all probability distributions on X for a natural topology on S, and has measure 1
for an appropriately defined measure on S. Our proof that |BS(p)| = c holds for all
countable X and, in the case when X is finite, di↵ers from, though it is in the same
spirit as, the proof given by G&R. Further, the proof of G&R may be extended to
all countable X, and applies also to show |BS(P)| = c in the finite, though not the
infinite, case of P. However, our approach to the measure-theoretic and topological
sizes of BS(p) when X is denumerably infinite di↵ers more dramatically from that
employed by G&R in the finite case, as detailed below.

The di↵erence is particularly striking in the topological analysis, where we show that
BS(p) is (i) of second category, (ii) is dense in S, and (iii) has an empty interior, with
the topology on S derived from its `1-norm (or any `p-norm, where 1  p  1). Indeed,
it is precisely the flexibility a↵orded by probabilities defined on a denumerably infinite
set that allows us, for any q 2 BS(p), to find a member of S�BS(p) whose `1-distance
from q is arbitrarily small. So this topology does not reduce to the topology employed
by G&R in the finite case, where BS(p) was shown to be an open, dense subset of
S. If, as we suspect, separate treatments of the finite and denumerably infinite cases
are unavoidable here, this represents a somewhat unusual situation in mathematics,
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where one typically expects a unified treatment under the rubric of countability of the
relevant underlying sets.

In our measure-theoretic analysis, we constructed a measureM on the set of probability
distributions on the denumerably infinite set X such that M(BS(p)) = 1. Moreover,
a slight variation on this construction when X is finite produces a measure m such
that m(BS(p)) = 1. So we have here a more or less unified treatment for all countable
sets X. This measure m di↵ers, however, from the (normalized) Lebesgue measure
employed by G&R in their approach to the finite case.

It is particularly noteworthy that if P is any countable family of priors on a denu-
merably infinite set and BS(P) :=

T
p2P BS(p), then BS(P) continues to have the

topological and measure-theoretic sizes of the Bayes blind spot of a single prior, as
described in the preceding two paragraphs, and has the same cardinality as well. In
particular, (1) |BS(P)| = c, (2) BS(P) is of second category, is dense in S, and has
empty interior for the topology on S derived from its `1-norm, and (3) M(BS(P)) = 1.
This raises an intriguing question, which we have been unable to resolve, and with
which we conclude this paper:

Do these results strengthen the observation of G&R that any prior, however chosen,
puts severe limitations on Bayesian learning originating in that prior (after all, the
intersection of the Bayes blind spots of countably many Bayesian agents, each with
a di↵erent prior, and each employing Je↵rey conditioning, remains topologically and
measure-theoretically large)? Or do they suggest that Bayesian learning itself might
be equally culpable in allowing the existence of large Bayes blind spots (even with
access to countably many priors, the union of all the probabilities accessible from these
priors by Je↵rey conditioning remains topologically and measure-theoretically small)?

7. Notes

1. Actually, Gyenis and Rédei treat the case in which this algebra is 2X , where X is
a finite set. This involves no loss of generality, since any finite algebra A of subsets of
an arbitrary set is isomorphic to 2X for some finite set X, namely, the set of atoms of
A (Rényi, 1970, Theorem 1.6.1). It may be worth recalling here that a finite algebra
of subsets of an arbitrary set is ipso facto a sigma algebra, since every countable union
of such subsets is equal to some finite union of those subsets. Similarly, every finitely
additive probability measure on a finite algebra is countably additive since, in every
infinite sequence of pairwise disjoint sets from that algebra, all but finitely many are
equal to the empty set.

2. Gyenis and Rédei (2021, section 5.1) also analyze the Bayes blind spot from the
perspective of repeated applications of Je↵rey conditioning.

3. In fact, we are able, with no loss of generality, to restrict consideration to probability
measures defined on 2Y , where Y is denumerably infinite. See Rényi (1970, Theorem
1.6.2).

4. This simplifying assumption is made to avoid continually having to specify in various
definitions and theorems that certain probabilities are nonzero. Recall that if proba-
bilities are construed as the (linear utility) prices one is willing to pay for certain bets,
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then confirming your probabilities with the axioms of finitely additive probability (so-
called coherent probabilities) protects you against accepting a finite sequence of bets
on which you are sure to sustain a net loss. It is commonly believed that probability
measures must be strictly coherent in order to avoid accepting bets on which a net gain
is impossible, but a net loss is possible (a so-called weak Dutch book). But see Wagner
(2007) regarding a slightly modified conception of subjective probability in which mere
additivity su�ces not only to protect against sure loss, but also against vulnerability
to a weak Dutch book.

5. If E and F are partitions of a set X, then F is coarser than E if, for every E 2 E,
there exists an F 2 F such that E ✓ F (equivalently, if every F 2 F is a union of
members of E).
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Z. Gyenis and M. Rédei (2017), General properties of Bayesian learning as statistical inference

determined by conditional expectations, The Review of Symbolic Logic 10 (4), 719–737.

R. C. Je↵rey (1992), Probability and the Art of Judgment, Cambridge University Press.
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A. Rényi (1970), Foundations of Probability, Holden-Day.

B. van Fraassen (1980), Rational belief and probability kinematics, Philosophy of Science 47,
165–187.

C. Wagner (2007), The Smith-Walley interpretation of subjective probability: an appreciation,

Studia Logica 86, 343–350.

Department of Mathematics, University of Tennessee, 37996 Knoxville, TN, USA

E-mail address: mshattuc@utk.edu

Department of Mathematics, University of Tennessee, 37996 Knoxville, TN, USA

E-mail address: cwagner@tennessee.edu


