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ABSTRACT. In discussions of the power of causal explanations, one often finds a commitment to two
premises. The first is that, all else being equal, a causal explanation is powerful to the extent that
it cites the full causal history of why the effect occurred. The second is that, all else being equal,
causal explanations are powerful to the extent that the occurrence of a cause allows us to predict
the occurrence of its effect. This article proves a representation theorem showing that there is a

unique family of functions measuring a causal explanation’s power that satisfies these two premises.

1. INTRODUCTION

Several authors in philosophy of science have argued that, all else being equal, a causal explanation
is good to the extent that it provides a detailed description of the causal history of why the event
being explained (i.e., the ezplanandum) occurred. Consider the example from Railton (1981):

For any given gas, its particular state S at a time ¢ will be determined solely by
its molecular constitution, its initial condition, the deterministic laws of classical
dynamics operating upon this initial condition, and the boundary conditions to
which it has been subject. Therefore, the ideal explanatory text for its being in
state S at time ¢ [...] will be a complete causal history of the time evolution of that
gas (p. 250).

The idea being expressed here is that the ideal causal explanation of why a gas ends up in state
S at a time t is the full causal history of the gas’ evolution from some state S’, at some previous
time ¢/, to its state S at t. From this exemplar of an ideal causal explanation, one can make the
further inference that causal explanations in general are good or powerful to the extent that they
approximate this ideal. One finds a similar idea expressed by Salmon (1984), who holds that in many
cases, good explanation “involves the placing of the explanandum in a causal network consisting
of relevant causal interactions that occurred previously and suitable causal processes that connect
them to the fact-to-be-explained” (p. 269). Similarly, Lewis (1986) defends the thesis that “to
explain an event is to provide some information about its causal history” (p. 217). Keas (2018) also

defends the idea that, all else being equal, scientific explanations are good to the extent that they
1
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trace the causal history of an event back as far as possible, calling this feature of an explanation
“causal history depth.”

On the other hand, there is also widespread agreement in the literature that, all else being equal,
explanations are powerful to the extent that learning the facts that explain an explanandum would
allow us to predict the occurrence the explanandum, if we didn’t know that it had occurred. This
assumption is made explicit in attempts to formalize explanatory power due to Schupbach and
Sprenger (2011) and Crupi and Tentori (2012). Moreover, Eva and Stern (2019) provide a specific
formalization of the explanatory power of causal explanations by assuming that, all else being equal,
a causal explanation is powerful to the extent that learning that an intervention has brought about
a particular cause of an event would allow us to predict the occurrence of that event. Let us call
this feature of a causal explanation its “causal statistical relevance.”

These two putative good-making features of a causal explanation can be in tension with one

another. Consider the following example, due to Eva and Stern (2019):

Ettie: Ettie’s Dad went to see the local football team play in a crucial end of season
match. Unfortunately, Ettie was busy on the day of the game, so she couldn’t go with
him. On her way home, she read a newspaper headline saying that the local team
had lost. When she got home, she asked him ‘Dad, why did we lose?’, to which her
witty father replied ‘because we were losing by fifty points when the fourth quarter
started’. Understandably, Ettie still wanted to better understand why her team lost,
so she asked her Dad why they were down by so much entering the fourth quarter.
He replied that their best player was injured in the opening minutes of the game,

and, finally, Ettie’s curiosity ran out (p. 1047-8).

When Ettie’s father explains the team’s loss by their being down fifty points at the start of the fourth
quarter, he provides an explanation with high causal statistical relevance; given an intervention on
the game such that the local team is down fifty points at the end of the fourth quarter, it is very
likely that they will lose. However, Ettie balks at the explanation because it has very low causal
history depth; we don’t get much of a story as to why the local team lost. Indeed, it is only once
Ettie’s father cites more distant causal factors contributing to the team’s loss that Ettie’s curiosity
is satisfied.

The goal of this paper is to formalize the desiderata that an explanation is good to the extent that
it possesses causal history depth and causal statistical relevance, and then prove a representation
theorem showing that a specific family of functions provides a measure of causal explanatory power
that uniquely satisfies both causal history depth and causal statistical relevance, alongside some
minimal ancillary desiderata. My formalization uses the Bayesian network approach to causal
representation and the interventional calculus found in the work of Pearl (2000). The result shows
that we can mathematically represent a notion of causal explanatory power in which the overall
quality of a causal explanation involves a trade-off between causal history depth and causal statistical

relevance.
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2. FORMAL PRELIMINARIES

2.1. BAYESIAN NETWORKS. We begin with a probability space P = (2, ¥, Pr), where (2 is a sample
space of primitive possibilities, ¥ is an algebra on Q (i.e., a set of subsets closed under union,
complement, and intersection), and Pr is a probability distribution on 3. A random variable
V : 2 — Ry is any function from the sample space into some range. For the purposes of this paper,
I consider only random variables with finite ranges. A random variable V' is said to be measurable
with respect to a probability space P = (Q, %, Pr) if and only if, for every v € Ry, V~!(v) € X.
This allows us to assign a probability to the variable taking any value in its range, using the formula
Pr(V =v) =Pr(V1(v)).

Moving to the Bayesian network approach to the representation of the causal structure of a

data-generating processs, I begin with the following definition:

Definition 2.1. A causal graph is a pair G = (V,R), where V is a set of random variables that
are each measurable with respect to a common probability space P = (€, .4, Pr), and R is an acyclic
set of ordered pairs of elements of V, usually represented pictorially as arrows from one random
variable to another.

The fundamental idea behind the Bayes nets approach to representing causal structure is that if
there is a chain of arrows from one variable to another, then the first variable is causally relevant
to the second. So, for instance, in an epidemiological causal graph there might be a chain of arrows
from a variable representing whether or not a patient smokes to a variable representing whether or
not the patient develops lung cancer, thus encoding the claim that smoking causes lung cancer.

If there is an arrow from one variable to another, we say that the first variable is parent of
the second, and the second variable is a child of the first. We can then define the ancestor and
descendant relations as the transitive closure of the parent and child relations, respectively. We

are now in a position to define the all-important Markov condition:

Definition 2.2. A probability distribution Pr is Markov with respect to a graph G = (V,R),
where all variables in V' are measurable with respect to some probability space P = (Q, A, Pr), if
and only if, according to Pr, each X C V is independent of any subset of the set of non-descendants

of X in G, conditional on its parents in G.

The Markov condition ensures that once we know the value taken by the direct causes of some
variable set X, information about the values taken by any non-effects of X are uninformative with
respect to the probability that X takes any value. This reflects the intuitive condition that once we
know the direct causes of X, information about more distant causes of X, or about other phenomena
not causally related to X, should not be relevant for making predictions about X.

Finally, we are in a position to define a Bayesian network:

Definition 2.3. A Bayesian network (or, “Bayes net”) is a pair (G, Pr) such that G is a graph
in which all variables in V are measurable with respect to some probability space P = (2, A4, Pr),
no variable is an ancestor of itself (i.e., the graph is acyclic), and Pr is Markov to G.

The core idea of the theory of causal Bayes nets is that, for the reasons given above, the causal

structure of any system can be represented as a Bayes net (G, Pr). To illustrate, consider the simple
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causal graph X — Y — Z <« W. If this graph can be paired with the probability distribution Pr
in order to form a Bayes net, then it must be the case that, according to Pr, X is unconditionally
independent of W, Y is independent of W conditional on X, Z is independent of X conditional
on Y and W, and W is unconditionally independent of X and Y. These independence claims are
individually necessary and jointly sufficient for Pr being Markov to the graph.

2.2. INTERVENTION DISTRIBUTIONS. Representing the causal structure of a system as a Bayes
net allows us to calculate the probability distribution over a variable in that Bayes net, given an
intervention on the system. An intervention is an exogenous setting of the values of one or more
variables in the Bayes net that does not depend on values taken by any of the other variables.
To see how this works, let us begin with a result from Pearl (2000, p. 15-16), who proves that if
V ={V1,...,Vin} is the set of variables in a Bayes net and if each variable in V has a corresponding
value v1, ..., vy, and if par(V;) is the vector of values taken by the set of parents of a variable V; in
the Bayes net, then the probability Pr(vy,...,v,,) can be factorized as follows.

m

(2.1) Pr(vi,...,vm) = [ [ Pr(vi| par(Vi))
=1

Next, suppose that we intervene on a set of variables X C V), setting it to the set of values x. Pearl
(2000, p. 30) and Spirtes et al. (2000, p. 51) show that in a Bayes net, the interventional conditional

probability Pr(vi,...,v,|do(x)) can be obtained using the following truncated factorization:
(2.2) Pr(vy,...,vpldo(x)) = HPrdO(X) (vi| par(V5))
i=1

Where each probability Prg,x)(vi| par(V;)) is defined as follows:

Pr(v;|par(V;)) ifV; ¢X
(2.3) Pryo(x) (vi| par(Vi)) = ¢ 1 if V; € X and v; consistent with x

0 otherwise

Huang and Valtorta (2006) show that this procedure can be used to calculate the probability dis-
tribution over any combination of variable values in a Bayes net, given any intervention.

A less formal account of the connection between Bayes nets and interventional conditional proba-
bility distributions can be stated as follows. Let (G, Pr) be a Bayes net. If we intervene on some set
of variables X C V), then we make it the case that the values of the variables in X no longer depend
on their parents, but instead depend solely on the intervention. This can be represented graphically
by a sub-graph of (G, Pr) in which all arrows into all variables in X are removed. This sub-graph is
called the pruned sub-graph of (G, Pr) for an intervention on X. Spirtes, Glymour, and Scheines
(2000) prove that Prgox) will be Markov to this pruned sub-graph of (G, Pr), so that we can cal-
culate the joint probability distribution over the pruned sub-graph created by any intervention on
any set of variables X, using Eq. 2.2. This calculation allows us to determine which types of events
represented in a Bayes net cause other types of events represented in the same Bayes net, since we
can use interventions both to change the values of variables and to hold selected variables fixed at

their actual values.
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2.3. CAUSAL DISTANCE. In the introduction, I introduced the desideratum that, all else being
equal, the more that a causal explanation cites the full causal history of an explanandum, tracing
that history further back in a causal chain, the more powerful that causal explanation is. So, we
will need to define a measure of causal history depth, in the context of a given Bayes net. Let us
begin with some graph-theoretic terminology.

Definition 2.4. For any two variables X and Y in a graph G = (V,R), a directed path from X
to Y is a set of edges {R1, ..., Ry} such that:

i. Each R; in the set is an element of R,
ii. Ri = (X,V}), where V; € V,
iii. R, = (V,Y), where V, € V, and
iv. there exists a sequence of distinct variables (V7,. .., V,41) such that for each R; in the path,
Ri = (Vi,Vig1).

Pictorially, there is a directed path from X to Y in a graph if one can follow the edges of the graph
to “travel” from X to Y, moving with the direction of the edges, without passing through the same
variable more than once. To illustrate, in the graph X — Y — Z < W, there is a directed path
from X to Z, but not from X to W.

Using the cardinalities of directed paths between variables, we define a proximity measure measure

on the variables in a graph, in two steps.

Definition 2.5. For any causal graph G = (V,R), the causal distance é5(X,Y) between two
variables X € V and Y € V is the cardinality of the directed path from X to Y with minimal
cardinality, if such a directed path exists. If no such path exists, then 6g(X,Y) = 0.

Definition 2.6. For any causal graph G = (V,R), the normalized causal proximity 7¢(X,Y)
takes as its arguments any two sets X C V and Y C V, and is defined as follows:

max{dg(V;,V;) : Vi, V; € V} —max{ig(X,Y): X e X, Y € Y}

X, Y) =
(X, Y) ma{0g(Vi, V) : Vi, V; € V}

In other words, 7g(X,Y) returns the normalized difference between the length of the longest shortest
directed path between any two variables in the graph G and the length of the longest shortest
path between a variable in X and a variable in Y. The result is a measure of proximity that
approaches one as the longest shortest path between a variable in X and a variable in Y gets
shorter in length, and approaches zero as the longest shortest path between a variable in X and a
variable in Y becomes longer. To illustrate, in the graph X - Y — Z «+ W, ng({X},{W}) =0,
mg({Y,W},{Z}) = .5, and ng({X,Y},{Z}) = 0. As it will occasionally be more convenient to
speak in terms of normalized causal distance rather than normalized causal proximity, we define a

normalized causal distance function Ag(X,Y):

Definition 2.7. For any causal graph G = (V,R), the normalized causal distance Ag(X,Y) is
given by the equation Ag(X,Y) =1—7g(X,Y).
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3. THE REPRESENTATION THEOREM

In this primary section of the paper, I make good on my promise in the introduction to state a
set of desiderata that formalize those cases in which explanatory power requires a trade-off between
causal history depth and predictive power, and then prove that a specific family of measures uniquely
satisfies these desiderata. In several respects, my proposed desiderata are adapted from those
proposed by Schupbach and Sprenger (2011), but with adaptations made so as to incorporate causal
history depth and intervention distributions, neither of which Schupbach and Sprenger consider.

I begin by stating three ancillary desiderata for such a measure. The first is as follows:

D1 (Formal Structure). For any Bayes net (G, Pr) where the graph G = (V,R)
is such that each variable in V' is measurable with respect to the probability space
P = (Q,%,Pr), 6pg is a function from any two sets of values e and ¢ of any two
sets of variables E C V and C C V to a real number 6p g(e,c) € [—1,1] that can be
represented as a function of Pr(e|do(c)), Pr(e), and 7g(C, E).

This desideratum ensures that 6p g takes as input: i) the fact that a set of effect variables E takes
a set of values e, and ii) the fact that a set of causal variables C takes a set of values ¢, and returns
a value between —1 and 1 representing the power with which the fact that C = c explains the fact
that E = e. Moreover, this value is determined solely by the following quantities: i) the probability
that E = e given an intervention setting C to c, ii) the marginal probability that E = e, and iii)
the normalized causal proximity between C and E.

Second, I introduce an additional formal constraint:

D2 (Normality and Form). The function 6p g(e, c) is a ratio of two functions of
Pr(e|do(c)), Pr(e), and ng(C, E), each of which are homogeneous in their arguments
to lowest possible degree k > 1.

The requirement that the function be a ratio of two functions with the same arguments ensures
that it is normalized. I follow Schupbach and Sprenger in holding that requiring that each function
be homogenous in its arguments to lowest possible degree k > 1 ensures that their measure of
explanatory power is maximally simple, in a well-defined sense advocated by Carnap (1950) and
Kemeny and Oppenheim (1952). Note that a function f is homogeneous in its arguments x1, ..., z,
to degree k if for all v € R, f(yz1,...,v2n) = Y¥f(21, ..., 20).

Third, I introduce a desideratum aimed at capturing the idea that there is a specific zero point

for any measure of explanatory power:
D3 (Neutrality). If Pr(e|do(c)) = Pr(e), then 6p g(e,c) = 0.

Neutrality ensures that when an intervention setting causal variables to a particular set of values
provides no information about the explanandum effect, causal explanatory power is zero.

With these three ancillary desiderata established, I move now to a formalization of causal history
depth:

D4 (Causal History Depth). Holding fixed the value of Pr(e|do(c)) and Pr(e),
if Pr(e|do(c)) > Pr(e), then 6pg(e, c) is strictly decreasing in 7g(C,E), and if
Pr(e|do(c)) < Pr(e), then 6p g(e, c) is strictly increasing in 7g(C, E).
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This desideratum encodes the idea that, all else being equal, if an intervention setting C to ¢
is positively statistically relevant to the event denoted by E = e, then C = c is explanatorily
powerful to the extent that it cites causes that are more causally distant (and so, less proximal)
with respect to the variables in E. Moreover, it introduces the idea that if an intervention setting
C to c is negatively statistically relevant to the event denoted by E = e, then explanatory power is
an increasing function of causal history depth (and so, a decreasing function of causal proximity).
This reflects the assumption that attempted explanations that cite factors that both make the event
being explained less likely and are causally far removed from the event being explained are especially
bad explanations.
Fifth and finally, I introduce a formalization of causal statistical relevance:

D5 (Causal Statistical Relevance). Holding fixed the value of ng(C,E), the
greater the degree of causal statistical relevance between e and c¢ (defined here as
the difference Pr(e|do(c)) — Pr(e)), the greater the value of 6p g(e,c).

This desideratum says that the more an intervention such that C = ¢ makes it likely that E = e,
the greater the explanatory power of ¢ with respect to e.

These five desiderata together determine the form of a more general measure of causal explanatory
power, as established by the following representation theorem (see appendix for a proof of this and
all subsequent facts and propositions):

Proposition 3.1. Any measure 0p g(e, c) that satisfies D1-D5 has the form:

Pr(e|do(c)) — Pr(e)
Pr(e|do(c)) + Pr(e) + ang(C,E)

Opgle,c)= where o > 0.

The equation for 6p g(e, c) can be re-written in terms of normalized causal distance as follows:

Pr(e|do(c)) — Pr(e)
Pr(eldo(c)) + Pr(e) + a[l — Ag(C, E)]

This result raises the immediate question of the significance of the coefficient .. For a given Bayes

where a > 0.

(3.1) bpgle,c) =

net (G, Pr) with variable settings C = ¢ and E = e, let ¢p g be a function defined as follows:

rsies)
(3'2) ¢P,Q(a; e,c) a;fg(c e)

m‘
If we take the absolute value of the partial derivative of p g with respect to any argument to
measure the importance of that argument to the overall measure of causal explanatory power, then
¢p,g measures the relative importance of causal proximity/distance, as compared to the statistical

relevance of an intervention setting C to c, for a fixed value of Pr(e).! The following fact about

¢p,g holds:

Fact 3.2. For any Bayes net (G,Pr) and any Pr(e|do(c)), Pr(e), and ng(C, E), if Pr(e|do(c)) #
Pr(e), then %&Meﬁ) > 0.

IThere is a slight idealization at work here. In practice, 7g(C, E) can only take rational values in the unit interval,
and so the partial derivative % is not really well-defined. However, for the purpose of calculating ¢p g, we

treat mg(C, E) as though it can take all real values in the unit interval.
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Thus, increases in « result in increases in the relative importance of proximity /distance, as compared
to causal statistical relevance, for the measure of causal explanatory power, whenever there is some
causal statistical relevance, either positive or negative, between the explanans and the explanandum.

To illustrate how this measure works, let us return to Eva and Stern’s Ettie example:

Example 3.3. Consider the simple causal graph X — Y — Z, where X is a binary variable
denoting whether or not the team’s best player is injured in the first half of the match (0 if not
injured, 1 if injured), Y is a binary variable denoting whether or not the home team is down by
more than thirty points at the start of the fourth quarter (0 if they are not, 1 if they are), and Z
is a binary variable denoting whether or not the home team loses (0 if they lose, 1 if they do not
lose). Suppose that Pr(Z = 0|do(X = 1)) = .8, Pr(Z = 0|do(Y = 1)) = .99, and Pr(Z = 0) = .3.
We know that Ag({X},{Z}) = 1 and Ag({Y},{Z}) = .5. It follows that if o > .456, then
Opg(Z=0,X=1)>0pg(Z=0Y =1).

Thus, for suitably large o (and so, suitably large emphasis on causal history depth as a determinant
of causal explanatory power), my proposed measure of causal explanatory power can deliver verdicts
in keeping with Ettie’s intuitions in this vignette.

One might object at this stage that the formalization of causal history depth presented here only
tracks the degree to which an explanation cites a distant cause relative to the explanandum effect,
and that this is distinct from the desideratum that an explanation fills in the full causal history
of the events leading up to the explanandum effect. In response, I prove a result showing that,
necessarily, the function derived above will deliver the result that the explanatory power of a causal
explanation is always positively associated with the extent to which that explanation cites the full
causal history of an explanandum effect.

Consider any Bayes net G = (V,R) in which all variables are measurable with respect to some
probability space P. Let E be some subset of V, and let Parg(E) denote the parents of the variables
in E according to G, let Pari(E) denote the parents of the parents of the variables in E according
to G, and so on. Let =(n) = |J;_, Par;(E), and let {(n) be a set of values taken by the variables in
=(n). The following proposition holds:

Proposition 3.4. For alln > 0, if Par,(E) is non-empty, Par,(E) # Par,_1(E), and ENZE(n) = 0,
then 6p g(e, §(n)) > bpg(e,{(n —1)).

This ensures that, for any set of variables E, we can generate a more powerful explanation of why E
takes the value that it does by accounting for more of the causal history of the event represented by
E = e. This shows that when we stipulate as desiderata for a measure of causal explanatory power
my formalizations of causal history depth and causal statistical relevance, the measure captures the
idea that, all else being equal, ideal causal explanation involves a maximally perspicuous filling-in
of the causal chain of events resulting in the explanandum effect, in keeping with the motivating

intuition of this paper.

4. CONCLUSION

I conclude by first noting that my goal in this paper has not been to give a formal measure of

causal explanatory power that delivers intuitive judgements in all applicable circumstances. Indeed,
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I take it that no all-things-considered quantitative measure of explanatory power could possibly
comport with our intuitions or scientific practices in all cases.? Instead, my aim has been to
examine specifically those cases in which the power of a causal explanation is determined by a
trade-off between causal history depth and causal statistical relevance.

Even with this qualification, it could be argued that there is no context in which explanatory
power is entirely determined by a trade-off between these two properties, and that instead there is
always a wide array of factors that determine causal explanatory power in any given context, such
that the concept of explanatory power itself never admits of formal representation. Against this line
of argument, I hold that in some cases, the sole primary determinants of causal explanatory power
are causal history depth and causal statistical relevance. In these cases, my measure amounts to
an explication of explanatory power, in the sense of Carnap (1950). That is, it takes an inherently
vague, imprecise notion from the real world and renders it mathematically tractable, while still
capturing something close enough to the actual determinants of our judgements of explanatory
power.

A further avenue for future work would be an empirical investigation of the conditions under
which human beings actually trade-off causal distance against statistical relevance when assessing
the explanatory virtues of causal explanations. Having found these conditions, we could then
investigate the dynamics of these trade-offs, and the extent to which my proposed measure actually
predicts human judgments. From a theoretical point of view, there is also more work to be done
examining the various properties and implications of the measure of causal explanatory power
proposed here, and to provide a more in-depth comparison with alternative measures of causal
explanatory power, most notably that provided in Eva and Stern (2019).

2See Lange (forthcoming) for an argument to this effect.
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APPENDIX A. PROOFS AND DEMONSTRATIONS
A.1. PrROOF OF PRropr. 3.1.

Proof. For the sake of concision, let x = Pr(e|do(c)), let y = Pr(e), and let z = ng(C, E). By D1,
a measure of causal explanatory power must be a function f(z,y,z). We begin by searching for a

function that is homogenous in its arguments to degree 1, in keeping with D2. Such a function has

the form
axr + by + cz

Al Y, 2) = ——————.
(A1) f.y.2) ax + by + cz
D3 requires that the numerator is zero whenever x = y. This is achieved by letting a = —b and
c =0, so that we have:

a(z —y)
A2 Y, 2) = ——————.
(4.2) J(@,9.2) axr + by + cz
Letting x = 1 gives us:

a— ay
A3 Y, 7)) = ———.
(A-3) f.y.2) a+by+cz

By D1, D4 and D5, as y — 0 and z — 0, it must be the case that f(z,y,z) — 1. This requires
that a = a, so that we have:
a(z —y)
A4 T,y,2) = ———.
(A-4) f(,9,2) ar + by +cz
Next, let x = 0 so that we have:

A5 .’E, ’Z = = .
(A.5) fz,y,2) byt o
By D1, D4 and D5, as y — 1 and z — 0, it must be the case that f(z,y,z) — —1. This requires

that b = a, so that we have:

a(z —y)
A6 , Y, = -
(4.6) @)= s
It remains to determine the sign of ¢ and ¢. Let x = 1 and y = 0, so that
a
A7 = .
(A1) flays) =

If ¢ <0, then f(z,y,2) > 1 for positive z, in violation of D1. Thus, ¢ > 0. Moreover, it must be
the case that ¢ > 0 for D4 to hold in general. Next, let z = 0 and y = 1, so that:

(A.8) f(xvya Z) =

If a <0, then f(z,y,2) < —1 for all ¢ > 0, in violation of D1. Thus, a > 0. Moreover, it must be

the case that a > 0 for D5 to hold in general. Letting o = g we arrive at the function:

—a

a+écz

T —y
A9 __ 7y
(A.9) fz,y,2) R

Pr(e|do(c)) — Pr(e)

(A.10) Opgle,c) = Pr(e|do(c)) + Pr(e) + ang(C, E)

where a > 0.
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A.2. DEMONSTRATION OF FAcCT 3.2.

Proof. We proceed by expanding the function ¢p g:
‘ 00p g(e,c)

org(C,E
(A1) dpglase,c) = —ZOB L

IPr(eee) |

—a[Pr(e|do(c))—Pr(e)]

(A.12) ppglase c) = 2Pr(e)+arg(C,E)

} (Pr(e|do(c))+Pr(e)+amg(C,E))?

} (Pr(e|do(c))+Pr(e)+amg(C,E))? ‘
|

Since all terms are positive, if Pr(e|do(c)) > Pr(e), then we have
a[Pr(e|do(c)) — Pr(e)]

(A.13) 9P6(®€.¢) = 5 Pile) + arg(C.E) °

in which case

dopglase,c) _ 2Pr(e)[Pr(eldo(c) - Pr(e)]
do (2Pr(e) + ang(C,E))?

If Pr(e|do(c)) < Pr(e), then we have

(A.14)

—a[Pr(eldo(c)) — Pr(e)]

(A.15) dpglaie,c) = 2Pr(e) +ang(C,E)

in which case

dopg(ase,c)  —2Pr(e)[Pr(e|ldo(c)) — Pr(e)]
do ~ (2Pr(e) + amg(C,E))?

Thus, the fact holds in either case.

(A.16)

A.3. PROOF OF PROP. 3.4.

Proof. Since Par,(E) # Par,_1(E), we know that at there is at least one X € Par,(E) such that
dg(X,E) > dg(Y,E) for any E € E and any Y € Par,,_1(E). This entails that

max{dg(X, E) : X € Par,(E), F € E} > max{dg(X,E) : X € Par,_1(E),E € E},

which entails in turn that

max{dg(X,E): X € E(n),E € E} > max{dg(X,F): X € E

(
and so mg(E(n),E) < mg(E(n — 1)
Eq 2.3 that for any e, Pr(e|do(&(n)

Pr(e|do(¢(n))) — Pr(e)
Pr(eldo(¢(n))) + Pr(e) + ang(Z(n), B)
Pr(eldo(¢(n — 1)) - Pr(e)

0p g(E,Z(n)) =

Pr(e|do(&{(n —1))) + Pr(e) + ang(E(n — 1), E)

n—1),E € EY},

= O0pg(E,

E(n—1)).

,E). Since E and Z(n) have empty intersection, we know from
)) = Pr(e| parg(E)) for any n, and so, for n > 0, Pr(e|do(£{(n)))
Pr(e|do(§(n —1))) = Pr(e|pary(E)). Together, this entails that, for any «,

O



