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Abstract

Though the Price equation in itself is simply a statistical identity,
biologists have often adopted a “causal interpretation” of the equa-
tion, in the sense that its component terms have been supposed to
correspond to distinct causal processes in evolution, such as natural
selection and transmission bias. In this paper we bring the issue of
causal interpretation to the fore, by studying the conditions under
which it is legitimate to read causal meaning into the Price equation.
We argue that only if substantive assumptions about causal structure
are made, which can be represented in the form of a causal model,
can the component terms of the Price equation be interpreted as
causally meaningful. We conclude with a reflection on the epistemic
uses of the Price equation, emphasizing the difference between the
description, explanation and prediction of evolutionary change.
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1 Introduction

The Price equation is a simple statistical identity that can be used to de-
scribe the change in gene (or mean phenotype) frequency in a population
over a single generation. Evolutionary biologists have been interested in the
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Price equation for three main reasons. Firstly, the equation provides a quite
general description of an evolving population, that rests on minimal assump-
tions. Secondly, the equation appears to isolate the effect of natural selection
on the total evolutionary change, by partitioning the change into two com-
ponents (“Cov” and “Exp”), which are often ascribed to “natural selection”
and “transmission bias” respectively ([17], [19], [4]). Thirdly, the equation
lends itself naturally to a description of multi-level selection, as Price [18§]
himself showed, for it admits of a simple hierarchical expansion. This point
was elaborated by Hamilton [7], who wrote that the Price equation yields a
“formal separation of levels of selection”; and the equation continues to be
used in contemporary work on multi-level selection.

Considered simply as a piece of abstract mathematics, the Price equation
is of course beyond reproach. However, the biological interest of the equa-
tion stems from interpreting it in a certain way. Typically, biologists adopt
a causal interpretation of the Price equation, that is, they take its compo-
nents to correspond to distinct causal processes in evolution. Both the idea
that the “Cov” and “Exp” terms in the simple Price equation correspond
to natural selection and transmission bias, and the idea that the terms in
the hierarchically-expanded Price equation correspond to distinct levels of
selection, are examples of such causal interpretations. It is important to re-
alize that any causal interpretation of the Price equation goes beyond the
mathematics itself.

Our aim in this paper is to bring the issue of causal interpretation to the
fore. While not disputing the usefulness of the Price equation for certain
purposes, we argue that confusion has arisen from a failure to think carefully
about how statistical formulae relate to causality. Sections 2 and 3 prepare
the ground, by explaining how the commonly-assumed causal interpretations
of the simple and hierarchically-expanded Price equations, respectively, are
less straightforward than they appear. Section 4 discusses the general rela-
tion between causal assumptions and statistical descriptions, introduces the
notion of a causal model, and examines conditions under which some forms
of the Price equation can be interpreted causally. Section 5 argues that mod-
els and the Price equation have different theoretical natures and epistemic
purposes, and suggests that a failure to recognise this distinction has led to
confusion regarding causal interpretations of the Price equation. Section 6
concludes.



2 Selection and transmission bias

2.1 The simple Price equation

We adopt a standard formulation of the Price equation. A parent population
contains n individuals, indexed by i, who vary from one another genetically.
We are interested in the population-wide frequency of a particular allele at a
given genetic locus. The “genetic value” of the ith organism, z;, is defined as
the frequency of the allele within that individual (=0, 1/2 or 1 for diploids).
The average genetic value is z = % > %, which equals the allele’s population-
wide frequency. A second population, of size n/, contains offspring of the
individuals in the parent population. The fitness of the ith individual, w;, is
defined as the number of successful gametes it produces. Average fitness is
w = %Zz w;. The frequency of the allele among the successful gametes of
the ¢th individual is 2. The transmission bias of the ith individual is defined
as 9; = z, —z;. Note that a non-zero value of §; may reflect mutation, gametic
selection, or random genetic drift. Average transmission bias is 6 = %ZZ ;.

The quantity of interest is AZ, the change in allele frequency between the
parent and offspring populations. Following Price [17] (with a slight change
of notation), this can be expressed as:

AZ = Cov(w; /W, z;) + Exp(w;0;)/w (1)

where “Cov” and “Exp” denote covariance and expectation respectively,
taken over all the whole population. Note that the “Cov” term is the co-
variance of relative fitness w; /w with genetic value z;; while the “Exp” term
is the expectation of the product of relative fitness and transmission bias 9;.
(The term Exp(w;d;) could equally be written w;d;, but given its popularity
in the literature we adopt the former notation.) We refer to equation (1) as
the simple Price equation.

One under-appreciated issue in the derivation of (1) concerns the value of
0; for an individual who leaves no successful gametes, i.e. with fitness w; = 0.
Price [17] stipulated that if w; = 0 then ¢; = 0, but this is of course a conven-
tion. Other conventions are also possible. For example, we could stipulate
that if w; = 0 then §; = 8, i.e. an individual with no offspring is assigned the
average transmission bias in the population. A third possibility is to define
0; as the transmission bias the individual would have had if they had left
offspring — a quantity that is of course not directly observable (though ¢ may



be a good proxy for it). Let us call these conventions A, B and C respec-
tively. Note that the simple Price equation holds true whichever convention
we adopt, since ¢; is multiplied by w; in equation (1). This explains why the
issue is rarely discussed, however for certain purposes it is important.

2.2 Causal interpretation: two issues

What then of the idea that the two RHS terms of equation (1) correspond to
natural selection and transmission bias respectively? For all its popularity,
this interpretation is questionable, for two distinct reasons. The first is the
familiar point that statistical association between two variables does not
imply that one causes the other. So a non-zero value of Cov(w;,z;), in a
given population, does not mean that the differences in w are caused by
differences in z; it is equally possible that w and z are joint effects of a
common cause, for example. Now as some authors use the term, natural
selection on a gene (or trait) means that genetic (or trait) differences must
cause fitness differences (this is what Sober [23] calls “selection for”). On this
usage, a non-zero value of Cov(w;, ;) does not imply that natural selection
is occurring; therefore equation (1) itself, in the absence of further causal
assumptions, does not isolate the portion of the total evolutionary change
that is due to natural selection on z.

The second reason why the causal interpretation of equation (1) is ques-
tionable is much less familiar, and is independent of the first reason. The
point is this. Suppose we define natural selection to mean that a gene (or
trait) is systematically associated with fitness, irrespective of whether the for-
mer causes the latter — that is, we employ what Sober [23] calls “selection of”.
It then follows by definition that whenever Cov(w;, 2;) # 0, there is selection
on z. But even so, it does not immediately follow that equation (1) partitions
the total change into components due to natural selection and transmission
bias. For in general, when an effect is the result of multiple causal factors,
there is no a priori reason why the factors’ respective contributions should be
additively separable. So although natural selection in the sense of “selection
of” (i.e. differential reproduction), and biased transmission (i.e. mutation,
gametic selection, and random drift) are certainly distinct causal factors,
both capable of affecting evolutionary change, it is not necessarily possible
to express AZ as the sum of components corresponding to each.

In this section, we focus on the second reason for questioning the causal
interpretation of equation (1), setting aside the first reason (which we return
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to later). Therefore, in accordance with some though not all of the Price
equation literature, we employ the “selection of” concept throughout this
section. That is, we take it as true by definition that if Cov(w;, z;) # 0, then
natural selection is occurring (though not vice-versa, for z could be subject
to stabilizing selection even if Cov(w;, z;) = 0.) And we assume that natural
selection, in this sense, and biased transmission are the only factors that
affect AZ. Our question is: can we legitimately regard (1) as partitioning
the total change AZ into components attributable to natural selection and
biased transmission respectively, as many authors believe?

2.3 Isolating the difference made by natural selection

One reason for doubting that equation (1) achieves this is the fact that the
variable w; appears in both RHS terms (as noted by [3], [22], [12]). That is,
the fitness differences in the population affect the “Exp” term as well as the
“Cov” term, so intuitively the latter term does not seem to isolate the effect
of natural selection on AZ.

This worry can be fleshed out as follows. Intuitively, natural selection (i.e.
differential reproduction) and biased transmission (i.e. mutation, gametic
selection, and random drift) represent distinct causal factors, both capable
of affecting the total evolutionary change. If this is right, then presumably it
should be possible, in principle, to alter the strength of natural selection in a
population, or to eliminate it altogether, while leaving the transmission bias
unchanged, and vice-versa. But to eliminate selection, or to alter its strength,
involves changing the fitness values of some individuals in the population,
which will potentially affect both RHS terms of equation (1). So how can it
be correct to regard equation (1) as isolating the effects of natural selection
and transmission bias on AZ?

Partly in response to this worry, an alternative form of the Price equation
is sometimes used in the literature ([3], [4], [22], [12], [9]). To derive this al-
ternative form, note that the “Exp” term of equation (1) can be decomposed
as follows:

Exp(w;6;)/w = Cov(w; /W, &;) + & (2)

Substituting (2) into (1) and adding the covariance terms, using the definition
2l = z; + 0;, yields:

AZ = Cov(w; /W, 2}) + 6 (3)



Equation (3) expresses the total change as the sum of the covariance be-
tween an individual’s relative fitness and the frequency of the allele among
their successful gametes, plus the average transmission bias in the popula-
tion (unweighted by fitness). Importantly, the partition in equation (2), and
therefore also (3), is sensitive to the convention adopted about the value of
9; when w; = 0. Depending on the convention adopted, equation (3) will
divide up AZ in different ways (except in the case where w; > 0 for all 7).

Some authors suggest that equation (3) better isolates the effect of natural
selection on the total change, so admits of a more natural causal interpre-
tation than the simple Price equation (1) (see [22], [12]). For note that in
equation (3), w; does not appear in the second term &, which suggests that
that term reflects transmission bias alone, while the “Cov” term captures
all the effects of differential fitness. However, against this argument, other
authors have observed that since the “Cov” term in (3) now contains z, it
is not independent of transmission bias, unlike the “Cov” term in equation
(1) (see [5], [6], [9], [26]). So in one respect equation (1) yields a “cleaner”
partition of AZ into two, while in another respect equation (3) does better.

This suggests that the method of inspecting terms in the Price equation
then trying to deduce their causal meaning is fraught with difficulty. A more
systematic approach is needed. One promising avenue is to use counterfactual
reasoning, a widely-used technique for assessing causal relations (see [11],
[16]). Suppose that the evolutionary change in a given population is AZ, and
that natural selection and biased transmission are the only causal factors at
work. We then ask what the change would have been if there had been no
transmission bias, but everything else had remained the same, from which
we can deduce the difference made by transmission bias to AZ. Similarly,
by hypothetically eliminating natural selection while keeping everything else
fixed, we can deduce the difference made by selection to AZ.

To implement this for transmission bias, we simply set the value of §; to
zero for each individual, while leaving unchanged the values of n, n’, z;, and
w;. This amounts to setting the “Exp” term of equation (1) to zero while
leaving the “Cov” term unchanged. So the difference made by transmission
bias to the actual change AZ is equal to Exp(w;d;)/w.

The corresponding argument for selection is trickier. For it is not entirely
obvious what it means to hypothetically eliminate selection from the popu-
lation. Clearly, it requires that Cov(w;, z;) should go to zero, but of course
there are many ways to make this term zero. In accordance with the stan-
dard logic of counterfactuals (see [11]), to assess what would have happened
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in the absence of selection, we need to make the minimum modification to
the actual state of the population that eliminates selection. Intuitively, this
involves eliminating the fitness differences between individuals while leaving
everything else unchanged. So we need to equalize the w; for all i, while
holding z;, d;, n and n’ fixed at their actual values. Now fixity of n and n’
imply fixity of w, so each w; must be set equal to w. These changes amount
to setting the “Cov” term of (3) to zero, while leaving the § term unchanged.
So the difference made by natural selection to the actual change AZ is equal
to Cov(w;/w, 2}).

Note that in principle, there are other hypothetical modifications that
would also make Cov(w;, z;) go to zero. (For example, we could leave w;
unchanged for each i, but suitably alter the joint distribution of w and z.)
However all such modifications are either more complicated than the one
described in the paragraph above, as they involve changing more than one
variable, or else fail to eliminate the fitness differences in the population,
so do not necessarily eliminate selection on z. (Recall that Cov(w;,z;) =
0 is compatible with there being stabilizing selection on z.) Therefore, the
simplest modification that eliminates natural selection on z is to set w; equal
to w while leaving all other variables unchanged.

Three important points should be noted here. Firstly, our argument that
this is the simplest way to eliminate natural selection implicitly rests on a
causal assumption. It assumes that, in the actual population, an individual’s
fitness w; does not causally influence its genetic value z; nor its transmission
bias 9;. For otherwise, equalizing the w; while holding z; and ¢; fixed would
require us to modify the causal pathways leading from w; to z;, and from
w; to 9;, so would not constitute the minimum modification that eliminates
natural selection. Biologically, this assumption is perfectly realistic. But it
is important to see that without this causal assumption, or some other one,
there is no determinate way of saying how much difference natural selection
makes to AZ, because there is no determinate way of saying what AZ would
have been in the absence of selection.

This is quite a striking result, that is not widely appreciated. One might
easily think that if natural selection is understood as “selection of”, i.e. if
Cov(w;, ;) # 0 is taken to imply that selection is acting on z, then no causal
assumptions are necessary in order to isolate the component of AZ that is
due to selection. However, this is not so. Isolating the difference made
by selection requires comparing the actual change AZ with the change that
would have resulted had selection not acted; and computing this hypothetical
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change requires that we identify the minimum modification to the population
that eliminates natural selection, which requires an assumption about causal
structure. So even if natural selection is taken in the sense of “selection of”,
causal assumptions are needed in order to justify interpreting the “Cov” term
of equation (3) as the change due to natural selection.

Secondly, computing the difference made by natural selection depends on
the convention we adopt regarding the value of §; for an individual with w; =
0. (The difference made by transmission bias, by contrast, is independent of
this convention). For purposes of causal analysis, the “right” convention is
surely convention C — that is, assigning to a w; = 0 individual the value of 9;
they would have had if they had left any offspring. Price’s own convention
A (which assigns §; = 0 to such individuals), by contrast, may lead to an
under or over-estimation of the difference that natural selection makes; for
in the context of our counterfactual reasoning, it amounts to assuming that
if individuals who left no offspring had done so, they would have transmitted
their genetic value with perfect fidelity, which is biologically implausible.

Thirdly, whichever convention we adopt, the difference made by trans-
mission bias, and the difference made by natural selection, do not in general
add up to the total change AZ. To see why, it helps to use yet another form
of the Price equation (found in [5]). This form is derived by substituting (2)
into (1) but without adding the covariance terms:

difference made by selection
AZ = COV(U)Z‘/@, Zi) + COV(U)Z‘/@, 61) -+ g (4)

TV
difference made by transmission bias

Equation (4) partitions AZ into three components. The first two RHS
terms sum to Cov(w;/w, z;), which our counterfactual reasoning identifies
as the difference made by selection. The second two RHS terms sum to
Exp(w;0;)/w, which our counterfactual reasoning identifies as the difference
made by transmission bias. These two differences add up to Az if and only if
Cov(w;/w, d;) = 0 — which means that the two causes don’t interact. A some-
what similar situation arises in a two-way ANOVA (analysis of variance): the
main effects of the two independent variables only sum to the total effect if
non-additive interaction is absent (as noted by [13]).

It might be thought that the condition Cov(w; /@, §;) = 0 will often obtain
empirically. This may be true — for mutation and sampling error, which are



two sources of transmission bias, will typically be uncorrelated with individ-
ual fitness. However another source of transmission bias is gametic selection
(meiotic drive), which empirically is often associated with reduced viability.
And moreover, the value of Cov(w;/w,d;) is sensitive to the convention we
adopt about the value of §; for the w; = 0 individuals. If for example we
adopt Price’s convention A, then even if §; and w; are entirely uncorrelated
among individuals with w; > 0, the value of Cov(w;/w, ¢;) will generally be
NoN-zero.

What is the upshot? The idea that the Price equation partitions the
total change into components due to natural selection and transmission bias
is murkier than it seems, even if we take a non-zero value of Cov(w;, z;) to
imply, by definition, that selection is occurring. The “best-case scenario”
for this idea is when w; > 0 for all ¢ (which implies that any selection is by
differential fecundity or fertility, rather than differential survival); and when
mutation and sampling error are the only sources of transmission bias. For
if w; > 0 for all 7, then no convention is needed about the value of §; when
w; = 0; while if transmission bias arises only from mutation and sampling
error, then Cov(w; /w, §;) should be close to zero in a large population. But in
the general case, equation (4), taken in conjunction with our counterfactual
reasoning, shows that selection and transmission bias do not make additively
separable contributions to the total evolutionary change.

3 Levels of selection

In section 2, we identified two reasons why causal interpretation of the Price
equation is problematic. The first was that two variables, such as w and z,
can be statistically associated for many reasons, even if one does not cause the
other. The second was that even if natural selection is defined as statistical
association between trait and fitness, it is still not obvious which form of
the Price equation, if any, isolates the effect of natural selection on the total
evolutionary change. Our focus in section 2 was on the second problem. In
this section we return to the first problem, and focus on a special case of the
problem that arises in the context of multi-level selection.

A version of the Price equation is often employed in discussions of multi-
level selection, for example to analyse evolution in group-structured popu-
lations. Suppose that our population of n individuals is sub-divided into
N groups, assumed for convenience to be of equal size. We let z;, and wjj



denote the genetic value and fitness, respectively, of the jth individual in
the kth group. We let Z;, and W) denote, respectively, the average genetic
value and average fitness of the kth group. As before, we let ¢ index the
individuals in the global population, without regard to grouping. We can
then partition the overall covariance between w; and z; into between-group
and within-group components:

between-group within-group
—N— 7 -
Cov(w;, z;) = Cov(Wy, Z)  +  Expg(Cov(wjk, zjk)) (5)

The first RHS term of (5) is the covariance between the group means, while
the second RHS term is the average, across groups, of the within-group co-
variance between w and z. We can then substitute equation (5) into the
simple Price equation (1). Ignoring individual-level transmission bias, this
gives:

AZ = Cov(Wy, Zy) /w + Exp,(Cov(wjk, 2;1)) /0 (6)

which is a multi-level version of the Price equation, that was first derived, in
a slightly different form, by Price [18].

Equation (6) is a useful tool for modelling the evolution of altruism, as
both Price [18] and Hamilton [7] saw. If the gene in question encodes an
altruistic trait, then the between-group term will be positive, since groups
with more altruists will have higher average fitness, while the within-group
term will be negative, since within any group altruists suffer a fitness penalty
relative to non-altruists. So the equation captures the idea, already known
to Darwin [1], that altruism will be favoured by between-group selection, but
disfavoured by within-group selection. The overall evolutionary outcome will
depend on which selective force is stronger.

The example of altruism encourages the idea that equation (6) is a quite
general formalization of the “levels of selection” question in evolutionary
biology. In particular, one might reasonably suppose that the debate over
the importance of “group selection” in nature can be interpreted as a debate
about whether, in actual biological populations, the term Cov(Wj, Z) is
substantial or not. This appears to be what Price [18] and Hamilton [7]
thought, and it is still a widely-held view today.

In fact, however, this interpretation of equation (6) is questionable. For it
is quite possible that the term Cov(Wy, Zi) be non-zero, even in the absence
of what would ordinarily be regarded as group-level selection ([8], [12]). To
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Figure 1: Causal dependence of individual fitness on individual genetic value
alone (i); on both individual and group genetic value (ii).

see this point, suppose that the gene whose evolution we are concerned with
encodes a purely non-social trait, i.e. an individual’s fitness w;, depends
only on its own genetic value z;, but not on the genetic values of its group
members, nor therefore on the group’s genetic value Z;. In such a situation,
it seems clear that z evolves by individual-level selection alone, i.e. because
some individuals are fitter than others. But unless all groups happen to have
exactly the same gene frequency, the term Cov(Wy, Z;) will be non-zero.
Simply put, group fitness Wy correlates with genetic value Zi, but this is
simply a side-effect of the fact that some groups contain a higher proportion
of the fitter individuals than others.

Another way to see this point is in terms of G.C. Williams’ distinction
between genuine group adaptation and “fortuitous group benefit” [27]. The
former refers to a trait which evolved because it is group-advantageous, the
latter to a trait which, although group-advantageous, did not evolve for that
reason but rather because it benefits individuals who happen to live in groups.
Thus for example, if faster deer have a selective advantage over slower deer,
then a consequence of this is that a herd of fast deer will do better than a herd
of slow deer, but this is a fortuitous group benefit, not a group adaptation.
In effect, the problem with treating the term Cov(Wy, Zi) as a measure of
“group selection” is that it ignores Williams’ distinction. A non-zero value of
Cov(Wk, Zx) may be indicative of a causal process of selection at the group
level, but it may equally be a side-effect, or byproduct, of individual-level
selection.

The general moral here is that we must be wary of reading causal meaning
into bare statistical formula. This danger is particularly acute in a multi-
level context, where it is easily missed. The partition of AZ in equation (6)
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does not distinguish between two causal models: (i) individual fitness w,y, is
caused by z;, alone; and (ii) wjx is caused by both zj;, and Z; (Figure 1).
The value of Cov(Wy, Z) could be identical in both cases; but in case (i) it
is both intuitively inappropriate, and untrue to the history of the concept,
to talk about “group selection”. This is the fundamental reason why the
multi-level Price equation (6), for all its usefulness as a conceptual tool for
thinking about altruism, does not cleanly yield a “formal separation of levels
of selection”, contrary to what Price and Hamilton thought.

Of course, if we were to content to understand selection in the “selec-
tion of” sense, this worry would not arise. That is, if we simply take it as
true by definition that whenever Cov(W}, Zx) is non-zero, group selection is
occurring, then our objection to the causal interpretation of the multi-level
Price equation (6) could be side-stepped. However, in the context of multi-
level selection this is an inadvisable move, for it is tantamount to rejecting
Williams’ distinction between group adaptation and fortuitous group bene-
fit, and would lead to a conflation of evolutionary processes that are clearly
distinct. If we accept (as most biologists appear to) that Williams’ distinc-
tion is an important one, and that it is intuitively wrong to speak of group
selection in the absence of group effects on individual fitness, and thus that
Cov(Wy, Zx) # 0 is not sufficient for group selection, then we must conclude
that equation (6) does not in fact isolate the component of evolutionary
change due to group selection.

4 Causal models

Our discussion thus far has revealed the difficulty of taking the components
of the Price equation to correspond to distinct causal processes in evolution.
The difficulty arises for both the single- and multi-level versions of the Price
equation, and whether selection is understood as “selection for” (where z
causally influences w) or “selection of” (where z and w are statistically as-
sociated, irrespective of whether z is a cause of w). In each case we saw
that the “Cov” and “Exp” terms of the Price equation admit of a causal
interpretation only under specific conditions.

In this section we change gear and explore the opposite approach. Instead
of starting with the Price equation and trying to infer its causal meaning in
particular circumstances, an alternative is to explicitly model causal assump-
tions up front and use this to decompose the evolutionary change (as done
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Figure 2: A simple causal graph over the three variables appearing in the
Price equation, adopted with modification from Frank [3].

by [3, 22, 15]). This approach expresses causal relationships with a directed
causal graph and draws on the general relationship between causality and
probability [24, 16]. In the present context, we are interested in the causal
relationships among the three variables appearing in the Price equation (3),
namely fitness w, genetic value z, and the allelic frequency among the suc-
cessful gametes z’. In the case of “selection for”, the parent’s genetic value
z affects both w (through selection) and 2’ (through transmission). Letting
€w, €. and €., summarize all other causes of w, z and 2’ respectively, we obtain
Figure 2 as the default causal model [3].

The causal model explicates the conditions for counterfactual reasoning.
When we resorted to hypothetical interventions to separate out the differ-
ences made by selection and transmission bias in section 2.3, we noted that
the reasoning depends on causal assumptions. For example, in eliminating
transmission bias by setting ¢; = 0 for each individual, we stipulated that this
leaves the other variables (apart from z’) unchanged. Given the causal model
in Figure 2, such an intervention amounts to setting €., = 0 for each individ-
ual, and at the same time assuming that there is no arrow from 2’ to z or w.
Likewise, that the elimination of selection by setting w = w does not change
the other variables is warranted by the absence of an arrow from w to z or
Z'. Figure 2 satisfies all these requirements and thus provides an exemplar
causal structure in which the difference made by selection and transmission
bias are captured by Cov(w;/w, ;) and Exp(w;d;)/w respectively.

Another advantage of making explicit causal assumptions is that it allows
for a yet further decomposition of the Price equation, as shown by a number of
authors [20, 3|. Figure 2 contains two pathways that contribute to the “Cov”
term of equation (3): the top dashed arrow through €’s and the bottom path
through z. The contribution of the former is Cov(e,, €./), while that of the
latter is given by multiplying the regression coefficients S, 3.., and the
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variance of z, according to Sewall Wright’s method of path coefficients [28].
Since a regression coefficient is nothing but covariance divided by variance,
the whole equation becomes

Cov(z;, z1)

AZ = Cov(w;/w, z;) - Var (=)

+ Cov(ey, €2) + 6. (7)

The first term is a product of the selection differential Cov(w;/w, z;) and the
(narrow sense) heritability Cov(z;, z{)/ Var(z;). When the average transmis-
sion bias and confounding are absent so that 6 = Cov(e,, €./) = 0, equation
(7) reduces to the breeder’s equation, as discussed by ([3], [4], [20], [21]). For
the sake of simplicity we henceforth assume Cov(e,,€./) = 0.

With this assumption in place, equation (7) divides the “Cov” term of
equation (3) into two components. In section 2 we saw that in order for the to-
tal change AZ to be partitioned into the difference made by transmission bias
and by natural selection, the second term Cov(w;/w, d;) of equation (4) must
be zero. In equation (7) this condition translates to Cov(z;, 2})/ Var(z;) = 1,
that is, heritability must be perfect. If z represents a genetic value this
condition is satisfied by the absence of mutation, random drift, or gametic
selection, as we noted. But the Price equation is also used to describe a
change in a phenotypic mean, in which case this condition of perfect heri-
tability, and thus also the partition of the total change into the differences
made by selection and transmission bias, is unlikely to obtain.

Do the RHS terms of equation (7), in particular the selection differen-
tial and heritability, correspond to distinct causal processes? The selection
differential is often interpreted as capturing just the effects of selection and
not those arising from reproduction because it does not contain z’, but as
we have seen in section 2, mere inspection of the terms in the equation is an
unreliable guide here. Indeed, the heritability term shares z and 2’ with the
selection differential and the average transmission bias, respectively, so par-
ity of argument would imply that none of the three RHS terms in equation
(7) represent distinct causal factors.

To address this issue, we again resort to counterfactual reasoning, but
now in the context of a specific causal model. Let us ask whether there are
hypothetical interventions that eliminate just one of the three RHS com-
ponents of equation (7) while leaving the others intact (note that we are
assuming Cov(e,, €,/) = 0). The answer is yes. First, it is easily seen that
setting w = w as before eliminates the selection differential but leaves the
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other two terms unchanged. Second, in order to eliminate the average trans-
mission bias ¢ alone, we manipulate €, in such a way that its mean becomes
zero, i.e. Exp(e,) = 0, but the other moments, including its variance, stay
the same. This effectively makes § = 0, while leaving the other components
intact. Finally, heribability can be manipulated by changing the variance of
2. Hence setting 2’ to the mean Exp(e,/) eliminates the heritability without
affecting the transmission bias or selection differential. So despite the ap-
parent overlap of variables, the three components do seem to reflect distinct
causal processes, in that they can be independently controlled by hypothet-
ical interventions.

Note that, although the difference made by selection, Cov(w;/w, z;), de-
composes into the selection differential and the heritability (given Figure 2),
the latter two components combine multiplicatively rather than additively.
So the selection differential and the heritability do not constitute distinct
shares of the total evolutionary change: it does not make sense to ask what
portion of AZ is due to each, nor which of them makes a greater contribution.
This is also clear from Figure 2, where the selection differential and heri-
tability correspond to two consecutive links that constitute one causal path
w < z — Z'. This means that they do not represent independent sources
that affect the change due to selection (as measured by Cov(w;/w, 2})), but
rather two interactive components that together produce that change.

We saw in section 2 that the interpretation of equation (3) depends on
the convention we adopt regarding the value of §; for an individual with
w; = 0. The same issue arises with respect to equation (7) which includes
2l and ¢; in its second and fourth components. Let us ask, then, which con-
vention is needed in order to ensure that these two components correctly
capture the corresponding causal factors. It is easy to see that Price’s con-
vention A — assigning §; = 0 to offspringless individuals — does not work
here, for it will underestimate both the heritability and transmission bias.
In contrast, convention B (setting §; = 0 if w; = 0) gives a correct estimate
of the transmission bias as long as the bias generating mechanisms (e, €,/)
are independent from fitness w, which is satisfied if Cov(e,,€.r) = 0; but
it overestimates the heritability because it amounts to assuming that such
individuals would have perfect heritability. This leaves us with convention C,
which counterfactually imputes the value of §;. Although this is conceptually
plausible, such counterfactual values, being unobservable, cannot help us to
estimate model parameters. A practical solution in this case is to ignore
individuals with w; = 0 and calculate the heritability and transmission bias
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Figure 3: A case of pleiotropy, where gene z affects fitness w and successful
gamete 2z’ through both direct and indirect pathways.

based solely on those who beget offspring [9]. If we assume that all individu-
als are i.i.d. samples from the model described in Figure 2, discarding some
of them (i.e., those with w; = 0) will not introduce a bias in the estimation
of the causal parameters.

That the Price equation can be used to partition the total change into
the selection differential and the heritability has previously been shown by
Queller ([20], [21]) and Frank ([3], [4]). What our analysis adds is the fol-
lowing key point: the components of equation (7) can only be interpreted
causally if a certain causal structure, embodied in Figure 2, is assumed. To
see this point, consider the alternative causal structure in Figure 3. This de-
picts a case of pleiotropy, in which the gene has two phenotypic effects. The
first effect is to increase fertility via the arrow from 2z to w. The second effect
is to encode a behaviour u which causes the individual to disperse towards a
mutagenic region of the environment (e.g. with high radiation). This has a
negative effect on viability (the arrow from u to w), and also has an effect on
the mutation rate, thus affecting the transmission fidelity (the arrow from u
to 2/). In such a case u affects all the components of equation (7) including
Cov(ey, €,), so that the selection differential, heritability, and transmission
bias no longer represent distinct causal mechanisms.

The moral of this example is that there is no unique or universally correct
causal decomposition of the Price equation: all depends on an underlying
causal structure, which must be specified separately from the equation. As
a statistical relationship, the Price equation is causally neutral and by itself
does not support any causal readings. It is only by making specific causal
assumptions that we can interpret its components in causal terms.

16



5 Description vs explanation of evolutionary
change

The moral drawn above invites a philosophical reflection. Why does the Price
equation, taken alone, not admit of a causal interpretation, appearances to
the contrary notwithstanding? The basic reason is that the Price equation
is a descriptive principle, in contrast to the explanatory or predictive models
used in population genetics [2, 25]. The RHS of the Price equation always
correctly records an actual change in the gene frequency of a population, but
one cannot calculate it before observing the LHS. This reflects the fact that
the Price equation is a mathematical identity, so that its RHS is a redescrip-
tion of the LHS. Since algebraic transformations add no new information, the
resulting identity contains nothing that one could not know from the original
data. Reading out more, therefore, requires making an empirical assumption
that is external to the equation itself.

At first sight, ascribing the total evolutionary change to selection and
transmission bias does not seem to go beyond descriptive book-keeping, for
it looks like sorting out the cash in your purse into coins and bills. In re-
ality, however, it is more like asking how much of your money comes from
where, because selection and transmission bias are understood as two dif-
ferent sources that contribute to evolutionary change. And to consider the
relative contribution of each factor is to imagine a hypothetical situation in
which the source in question is absent. It is for this reason that we needed to
resort to counterfactual reasoning in order to determine the difference made
by each factor.

To answer such counterfactual questions requires a certain structure that
stays invariant across different possibilities [16]. Counterfactual reasoning
evaluates the consequences that would obtain under different conditions, and
this is possible only if we assume that the mechanism connecting conditions
and outcomes is the same in both the actual and counterfactual scenarios.
The causal graph we saw in section 4 is one way to express this invariance
assumption. The graphical structure is a representation of the causal mecha-
nism that generates statistical data, and tells us what does and does not stay
invariant under interventions on or modifications of the graph. The frame-
work thus allows us to assess how the components of the Price equation are
affected if we hypothetically eliminate selection or transmission bias, and to
determine the possible interventions that keep a given statistical component
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fixed.

Adding causal assumptions makes the Price equation, which by itself is
a mathematical identity, into a predictive model. The goal of a model is
not to describe or record actual evolutionary changes, but rather to explain
them or to predict unobserved changes. In this respect, equation (7) should
be sharply distinguished from the preceding variants of the Price equation.
For while the Price equation itself is always exact, the LHS and RHS of
equation (7) rarely match if calculated from observed data, because the in-
dependence conditions implied by Figure 2 only obtain asymptotically and
will not hold exactly in any finite population, even if the figure correctly
captures the causal structure of the population [9]. Hence if the breeder’s
equation is taken as a description of an actual evolutionary change, it is al-
most always false. Nevertheless it has long served for breeders to predict a
change in the mean phenotype before performing artificial selection, or for
ecologists to explain relatively slow responses to strong selective pressures
in terms of the lack of heritability. This is because the equation gives evo-
lutionary responses that would obtain under specific boundary conditions,
given the model’s assumptions. Hence to the extent that those assumptions
approximate reality, it allows us to make inferences about unobserved or
unobservable evolutionary changes under future or hypothetical conditions.

The key to such inductive inferences is the assumption of invariance. As
discussed above, explaining an evolutionary change in terms of a particular
factor such as selection or transmission requires a stable structure to support
counterfactual reasoning. Moreover, predicting the future based on past
observations presupposes a certain kind of “uniformity of nature” [10]. In
the present context, this amounts to assuming that the causal structure that
generates an evolutionary response does not itself change over time, despite
the change in the frequency of genes and/or phenotypic variables. Clearly
such an assumption cannot be justified a priori or by past observations alone,
but must be posited as an empirical hypothesis. This is the reason we needed
to introduce a causal model in order to evaluate counterfactual claims, and
to derive the equational form (7) that is capable of making predictions.

What the above discussion suggests is that it is impossible, in principle,
to read off causal implications from the Price equation itself, unless causal
assumptions are made (at least implicitly). As we noted, partitioning the
total change into distinct components is already an explanatory task, for it
amounts to attributing portions of evolutionary response to their correspond-
ing causes. This cannot be achieved solely by inspecting data, but only by
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introducing an additional empirical hypothesis in the form of an invariant
model. To think otherwise is to confuse description with explanation, and a
priori identities with predictive models.

Might one argue that although the components of the Price equation
do not by themselves make any causal claims, they may serve as evidence
for the latter, just as an observed correlation between two variables is often
taken as evidence of their causal connection? After all, such “inference to the
best explanation” is a common inferential pattern in science. The problem
with this type of inference, however, is that the candidate explanations are
rarely exhaustive. The presence or absence of a statistical association does
not entail causal dependence nor independence, for two variables having no
direct causal relationship may still show a spurious correlation due to some
confounding factor, while a genuine cause may be statistically independent
from its effect if there are multiple causal pathways whose influences cancel
each other (a situation called unfaithful [24]). We have already seen this
when we noted that a non-zero between-group covariance Cov(Wy, Z;) in
the multi-level Price equation (6) may not reflect group selection, but rather
a “fortuitous group benefit” that arises as a side effect of individual-level
selection. Conversely, it is also possible that individual-level and group-level
effects offset each other to yield zero between-group covariance [14]. The
individual covariance term Cov(w;/w, z;) in the single-level Price equation
(1) fares no better, for on the one hand it may be non-zero because of non-
selective factors or selection on linked genes; on the other hand it may be
zero despite genuine selection on z if this is counterbalanced by selection on
another gene/trait.

Given these uncertainties, we believe that it is safer to treat these statis-
tics as estimates of parameters of a pre-specified model. Calling them esti-
mates makes it explicit that their interpretation is always relative to a model.
For instance, the selection differential Cov(w;/w, z;) can be taken as an es-
timate of the strength of linear selection only under a specific causal model
such as Figure 2. With a different model such as Figure 3, the same statistic
may correspond to a different parameter and no longer be properly called the
selection differential. Of course, in most cases we do not know which model
is true. But at least the causal interpretation, along with the partitioning of
the total change into distinct components, becomes a falsifiable hypothesis,
which can be tested through an examination of the model’s assumptions.

The resulting situation is summarized in Figure 4, which illustrates the
three-way relation between evolution, the Price equation, and a causal model.
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Figure 4: The three-way relations between evolution, the Price equation, and
a causal model.

Evolution is an empirical phenomenon, and the role of the Price equation
is to describe and summarize it in concise statistical terms. The equation
itself, however, is silent about the causal underpinnings that generate these
statistics. The generating mechanism is represented by a causal model, which
explains observed evolutionary changes and predicts future changes so long
as the model’s assumptions stay valid. Since a causal model is an empirical
hypothesis, its structure and parameters must be inferred and estimated from
observed data. This is a fallible process, but necessary for making the a priori
Price equation into a predictive model. This might not be news, but the neat
form of the Price equation has sometimes given an impression that its terms
by themselves admit of a causal interpretation. Attention to causal models
dispels this illusion and reminds us that a causal reading of the statistical
formulae is possible only with a predetermined causal hypothesis.

6 Conclusion

In this paper, we have examined the oft-made claim that the RHS compo-
nents of the Price equation (the “Cov” and “Exp” terms) correspond to dis-
tinct evolutionary processes, such as natural selection and transmission bias.
It turns out that this correspondence is neither straightforward nor universal.
Our counterfactual argument showed that computing the difference made by
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natural selection depends on a convention about the value of 9; for an indi-
vidual who leaves no successful gametes; and on an assumption about the
minimum modification needed to hypothetically eliminate selection from the
population, which is tantamount to an assumption about causal structure.
Furthermore, the differences made by selection and by transmission bias only
add up to the total change under a specific condition, which in effect says
that the two causal processes do not interact. Such a condition can be for-
mally represented in terms of a causal graph, where each component of the
Price equation finds a definite causal interpretation as its parameter. An
explicit causal model also converts the Price equation, which by itself is an
a priori descriptive principle, into an empirical model capable of explaining
and predicting evolutionary changes. The Price equation thus has a distinct
logical status, and plays a different role in the study of evolution, from other
evolutionary models. A failure to recognise this can easily encourage the
unwarranted view that the terms in the Price equation always admit of a
univocal causal interpretation.
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